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Abstract: A classification of all totally real subfields K of cyclotomic fields Q(ξ2r ), for any r ≥ 4, and the
fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for
their minimum product distance. Any totally real subfield K of Q(ξ2r ) must be of the form K =
Q(ξ2s +ξ−1

2s ), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information
over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications)
can be carved out of those lattices.
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1. Introduction

In this work a lattice means a discrete subgroup of Euclidean n-space. A simple, yet important
example, is the n-dimensional integer lattice Zn, which consists of all points whose coordinates are n-
tuples of integers [10]. Lattices constructed from algebraic number fields are called algebraic lattices.
One advantage of the latter is that important parameters such as sphere packing density and minimum
product distance, which are typically costly to calculate for general lattices, can be readily determined.
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Lattices have been considered in different areas, especially in coding theory, more recently in cryp-
tography [23] and from different points of view [14, 27].

Constructions of algebraic lattices have been proposed in several papers [1–9, 12, 13, 15, 16, 18–
21, 24, 25, 28]. Lattices constructed from totally real algebraic number fields possess maximum diversity,
a feature that makes them attractive for use over Rayleigh fading channels. Signal constellations based
on Zn-lattices offer a good trade-off between bit labelling and constellation shaping since they are only
slightly worse in terms of shaping gain but are usually easier to label [24]. Therefore, all of the above
motivates the investigation of Zn-lattices constructed from totally real number fields. In [1, 2], rotated
Zn-lattices were constructed from the totally real fields Q(ξ2

k

2r + ξ−2
k

2r ), with k = 0, 1, and their minimum
product distances were computed, where ξ2r is primitive 2r-th root of unity. Having the construction
procedure of rotated Zn-lattices from totally real subfields of cyclotomic fields as the main motivation,
in this paper we extend the constructions of [1, 2] for the totally real fields Q(ξk2r + ξ−k2r ), where k ∈ Z.

We conclude that, whatever the Zn-lattice built on totally real subfields of Q(ξ2r ), the nor-
malized minimum product distance present in Table 1 is the best one in each dimension, since
K = Q(ξ2s + ξ−12s ), for s = r − j (0 ≤ j ≤ r − 3) is equivalent to K = Q(ξ2r + ξ−12r ) for a specific
r ≥ 4, and this was precisely the case approached in [1, 6].

The paper is organized as follows. Section 2 reviews definitions and results from algebraic number
theory and cyclotomic fields that are relevant to the work. A classification of all totally real subfields
of the cyclotomic field Q(ξ2r ) is presented. Section 3 reviews ideal lattices, in particular calculation
of their minimum product distance. Section 4 contains the main contribution of the paper, namely, a
method for constructing rotated Zn-lattices from any totally real subfield K of Q(ξ2r ); it turns out that,
in each possible dimension, the minimum product distance of the obtained lattice is the same as the one
previously obtained in [1, 2]. Formulas for the normalized minimum product distances of the obtained
lattices are presented as well. Rotation matrices for constructing Zn-lattices in the same dimensions and
with the same normalized minimum product distances were presented in [11], however, no rationale was
provided therein for how the matrices were obtained. Finally, in Section 5, the concluding remarks are
drawn.

2. Background on algebraic number theory and cyclotomic fields

In this section we review some facts about number fields, and in particular, cyclotomic fields. We
recall only the results that are needed for subsequent sections. The reader interested in further details
is referred to [26] and [29]. Let L be a number field of degree n, OL its ring of integers, and σ1, . . . , σn
the monomorphisms of L into C. The embedding σi is called real if σi(L) is contained in R, and is called
complex otherwise. The field L is said to be totally real if all of its embeddings are real.

Given x ∈ OL, the (rational) integers N(x) = NL/Q(x) =
∏n
i=1 σi(x) and Tr(x) = TrL/Q(x) =∑n

i=1 σi(x) are called norm and trace of x in L/Q, respectively. The norm of a free Z-module A of rank
n contained in OL is defined as N(A) = NL(A) = |OL/I|. If {ω1, . . . , ωn} is a Z-basis for OL, then
the (rational) integer dL = (det(σj(ωi))

n
i,j=1)2, which is invariant under change of basis, is called the

discriminant of L. Throughout this work, Zm will denote the (cyclic) group of integers modulo m and
Z∗m the group of invertible integers modulo m with m ≥ 2 an integer.

