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Abstract: A classification of all totally real subfields K of cyclotomic fields Q(&2r), for any » > 4, and the
fully-diverse related versions of the Z"-lattice are presented along with closed-form expressions for
their minimum product distance. Any totally real subfield K of Q(&2r) must be of the form K =

Q(&2:+&5:"), where s = r—j for some 0 < j < r—3. Signal constellations for transmitting information
over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications)
can be carved out of those lattices.
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1. Introduction

In this work a lattice means a discrete subgroup of Euclidean n-space. A simple, yet important
example, is the n-dimensional integer lattice Z", which consists of all points whose coordinates are n-
tuples of integers [10]. Lattices constructed from algebraic number fields are called algebraic lattices.
One advantage of the latter is that important parameters such as sphere packing density and minimum
product distance, which are typically costly to calculate for general lattices, can be readily determined.
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Lattices have been considered in different areas, especially in coding theory, more recently in cryp-
tography [23] and from different points of view [14, 27].

Constructions of algebraic lattices have been proposed in several papers [1-9, 12, 13, 15, 16, 18—
21, 24, 25, 28]. Lattices constructed from totally real algebraic number fields possess maximum diversity,
a feature that makes them attractive for use over Rayleigh fading channels. Signal constellations based
on Z™-lattices offer a good trade-off between bit labelling and constellation shaping since they are only
slightly worse in terms of shaping gain but are usually easier to label [24]. Therefore, all of the above
motivates the investigation of Z"-lattices constructed from totally real number fields. In [1, 2], rotated

Z"-lattices were constructed from the totally real fields Q(ﬁf + 5;2k)7 with £ = 0, 1, and their minimum
product distances were computed, where £or is primitive 2"-th root of unity. Having the construction
procedure of rotated Z™-lattices from totally real subfields of cyclotomic fields as the main motivation,
in this paper we extend the constructions of [1, 2| for the totally real fields Q(&5. + 52116), where k € Z.

We conclude that, whatever the Z"-lattice built on totally real subfields of Q(&2r), the nor-
malized minimum product distance present in Table 1 is the best one in each dimension, since
K = Q(&s + €31, for s = r — 5 (0 < j < r — 3) is equivalent to K = Q(&r + &) for a specific
r > 4, and this was precisely the case approached in [1, 6].

The paper is organized as follows. Section 2 reviews definitions and results from algebraic number
theory and cyclotomic fields that are relevant to the work. A classification of all totally real subfields
of the cyclotomic field Q(&r) is presented. Section 3 reviews ideal lattices, in particular calculation
of their minimum product distance. Section 4 contains the main contribution of the paper, namely, a
method for constructing rotated Z"-lattices from any totally real subfield K of Q(&2-); it turns out that,
in each possible dimension, the minimum product distance of the obtained lattice is the same as the one
previously obtained in [1, 2]. Formulas for the normalized minimum product distances of the obtained
lattices are presented as well. Rotation matrices for constructing Z™-lattices in the same dimensions and
with the same normalized minimum product distances were presented in [11], however, no rationale was
provided therein for how the matrices were obtained. Finally, in Section 5, the concluding remarks are
drawn.

2. Background on algebraic number theory and cyclotomic fields

In this section we review some facts about number fields, and in particular, cyclotomic fields. We
recall only the results that are needed for subsequent sections. The reader interested in further details
is referred to [26] and [29]. Let L be a number field of degree n, O, its ring of integers, and o1, ...,0,
the monomorphisms of L into C. The embedding o; is called real if o;(IL) is contained in R, and is called
complex otherwise. The field L is said to be totally real if all of its embeddings are real.

Given z € O, the (rational) integers N(z) = Ny g(z) = [[;_, 0i(z) and Tr(z) = Tryg(x) =
Yoi, oi(x) are called norm and trace of z in L/Q, respectively. The norm of a free Z-module A of rank
n contained in O, is defined as N(A) = NL(A) = |OL/Z|. If {w1,...,w,} is a Z-basis for O, then
the (rational) integer di, = (det(o;(wi))}';=;)% which is invariant under change of basis, is called the
discriminant of L. Throughout this work, Z,, will denote the (cyclic) group of integers modulo m and
77, the group of invertible integers modulo m with m > 2 an integer.

Proposition 2.1. [22, 29] For any integer v > 3, let L denote the cyclotomic field Q(&ar) and LT its
mazimal real subfield, namely, LT = LNR = Q(&- + &), One has:

(i) [L:Q] =21 and [LT: Q] =2"2.
(ii) The ring of algebraic integers of Lt is Z[€ar + £5.7].

