Erratum to “A further study for the upper bound of the cardinality of Farey vertices and applications in discrete geometry” [J. Algebra Comb. Discrete Appl. 2(3) (2015) 169-190]

Daniel Khoshnoudirad

Abstract


The equation (4) on the page 178 of the paper previously published has to be corrected. We had only handled the case of the Farey vertices for which $\min\left(\left\lfloor\dfrac{2m}{sr'}\right\rfloor,\left\lfloor\dfrac{n}{s'r}\right\rfloor \right)\in\mathbb{N}^{*}$. In fact we had to distinguish two cases: $\min\left(\left\lfloor\dfrac{2m {sr'}\right\rfloor,\left\lfloor\dfrac{n}{s'r}\right\rfloor \right)\in\mathbb{N}^{*}$ and $\min\left(\left\lfloor\dfrac{2m}{sr'}\right\rfloor,\left\lfloor\dfrac{n}{s'r}\right\rfloor \right)=0$. However, we highlight the correct results of the original paper and its applications. We underline that in this work, we still brought several contributions. These contributions are: applying the fundamental formulas of Graph Theory to the Farey diagram of order $(m,n)$, finding a good upper bound for the degree of a Farey vertex and the relations between the Farey diagrams and the linear diophantine equations.


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


ISSN: 2148-838X