Proposition 2.1. [22, 29] For any integer r ≥ 3, let L denote the cyclotomic field Q(ξ2r ) and L+ its
maximal real subfield, namely, L+ = L ∩ R = Q(ξ2r + ξ−12r ). One has:

(i) [L : Q] = 2r−1 and [L+ : Q] = 2r−2.

(ii) The ring of algebraic integers of L+ is Z[ξ2r + ξ−12r ].

(iii) {1, ξ2r + ξ−12r , ξ
2
2r + ξ−22r , · · · , ξ

2r−2−1
2r + ξ−2

r−2+1
2r } is an integral basis for L+.

(iv) L/Q is a Galois extension whose Galois group Gal(L/Q) is isomorphic to Z∗2r .

74



A. J. Ferrari et. al. / J. Algebra Comb. Discrete Appl. 11(2) (2024) 73–81

(v) L+/Q is a Galois extension whose Galois group Gal(L+/Q) is cyclic and
generated by σ, the automorphism defined by σ(ξ2r + ξ−12r ) = ξ52r + ξ−52r . Moreover, Gal(L+/Q) is
isomorphic to Z∗2r−2 .

(vi) dL+ = 2(r−1)2
r−2−1.

Proposition 2.2. For each 0 ≤ j ≤ r − 2, there exists a unique subfield K of L+ such that
[K : Q] = 2r−j−2.

Proof. The statement is an immediate consequence of the fact that the extension L+/Q is Galois: The
intermediate fields between L+ and Q are in one-to-one correspondence with the subgroups of Gal(L+/Q),
which is cyclic (and hence for every divisor d of the group order, there is exactly one subgroup of order
d).

Proposition 2.3. If K is a totally real subfield of L = Q(ξ2r ), then K ⊆ L+.

Proof. The field K must be contained in both L and R. Hence, K must be contained in L+.

Proposition 2.4. Let L = Q(ξ2r ), θj = ξ2r−j + ξ−12r−j , Lj = Q(ξ2r−j ) and L+
j = Q(θj), where j =

0, 1, . . . , r − 3. Then:

(i) [Lj : L+
j ] = 2 and Lj+1 ⊂ Lj.

(ii) [L+
j : Q] = 2r−j−2.

(iii) L+
j+1 ⊂ L+

j and [L+
j : L+

j+1] = 2.

(iv) [Lj : Lj+1] = 2.

L
2 2

L1

2
2

L+

2

L2

2
2

L+
1

2

L3 L+
2

Lr−3

2

L+
r−4

2

L+
r−3

2

Q
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Proof. newline

(i) Obviously [Lj : L+
j ] = 2 since L+

j is the maximal real subfield of Lj . Notice that L0 = L and L+
0 =

L+ = Q(ξ2r + ξ−12r ). Since ξ2r−j−1 = ξ22r−j ∈ Q(ξ2r−j ), one has Lj+1 = Q(ξ2r−j−1) ⊂ Q(ξ2r−j ) = Lj .

(ii) [L+
j : Q] = ϕ(2r−j)

2 = 2r−j−2 as L+
j = Q(ξ2r−j + ξ−12r−j ).

(iii) Since L+
j = Lj ∩ R and Lj+1 ⊂ Lj (see (i)), it follows that

L+
j ∩ Lj+1 = (Lj ∩ R) ∩ Lj+1 = (Lj ∩ Lj+1) ∩ R = Lj+1 ∩ R = L+

j+1,

and therefore, L+
j+1 ⊂ L+

j . The second assertion follows from [L+
j+1 : Q] = 2r−j−3 (see (ii)) and

[L+
j : Q] = [L+

j : L+
j+1] · [L+

j+1 : Q].

(iv) From (i), (iii), and the fact that [Lj : L+
j ] · [L+

j : L+
j+1] = [Lj : Lj+1] · [Lj+1 : L+

j+1], it follows that
[Lj : L+

j ] = [Lj+1 : L+
j+1] = 2 and [L+

j : L+
j+1] = 2, respectively. Therefore, [Lj : Lj+1] = 2.

Proposition 2.5. With notation as in Proposition 2.4, if K is a totally real subfield of L = Q(ξ2r ), then
there is 0 ≤ j ≤ r − 3 such that K = L+

j .