(iii) {1, 6o + &30 €20 + €57, ,531_2*1 + §§2T_2+1} is an integral basis for L+.

(iv) L/Q is a Galois extension whose Galois group Gal(L/Q) is isomorphic to Z3..



A. J. Ferrari et. al. / J. Algebra Comb. Discrete Appl. 11(2) (2024) 753-81

(v) LT/Q is a Galois extension whose Galois  group Galéﬂf/@) is cyclic and
generated by o, the automorphism defined by o(€or + £5,1) = €5, 4 £5,°. Moreover, Gal(L*/Q) is
isomorphic to Z;T_Q,

(vi) dpy = 2012771,

Proposition 2.2. For each 0 < j < r — 2, there exists a unique subfield K of LT such that
[K:Q] =272

Proof. The statement is an immediate consequence of the fact that the extension L™ /Q is Galois: The
intermediate fields between L™ and Q are in one-to-one correspondence with the subgroups of Gal(L™/Q),

which is cyclic (and hence for every divisor d of the group order, there is exactly one subgroup of order
d). O

Proposition 2.3. IfK is a totally real subfield of L. = Q(&r), then K C LT,

Proof. The field K must be contained in both L. and R. Hence, K must be contained in L. O

Proposition 2.4. Let L = Q(&2r), 0; = &r—i + 5;1,j, L; = Q(&--s) and Lj = Q(9,), where j =
0,1,...,7—3. Then:

(Z) []Lj }Lj] =2 and IL]'_H C Lj.
(i) [Lf : Q] =272,
(iii) L, CLS and [L] :Lf, ] =2.

(w) [Lj : Lj4a] = 2.

l
ot
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Proof.

(i) Obviously [L; : Lj] = 2 since I[lj+ is the maximal real subfield of L;. Notice that Lo = L and Lg =
L+ = Q(&r + &5'). Since &yr—i1 = €2, € Q(€yr—5), one has Ljy1 = Q(&gr—i-1) C Q(€gr—i) = L.
(i) [LF: Q)= 2B = 2r7-2 as LY = Q(&prs + £51,).
(iii) Since IL;r =L;NRand L1, CL; (see (i), it follows that
LI NLjr1 = (L NR)NLj41 = (L NLjp) NR=L;n NR=LF,,,
and therefore, LT, C }L;r. The second assertion follows from [Ljﬁl : Q] = 277973 (see (ii)) and

j+1
[Lj Q= [Lj : ]Lj++1] ) UL;F-H - QJ.

(iv) From (i), (iii), and the fact that [L; : ]L;'] . []L;' : IL;FH} =[L; :Lj4q] - Ly : IL;'H], it follows that

[L;:Lf] = [Ljy1 : L] =2 and [L : LS, ] = 2, respectively. Therefore, [L; : Lj;1] = 2.
O

Proposition 2.5. With notation as in Proposition 2.4, if K is a totally real subfield of L = Q(&2r), then
there is 0 < j < r — 3 such that K = IL;F,

Proof. If K is a subfield of L and [K : Q] = ¢, then ¢ = 2™ for some 1 < m < r — 2 since t divides
[L: Q] =2""". Setting j = r—m—2, it follows that 0 < j <r—3and L = Q(&r—s +&,,%,) is such that
[]L;' :Q] =2"7772 = 2™ As K is a totally real number field, K C Lj by Proposition 2.3. In summary,
we have K, L C Lt with [K: Q] = [L] : Q] = 2"7/72 = 2™. Since by Proposition 2.2 there exists a
unique subfield K of Lt such that [K : Q] = 2”772, one has K = ]L;r. O

3. Ideal lattices and minimum product distance

Let m < n be positive integers and A a lattice with basis {v1,...,v,,}. Let the coordinates of the
basis vectors be v; = (vi1,...,vi,) € R" for i = 1,...,m. The matrices M = (v;j) and G = MM" are
called generator and Gram matrices for A, respectively, where ¢ denotes transpose. The determinant
of A, denoted by det(A), is defined as det(G) and it is invariant under change of basis. The quantity

det(A) is called the volume of A.
Let K be a totally real number field of degree n with monomorphisms o1, --- ,0,, and a € K a

totally positive element, that is, o; = 0;(a)) > 0 for all i = 1,--- ,n. The mapping o, : K — R™ given by

oa(z) = (Varo1(z), ..., Voo (1)),

is called a twisted homomorphism [6]. When a = 1, the mapping becomes the canonical embedding of
K into R™ [26, Ch. IV, Section 2]. If A is a Z-module in K of rank n with Z-basis {w,wa, -+ ,wp},
then A = 04(A) is a full-rank lattice in R™ with basis {04 (w1), 04 (w2), -+ ,00(wy)}. A generator and a
Gram matrix for A are given by

