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Abstract: Let GF (l) be the Galois field with l = pm elements where p is a prime number and integer m ≥ 1.
Here, we present three constructions for linear codes over GF (l) (depending on the parity of l) by
using the quadratic residue approach and obtain some sufficient conditions for these codes to be
LCD with respect to the Euclidean and Hermitian inner products, respectively. Furthermore, several
examples of codes, including optimal and near to optimal codes, are provided to support our study.
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1. Introduction

Quasi-cyclic (QC) codes of index s are the linear codes invariant under T s where T is the cyclic
shift operator, and s is a positive integer. These codes are the generalization of cyclic codes and have
been extensively studied in ([6, 16]). In 2001, Ling and Solé [18] introduced a new algebraic approach to
study quasi-cyclic codes over finite fields, which was extended over finite chain rings [19] in 2003. Double
circulant codes are a special class of quasi-cyclic codes of index 2. Using the approach in [18], Alahmadi
et al. [2] showed that self-dual double circulant codes of odd dimension are dihedral in even characteristic
and consta-dihedral in odd characteristic. Later, many researchers studied these codes and investigated
their asymptotic behaviour, see [24, 29, 31, 33]. On the other hand, in 2022, quadratic double circulant
self-dual codes were studied by Gaborit [10] in terms of their generator matrices. Several conditions were
presented there under which these codes are self-dual. Later, Dougherty et al. [9] constructed self-dual
double circulant codes from the adjacency matrices in 2007. Recently, Gildea et al. extended the work
of Gaborit [10] and presented a modified construction to investigate self-dual codes.

LCD codes were introduced in 1992 by Massey [23] over finite fields. These codes were shown
to be optimum linear coding solutions for the two-user binary adder channel (2-BAC). Also, in 1994,
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complementary dual cyclic codes were studied by Yang and Massey [32] in terms of their generator
polynomials. In 2004, Sendrier [26] showed that the LCD codes meet Gilbert-Varshamov bound. In
2015, Liu and Liu [20] obtained necessary and sufficient conditions for linear codes over finite chain rings
to have complementary dual while Islam et al. [15] established such conditions over a non-chain ring.
In 2016, Guneri et al. [13] characterized quasi-cyclic complementary dual codes. Afterwards, Carlet and
Guilley [4] showed the application of binary LCD codes as a counter-measures to side-channel attacks. In
2018, Li [17] provided construction of the Hermitian LCD cyclic codes over finite fields and investigated
their parameters. These codes were further explored in [5, 21]. In 2018 itself, Zhu and Shi [34] studied
complementary dual four circulant codes over a finite field and obtained bound on their relative distance.
Later, Carlet et al. [5] introduced a general construction of LCD codes and showed the equivalence of
linear codes over Fq (resp. Fq2) with Euclidean LCD code, for q > 3 (resp. Hermitian LCD code, for
q > 2). Meanwhile, Shi et al. [28] studied double circulant self-dual and LCD codes over Galois rings
and later LCD codes over Z4 [27]. These codes were later studied by Huang et al. [14] over Zp2 , and an
exact enumeration of these codes were presented. In 2019, Liu and Wang [22] studied LCD codes over
finite rings. In 2020, Sok [30] provided some constructions of Hermitian LCD codes via new methods and
algorithms. Meanwhile, Prakash et al. [25] presented LCD codes over the ring Fq + uFq and expounded
an application of Hermitian LCD codes in the multi-secret sharing scheme, which was first presented for
Euclidean LCD codes by Alahmadi et al. [1]. Recently, LCD codes have been studied by using weighing
matrices, and adjacency matrices in [7, 8] using the concepts of (r, λ) design and strongly regular graphs
(SRGs) or doubly regular tournament (DRTs), respectively.

Most of the above works on double circulant LCD codes have been studied in terms of generator
polynomials. As per our survey, little work uses the generator matrices to study double circulant LCD
codes. The quadratic double circulant self-dual codes have already been studied in [10, 11]. Inspired by
these works, we first establish conditions for the linear codes obtained from the construction given in [10]
to be LCD. Further, we provide new construction to obtain linear codes and derive conditions for these
linear codes to be LCD. We also consider the modified construction used in [11] to derive some conditions
for the linear codes obtained from this construction to be LCD.

This article is organized as follows: Section 2 contains basic definitions and essential background
for Quadratic double circulant codes. Section 3 characterizes several conditions for quadratic double
circulant codes to be LCD and provides a new modified construction for quadratic double circulant LCD
codes. Finally, we present several examples of optimal and near-to-optimal codes in support of our study.