Proof. If K is a subfield of L and [K : Q] = t, then t = 2m for some 1 ≤ m ≤ r − 2 since t divides
[L : Q] = 2r−1. Setting j = r−m−2, it follows that 0 ≤ j ≤ r−3 and L+

j = Q(ξ2r−j +ξ−12r−j ) is such that
[L+
j : Q] = 2r−j−2 = 2m. As K is a totally real number field, K ⊆ L+

j by Proposition 2.3. In summary,
we have K, L+

j ⊆ L+ with [K : Q] = [L+
j : Q] = 2r−j−2 = 2m. Since by Proposition 2.2 there exists a

unique subfield K of L+ such that [K : Q] = 2r−j−2, one has K = L+
j .

3. Ideal lattices and minimum product distance

Let m ≤ n be positive integers and Λ a lattice with basis {v1, . . . , vm}. Let the coordinates of the
basis vectors be vi = (vi1, . . . , vin) ∈ Rn for i = 1, . . . ,m. The matrices M = (vij) and G = MM t are
called generator and Gram matrices for Λ, respectively, where t denotes transpose. The determinant
of Λ, denoted by det(Λ), is defined as det(G) and it is invariant under change of basis. The quantity√

det(Λ) is called the volume of Λ.

Let K be a totally real number field of degree n with monomorphisms σ1, · · · , σn, and α ∈ K a
totally positive element, that is, αi = σi(α) > 0 for all i = 1, · · · , n. The mapping σα : K→ Rn given by

σα(x) = (
√
α1σ1(x), . . . ,

√
αnσn(x)) ,

is called a twisted homomorphism [6]. When α = 1, the mapping becomes the canonical embedding of
K into Rn [26, Ch. IV, Section 2]. If A is a Z-module in K of rank n with Z-basis {w1, w2, · · · , wn},
then Λ = σα(A) is a full-rank lattice in Rn with basis {σα(w1), σα(w2), · · · , σα(wn)}. A generator and a
Gram matrix for Λ are given by

M =


√
σ1(α)σ1(w1)

√
σ2(α)σ2(w1) · · ·

√
σn(α)σn(w1)

...
...

. . .
...√

σ1(α)σ1(wn)
√
σ2(α)σ2(wn) · · ·

√
σn(α)σn(wn),


and

G =
(
TrK/Q(αwiwj)

)n
i,j=1

, (1)
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respectively. The minimum product distance of Λ is given by

dp,min(Λ) =
√
NK/Q(α) min

0 6=y∈A
|NK/Q(y)|. (2)

In particular, if A ⊆ OK is a principal ideal, then

dp,min(Λ) =

√
det(Λ)

|dK|
, (3)

see [6]. The normalized minimum product distance of Λ, denoted by dp,norm(Λ), is the minimum product
distance with normalized determinant det(Λ) = 1, i.e.,

dp,norm(Λ) =
1√

det(Λ)
dp,min(Λ).

In particular, if A ⊆ OK is a principal ideal then

dp,norm(Λ) =
1√
|dK|

. (4)

Theorem 3.1. [6] Notation as above, if A ⊆ OL is a fractional ideal, then

det(Λ) = N(A)2N(α)|dK|.

4. Construction of rotated Zn-lattices from L+
j

Henceforth, Lj , for 0 ≤ j ≤ r − 3, will denote the number field defined in Section 2, Proposition
2.4. Let α ∈ OL+

j
a totally positive element and A ⊆ OL+

j
a fractional ideal. If Λ = σα(A) is a rotated

Zn-lattice scaled by
√
c, then det(Λ) = cn. In Theorem 3.1, consider K = L+

j , A = OL+
j
and c = 2r−j−1.

In this case, n = 2r−j−2. By Proposition 2.1(v), dL+
j

= 2(r−j−1)2
r−j−2−1. Thus, if σα(A) is a rotated

Zn-lattice, then there is α ∈ OL+
j

such that N(α) = 2. Such an element α is provided by the next
proposition.

Proposition 4.1. Let θj = ξ2r−j + ξ−12r−j be an element of OL+
j
. Then α = 2− θj is totally positive and

N(α) = 2.

Proof. Clearly α = 2− θj is totally positive since for k = 1, 2, . . . , 2r−j−2,

σk(α) = σk(2− θj) = 2− σk(θj) = 2− 2 cos

(
2πk

2r−j

)
> 0.