0'1(0[)01(11}1) O'Q(CK)O'Q(U)l) tee \/an(a)on(wl)
M = : : | '
o1(a)or(wy) Voa(a)oa(wy,) -+ on(a)o,(wy),

and

n

G = (TTK/Q(awiwj))i,jzl 5 (1)
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respectively. The minimum product distance of A is given by

dpﬂnin(A) =4/ NK/Q(a) O;I'LigA |N]K/Q(y)| (2)

In particular, if A C Ok is a principal ideal, then

det(A)

d;mmin(A) = |d]K| P

(3)

see [6]. The normalized minimum product distance of A, denoted by dp norm(A), is the minimum product
distance with normalized determinant det(A) = 1, i.e.,
1
dpnorm (A) = —=—== dpmin(A).

\/det(A)

In particular, if A C Ok is a principal ideal then
1
Vide|

Theorem 3.1. [6] Notation as above, if A C Oy, is a fractional ideal, then

dp,norm (A) =

det(A) = N(A)?N(a)|dg|.

4. Construction of rotated Z"-lattices from ]L;L

Henceforth, L;, for 0 < j < r — 3, will denote the number field defined in Section 2, Proposition
2.4. Let a € O+ a totally positive element and A C O+ a fractional ideal. If A = 0,(A) is a rotated
J J

Z"-lattice scaled by /¢, then det(A) = ¢". In Theorem 3.1, consider K =L, A= O+ and ¢ = 27771,
In this case, n = 27 7=2. By Proposition 2.1(v), d,+ = 20"~ 77*~1 Thus, if ¢,(A) is a rotated
Z"-lattice, then there is a € Op+ such that N (o) = 2. Such an element « is provided by the next
proposition.

Proposition 4.1. Let 0; = &or—j + 527‘1,3- be an element of Op+. Then a = 2 — 8; 1is totally positive and
N(a) =2.

Proof. Clearly o = 2 — 6; is totally positive since for k =1,2,...,27 7772

2k
k(@) = o(2—6;) =2 — o,(0;) =2 —2cos (2T—j) > 0.

Set £ = &or3, N = Nyt g, N =N, g and N = Ny, ju+- Then 2Z[¢] = (1 - 22" N7¢] in Q[¢], where

¢ is the Euler function. So, N(1 — &) = 2. Using the transitivity of the norm, we obtain

2=N(1-&=NN1-¢)=N(1-81—-¢1)=N(@2~6;) = N(a),
which proves the result. O

The condition N(a) = 2 for some « totally positive is not sufficient to guarantee the existence of a
rotated scaled version o, (A) of Z™-lattice. However, we show that such a version is obtained if « is as in
Proposition 4.1.

~
H
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l
oo

Proposition 4.2. [17] If L; = Q(&3:—5), then

0 df ged(k,2777) < 2r 707l
Try, (&) =< —277971 if ged(k,2"7) =271
27371 if ged(k,2777) > 2r I

Corollary 4.3. If L;L = Q(&r-s —l—f;l,j), then

0 if ged(k,2777) < 2r7iT
TrLf/Q(fg"*j +€27kij) = _2T771 if ged(k,2777) = 27"*]‘*1;
2T*]*1 ’Lf ng(k,QTﬁj) > 2r7371.

Proof. From the transitivity of the trace, it follows that

Try,q(&h—s) + Tru,0(€3",) =Try,joéh— +6.5))
= TTL+/Q(TTL /]L+ (527‘ j —+ 521‘ ]))
= QTT]I,+/Q(£2r s+ EE).

The result now follows from Proposition 4.2. 0
Proposition 4.4. Notation as in Proposition 4.1, let e¢ = 1 and e, = §§,,j + §2_Tli7 for

k=1,2,...,209=2 _ 1,

r=i=1 4f | = 0;

(i) TT]L}/Q(aekek) - { 273 otherwise.

—ori=Ll if k=1

(i) If k > 0, then TTL;/Q(aekeo) = { 0 otherwise.

=271 f i — k| = 1.

(111) If 0 < i < k, then Tr]Lj/Q(aeiek) = { 0 otherwise.

