### Betweenness centrality in convex amalgamation of graphs

#### Abstract

#### Full Text:

PDF#### References

A. Bavelas, A mathematical model for group structures, Human Organization 7, Appl. Anthropol. 7(3) (1948) 16–30.

U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol. 25(2) (2001) 163–177.

L. C. Freeman, A set of measures of centrality based on betweenness, Sociometry 40(1) (1977) 35–41.

R. Frucht, F. Haray, On the corona of two graphs, Aequationes Math. 4(3) (1970) 322–325.

J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2009) 1–219.

F. Harary, The number of linear, directed, rooted, and connected graphs, Trans. Amer. Math. Soc. 78(2) (1955) 445–463.

S. Kumar, K. Balakrishnan, M. Jathavedan, Betweenness centrality in some classes of graphs, Int. J. Comb. 2014 (2014) 1–12.

S. Kumar, K. Balakrishnan, On the number of geodesics of Petersen graph $ GP (n, 2)$, Electronic Notes in Discrete Mathematics 63 (2017) 295–302.

S.-C. Shee, Y.-S. Ho, The cordiality of one-point union of n copies of a graph, Discrete Math. 117(1–3) (1993) 225–243.

### Refbacks

ISSN: 2148-838X