2. Notations and definitions

Throughout this article, we assume that q is an odd prime and l = pm for m ≥ 1 and a prime p. For
any matrix A = [aij ], its transpose is defined as A

′
= [aji]. For an even positive integer m, conjugate

matrix Ā is defined as Ā = [a
√
l

ij ] = [ap
m
2

ij ] and conjugate transpose is defined as A∗ = [a
√
l

ji ]. Here, I
denotes the identity matrix of order q, the matrix with all entries as 1 is denoted by J , and O denotes
the zero matrix of order q.

An [n, k]− linear code C over the Galois field GF (l) is defined as a k− dimensional subspace of the
vector space GF (l)n under the usual componentwise addition and scalar multiplication. The generator
matrix G of the code C is a k × n matrix whose rows form a basis for C. The Euclidean inner product
of vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) in GF (l)n is defined as

a · b = a0b0 + a1b1 + · · ·+ an−1bn−1.

We define the Hermitian inner product (when m is even) of vectors a = (a0, . . . , an−1) and b =
(b0, . . . , bn−1) in GF (l)n as

〈a, b〉H = a0b
√
l

0 + a1b
√
l

1 + · · ·+ an−1b
√
l

n−1.

The Euclidean dual C⊥ and Hermitian dual C⊥H of a linear code C over the finite field GF (l) are defined
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as

C⊥ = {v ∈ GF (l)n : v · c = 0 for all c in C}

and

C⊥H = {v ∈ GF (l)n : 〈v, c〉H = 0 for all c in C},

respectively. A linear code C is said to be Euclidean (or Hermitian resp.) LCD code if and only if
C ∩C⊥ = {0} (or C ∩C⊥H = {0} resp.). Throughout this article, the term LCD code refers to Euclidean
LCD code until and unless specified. The Hamming weight wH(a) of any vector a is the number of non-
zero components in it while the Hamming distance dH(a, b) between two vectors a and b is the number of
components in which the two vectors differ. The minimum Hamming distance of a linear code is defined
as

dH(C) = min{dH(a, b) : a, b ∈ C, a 6= b}.

Now, we define quadratic residue, which will be used in the next subsection. An element d ∈ GF (q) is
said to be a quadratic residue in GF (q) if there exists x ∈ GF (q) such that

x2 = d.

2.1. Quadratic double circulant codes

Let GF (l) and GF (q) be the Galois fields containing l and q elements, respectively. Following the
notations of [10], we define a one-one map a from the set {0, 1, . . . , q − 1} to GF (q). In particular, we
consider a as the identity map when q is a prime number. Also, we enumerate the elements of GF (q) as
a0 = a(0), a1 = a(1), . . . , aq−1 = a(q − 1). For r, s, t ∈ GF (l), we denote quadratic residue circulant
matrix of order q by Qq(r, s, t) which is a matrix over GF (l) with (i, j)th entry qij = χ(aj − ai) where χ
is a function over GF (q) defined by

χ(x) =


r, if x = 0

s, if x is a quadratic residue in GF (q)

t, otherwise,

for x ∈ GF (q). The following lemma is crucial for characterizing Euclidean and Hermitian LCD codes in
our construction.

Lemma 2.1. [10, Theorem 3.1] Let q be a power of an odd prime and Qq(a, b, c) be a quadratic residue
circulant matrix with a, b and c in GF (l). We have the following two cases:

(i) For q = 4k + 1,

Qq(a, b, c)[Qq(a, b, c)]
′

= Qq(a2 + 2k(b2 + c2), 2ab− b2 + k(b+ c)2, 2ac− c2 + k(b+ c)2),
and
Qq(a, b, c)[Qq(a, c, b)]

′
= Qq(a2 + 4bck, ab+ ac− bc+ (b+ c)2k, ab+ ac− bc+ (b+ c)2k).

(ii) For q = 4k + 3,

Qq(a, b, c)[Qq(a, b, c)]
′

= Qq(a2 + (2k+ 1)(b2 + c2), ab+ ac+ k(b2 + c2) + (2k+ 1)bc, ab+ ac+ k(b2 +
c2) + (2k + 1)bc),
and
Qq(a, b, c)[Qq(a, c, b)]

′
= Qq(a2 + 2bc(2k + 1), 2ab+ c2 + (b+ c)2k, 2ac+ b2 + (b+ c)2k).

Now, we recall that a quadratic double circulant code[10] overGF (l) is a linear code with the generator
matrix one of the following forms:

G1 = [I|Qq(a, b, c)], (1)
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G2 =


1 0 · · · 0 α β · · ·β
0
...
0

I

γ
...
γ

Qq(a, b, c)

 , (2)

where a, b, c, α, β, γ ∈ GF (l). The linear codes obtained from pure (1) and bordered (2) quadratic double
circulant forms are [2q, q] and [2q+ 2, q+ 1] codes, respectively. We can also modify the construction (1)
to obtain a new construction with the generator matrix

G3 = [A|Qq(a, b, c)], (3)

where A is a circulant matrix over GF (l).