Set ξ = ξ2r−j , N = NL+
j /Q

, Ñ = NLj/Q and N = NLj/L+
j
. Then 2Z[ξ] = (1− ξ)ϕ(2r−j)Z[ξ] in Q[ξ], where

ϕ is the Euler function. So, Ñ(1− ξ) = 2. Using the transitivity of the norm, we obtain

2 = Ñ(1− ξ) = N(N(1− ξ)) = N((1− ξ)(1− ξ−1)) = N(2− θj) = N(α),

which proves the result.

The condition N(α) = 2 for some α totally positive is not sufficient to guarantee the existence of a
rotated scaled version σα(A) of Zn-lattice. However, we show that such a version is obtained if α is as in
Proposition 4.1.
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Proposition 4.2. [17] If Lj = Q(ξ2r−j ), then

TrLj/Q(ξk2r−j ) =

 0 if gcd(k, 2r−j) < 2r−j−1;
−2r−j−1 if gcd(k, 2r−j) = 2r−j−1;

2r−j−1 if gcd(k, 2r−j) > 2r−j−1.

Corollary 4.3. If L+
j = Q(ξ2r−j + ξ−12r−j ), then

TrL+
j /Q

(ξk2r−j + ξ−k2r−j ) =

 0 if gcd(k, 2r−j) < 2r−j−1;
−2r−j−1 if gcd(k, 2r−j) = 2r−j−1;

2r−j−1 if gcd(k, 2r−j) > 2r−j−1.

Proof. From the transitivity of the trace, it follows that

TrLj/Q(ξk2r−j ) + TrLj/Q(ξ−k2r−j ) = TrLj/Q(ξk2r−j + ξ−k2r−j )

= TrL+
j /Q

(TrLj/L+
j

(ξk2r−j + ξ−k2r−j ))

= 2TrL+
j /Q

(ξk2r−j + ξ−k2r−j ).

The result now follows from Proposition 4.2.

Proposition 4.4. Notation as in Proposition 4.1, let e0 = 1 and ek = ξk2r−j + ξ−k2r−j for
k = 1, 2, . . . , 2r−j−2 − 1.

(i) TrL+
j /Q

(αekek) =

{
2r−j−1 if k = 0;

2r−j otherwise.

(ii) If k > 0, then TrL+
j /Q

(αeke0) =

{
−2r−j−1 if k = 1;

0 otherwise.

(iii) If 0 < i < k, then TrL+
j /Q

(αeiek) =

{
−2r−j−1 if |i− k| = 1.

0 otherwise.

Proof. To simplify the notation, denote TrL+
j /Q

by Tr.

(i) By Corollary 4.3, Tr(θj) = 0. One has Tr(αe0e0) = Tr(α) = Tr(2) = Tr(2) = 2r−j−1.

(ii) Since gcd(k, 2r−j) < 2r−j−1, for all k = 1, 2, . . . , 2r−j−2, it follows that

Tr(αeke0) = Tr(αek) = Tr((2− (ξ2r−j + ξ−12r−j ))(ξk2r−j + ξ−k2r−j ))

= 2Tr(ξk2r−j + ξ−k2r−j )− Tr(ξk+1
2r−j + ξ

−(k+1)
2r−j )− Tr(ξk−12r−j + ξ

−(k−1)
2r−j )

= Tr(ξk−12r−j + ξ
−(k−1)
2r−j ) =

{
−2r−j−1, if k = 1.

0, if k 6= 1.

Now, since gcd(2k, 2r−j), gcd(2k ± 1, 2r−j) < 2r−j−1 for k = 1, 2, . . . , 2r−j−2 − 1, it follows that

Tr(αekek) = Tr(αe2k) = Tr((2− (ξ2r−j + ξ−12r−j ))(ξ2k2r−j + ξ−2k2r−j + 2))

= 2Tr(ξ2k2r−j + ξ−2k2r−j ) + Tr(4)− Tr(ξ2k+1
2r−j + ξ

−(2k+1)
2r−j )

−Tr(ξ2k−12r−j + ξ
−(2k−1)
2r−j )− 2Tr(ξ2r−j + ξ−12r−j ) = 2r−j .
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(iii) Under the hypotheses, gcd(i± k, 2r−j), gcd(i± k ± 1, 2r−j) < 2r−j−1. Then

