Hermitian self-dual quasi-abelian codes

Herbert S. Palines, Somphong Jitman, Romar B. Dela Cruz

Abstract


Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

Full Text:

PDF

References


L. M. J. Bazzi, S. K. Mitter, Some randomized code constructions from group actions, IEEE Trans. Inform. Theory 52(7) (2006) 3210–3219.

J. Conan, G. Séguin, Structural properties and enumeration of quasi–cylic codes, Appl. Algebra Engrg. Comm. Comput. 4(1) (1993) 25–39.

B. K. Dey, On existence of good self–dual quasicyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1794–1798.

B. K. Dey, B. S. Rajan, Codes closed under arbitrary abelian group of permutations, SIAM J. Discrete Math. 18(1) (2004) 1–18.

C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495.

S. Jitman, S. Ling, Quasi–abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511–531.

S. Jitman, S. Ling, P. Solé, Hermitian self–dual abelian codes, IEEE Trans. Inform. Theory 60(3) (2014) 1496–1507.

A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory 52(11) (2006) 4892–4914.

K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1–2) (2001) 157–175.

S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760.

S. Ling, P. Solé, Good self–dual quasi–cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053.

S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700.

G. Nebe, E. M. Rains, N. J. A. Sloane, Self–Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics 17, Springer–Verlag, Berlin, Heidelberg, 2006.

J. Pei, X. Zhang, 1-generator quasi–cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554–561.

V. Pless, On the uniqueness of the Golay codes, J. Combinatorial Theory 5(3) (1968) 215–228.

B. S. Rajan, M. U. Siddiqi, Transform domain characterization of abelian codes, IEEE Trans. Inform. Theory 38(6) (1992) 1817–1821.

G. Séguin, A class of 1-generator quasi–cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753.

S. K. Wasan, Quasi abelian codes, Publ. Inst. Math. 21(35) (1977) 201–206.


Refbacks

  • There are currently no refbacks.


ISSN: 2148-838X