Proof. To simplify the notation, denote T'ry + /Q by Tr.
(i) By Corollary 4.3, Tr(6;) = 0. One has Tr(aepeg) = Tr(a) = Tr(2) = Tr(2) = 27971
(i) Since ged(k,2777) < 2r=3=1 for all k = 1,2,...,2"7972 it follows that

Tr(cereo) = Tr(aer) =Tr((2 — (Sors +&55))(E5 s +&55))
— ATr(eh 655 ) = Tr(eh 4 e BTy — (bl 4 e Y
(k—1) —2r—i=t if k= 1.
Tr(&=s +&) )—{ 0, if k # 1.

Now, since ged(2k,2777), ged(2k +1,2779) < 279~ for k = 1,2,...,2"972 — 1, it follows that

Tr(ae}) = Tr((2 — (Ear—s + E5)) (R, + 6.2 +2))
= 2Tr(¢2F , + 52 K 4+ Tr(4) — Tr( Sff} + €2T(2k+1))
(€t 6, PR YY o (g E5L,) = 270

Tr(aeger)
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(iii) Under the hypotheses, ged(i 4= k,2"77), ged(i & k £1,2"77) < 27=9=1. Then
Tr(ceier) = Tr((2— (§or—i +E50)) (Eey + 650 ) (&6 +E57))
i —(i+k i— —(i—k
= 2Tr(gH, + &) 2t + . 1)
—Tr( itk+1 _‘_((i{rkﬂ)) — Tr( i—k+1 _'_{(zgkﬂ))
2" or—j

2r—J —J 2r—J
—i —(—itk+1 itk — —(i+k-1
~Tr(E e D) (el 4 g UY)

—2r=i=Lif |i — k| = 1.
0 otherwise,

as desired.
O
o . . . e . . 1 .
Prolposﬂslon 4.5. Notation as in Propositions 4.1 and 4.4, if A = O]L;, then T 0a (A) is a rotated
Z" -lattice.

Proof. From (1), it follows that the Gram matrix for \/ﬁoa(fl) is given by

n—1

G = 55— (Trv/(@(aeiek)> _— and by Proposition 4.4, one has
1 -1 0.
1 2 -1 0--
0-1 2 -1 0
oOo-1 2-1 0---
G, = .
0 -1 2 -1 0
0 -1 2 -1
0 -1 2
Let T the change of basis matrix
-1 -1 ... -1 -1 -1
-1 -1...-1-1 0
-1 -1...-1 0 O
T —
-1 -1... 0 0 O
-1 0... 0 0 O
Since G = TG T* = I,,, it follows that ﬁaa(A) is a rotated Z"-lattice. O

Proposition 4.6. For r > 4, let K be a totally real subfield of Q(&2r) such that [K: Q] =n. Ifais a
totally positive element of Ok, then A, = 0,(Ok) is a rotated Z™-lattice such that
1—(7'—]‘—21)2"‘7-7.72

dp,norm(An) =2
and r —j =2+logyn for some 0 < j <r—3.

Proof. 1If K is a totally real subfield of Q({2-), then by Proposition 2.2, there is 0 < j < r — 3 such
that K = ]L;r and n = [K : Q] = 277772, or equivalently, with r — j = 2 +logyn. As Ok is a principal
ideal, then from Equation (4) and Proposition 2.1 (vi),

1 1 1= (rmjonar=i=?
2

d,norm(An): = ; - = 3
polb) = = e

which proves the result. O
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5. Conclusions

This work provided a classification of all totally real subfields K of cyclotomic fields Q(&2r) for any
r > 4. Tt was proved that any totally real subfield K of Q(&r) must be of the form K = Q(&- + 15221),
where s = r — j for some 0 < j < r — 3. As an application, for n = 27772, the normalized minimum
product distance of A,, = 0,(Oxk) was determined (Proposition 4.6). The obtained results are displayed in
Table 1. The parameter {/dp norm(Arn) was used to compare the normalized minimum product distances
in different dimensions.

We conclude that when a rotated version of the Z"-lattice is built from a totally real subfield of Q(&ar),
the normalized minimum product distance presented in Table 1 is the best one in each dimension. This
follows from the observation that Q(&xs + &) for s =7 — j (0 < j < r — 3) is equal to Q(&r + £5,1) for
a specific 7 > 4, and this was precisely the case approached in [1, 6].

Table 1. Normalized minimum product distance of rotated Z"-lattice over K, a totally real
subfield of the cyclotomic field Q(&2r).

r—j‘ n

Y dp,norm(An)
3 2 0.59460
4 4 0.38555
5 8 0.26106
6 16 0.18064
7 32 0.12636
8 64 0.08886
9 | 128 0.06266
10 | 256 0.04425
11 | 512 0.03127
12 {1024 0.02210
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