Tr(αeiek) = Tr((2− (ξ2r−j + ξ−12r−j ))(ξi2r−j + ξ−i2r−j )(ξk2r−j + ξ−k2r−j )

= 2Tr(ξi+k2r−j + ξ
−(i+k)
2r−j ) + 2Tr(ξi−k2r−j + ξ

−(i−k)
2r−j )

−Tr(ξi+k+1
2r−j + ξ

−(i+k+1)
2r−j )− Tr(ξi−k+1

2r−j + ξ
−(i−k+1)
2r−j )

−Tr(ξ−i+k+1
2r−j + ξ

−(−i+k+1)
2r−j )− Tr(ξi+k−12r−j + ξ

−(i+k−1)
2r−j )

=

{
−2r−j−1 if |i− k| = 1.

0 otherwise,

as desired.

Proposition 4.5. Notation as in Propositions 4.1 and 4.4, if A = OL+
j
, then 1√

2r−j−1
σα(A) is a rotated

Zn-lattice.

Proof. From (1), it follows that the Gram matrix for 1√
2r−j−1

σα(A) is given by

G1 = 1
2r−j−1

(
TrL+

j /Q
(αeiek)

)n−1
i,k=0

and by Proposition 4.4, one has

G1 =



1 −1 0 · · ·
−1 2 −1 0 · · ·

0 −1 2 −1 0 · · ·
· · · 0 −1 2 −1 0 · · ·

. . . . . . . . . . . . . . .
· · · 0 −1 2 −1 0
· · · 0 −1 2 −1
· · · 0 −1 2


.

Let T the change of basis matrix

T =



−1 −1 . . . −1 −1 −1
−1 −1 . . . −1 −1 0
−1 −1 . . . −1 0 0

...
...
. . .

...
...

...
−1 −1 . . . 0 0 0
−1 0 . . . 0 0 0

 .

Since G = TG1T
t = In, it follows that 1√

2r−j−1
σα(A) is a rotated Zn-lattice.

Proposition 4.6. For r ≥ 4, let K be a totally real subfield of Q(ξ2r ) such that [K : Q] = n. If α is a
totally positive element of OK, then Λn = σα(OK) is a rotated Zn-lattice such that

dp,norm(Λn) = 2
1−(r−j−1)2r−j−2

2

and r − j = 2 + log2 n for some 0 ≤ j ≤ r − 3.

Proof. If K is a totally real subfield of Q(ξ2r ), then by Proposition 2.2, there is 0 ≤ j ≤ r − 3 such
that K = L+

j and n = [K : Q] = 2r−j−2, or equivalently, with r − j = 2 + log2 n. As OK is a principal
ideal, then from Equation (4) and Proposition 2.1 (vi),

dp,norm(Λn) =
1√
|dL+

j
|

=
1√

2(r−j−1)2r−j−2−1
= 2

1−(r−j−1)2r−j−2

2 ,

which proves the result.
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5. Conclusions

This work provided a classification of all totally real subfields K of cyclotomic fields Q(ξ2r ) for any
r ≥ 4. It was proved that any totally real subfield K of Q(ξ2r ) must be of the form K = Q(ξ2s + ξ−12s ),
where s = r − j for some 0 ≤ j ≤ r − 3. As an application, for n = 2r−j−2, the normalized minimum
product distance of Λn = σα(OK) was determined (Proposition 4.6). The obtained results are displayed in
Table 1. The parameter n

√
dp,norm(Λn) was used to compare the normalized minimum product distances

in different dimensions.

We conclude that when a rotated version of the Zn-lattice is built from a totally real subfield ofQ(ξ2r ),
the normalized minimum product distance presented in Table 1 is the best one in each dimension. This
follows from the observation that Q(ξ2s + ξ−12s ) for s = r − j (0 ≤ j ≤ r − 3) is equal to Q(ξ2r + ξ−12r ) for
a specific r ≥ 4, and this was precisely the case approached in [1, 6].

Table 1. Normalized minimum product distance of rotated Zn-lattice over K, a totally real
subfield of the cyclotomic field Q(ξ2r ).

r − j n n
√
dp,norm(Λn)

3 2 0.59460

4 4 0.38555

5 8 0.26106

6 16 0.18064

7 32 0.12636

8 64 0.08886

9 128 0.06266

10 256 0.04425

11 512 0.03127

12 1024 0.02210
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