3. Construction of LCD codes

In this section, we first determine some conditions under which the obtained linear codes through
constructions (1) and (3) are LCD codes. Later, we provide another construction (4) for linear codes,
which is a generalization of construction (2) and obtain conditions under which these codes are Euclidean
or Hermitian LCD codes. For this, we first state two basic lemmas.

Lemma 3.1. [23] Let G be a generator matrix for a linear code C over a finite field. Then det(GG
′
) 6= 0

if and only if C is an LCD code.

Lemma 3.2. [5] Let G be a generator matrix for a linear code C over a finite field. Then det(GG∗) 6= 0
if and only if C is a Hermitian LCD code.

Now, we impose several conditions on q, l to obtain LCD codes from construction (1) and present
some examples (using the Magma computation system [3]) to validate our results.

Theorem 3.3. Let q be an odd prime and l = ps for s ≥ 1 and an odd prime p such that p - (1 + q2).
Then a linear code C over GF (l) with generator matrix G = [I|Qq(1, 1, 1)] is an LCD code over GF (l).

Proof. By Lemma 2.1, we have

Qq(1, 1, 1)Qq(1, 1, 1)
′

= Qq(q, q, q) = qJ.

Therefore,

GG′ = I +Qq(1, 1, 1)Qq(1, 1, 1)
′

= I + qJ

and det(GG
′
) = 1 + q2 6= 0 in GF (l) if p - (1 + q2). Hence, C is an LCD code by Lemma 3.1.

Example 3.4. Let q = 5 and l = 5. Then 5 - (q2 + 1) and the linear code with generator matrix

G = [I|Q5(1, 1, 1)]

is a [10, 5, 2] LCD code over GF (5).

Theorem 3.5. For two odd primes p, q such that p - (q2 − 2q + 2) and l = ps (s ≥ 1), a linear code C
over GF (l) with generator matrix G = [I|Qq(0, 1, 1)] is an LCD code.

Proof. By Lemma 2.1, we have

Qq(0, 1, 1)Qq(0, 1, 1)
′

= Qq(q − 1, q − 2, q − 2) = I + (q − 2)J.

Therefore,

GG′ = I +Qq(0, 1, 1)Qq(0, 1, 1)
′

= 2I + (q − 2)J

and det(GG
′
) = 2q−1(2 + q(q − 2)) 6= 0 in GF (l) if p - (q2 − 2q + 2). Hence, C is an LCD code.
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Example 3.6. Let q = 5 and l = 5. Then 5 - (q2 − 2q + 2) and the linear code with generator matrix

G = [I|Q5(0, 1, 1)]

is a [10, 5, 4] LCD code over GF (5). It is a near to optimal code.

Theorem 3.7. Let q = 3+4k be an odd prime and l = ps for s ≥ 1 and a prime p such that p - (k+2), p -
(q+ 1)(k+ 1) + 1. Then a linear code C over GF (l) with generator matrix [I|Qq(1, 0, 1)] or [I|Qq(1, 1, 0)]
is an LCD code over GF (l).

Proof. By Lemma 2.1, we have

Qq(1, 0, 1, )Qq(1, 0, 1)
′

= Qq(1, 1, 0)Qq(1, 1, 0)
′

= Qq(2k + 2, k + 1, k + 1)

= (k + 1)I + (k + 1)J.

Therefore,

GG′ = I +Qq(1, 0, 1, )Qq(1, 0, 1)
′

= I +Qq(1, 1, 0)Qq(1, 1, 0)
′

= (k + 2)I + (k + 1)J

and det(GG
′
) = (k + 2)q−1(k + 2 + q(k + 1)) 6= 0 in GF (l) if p - (k + 2), p - (q + 1)(k + 1) + 1. Hence, C

is an LCD code.

Example 3.8. Let q = 7 = 3 + 4 × 1 and l = 5. Then 5 - (k + 2), 5 - (q + 1)(k + 1) + 1 and the linear
code with generator matrix

G = [I|Q5(1, 0, 1)] or [I|Q5(1, 1, 0)]

is a [14, 7, 5] LCD code over GF (5). It is a near to optimal code.

Theorem 3.9. Let q = 3 + 4k be an odd prime and l = ps for s ≥ 1 and a prime p such that p -
(k + 2) and p - (q + 1)k + 2. Then a linear code C over GF (l) with generator matrix [I|Qq(0, 0, 1)] or
[I|Qq(0, 1, 0)] is an LCD code over GF (l).

Proof. By Lemma 2.1, we have

Qq(0, 0, 1, )Qq(0, 0, 1)
′

= Qq(0, 1, 0)Qq(0, 1, 0)
′

= Qq(2k + 1, k, k) = (k + 1)I + kJ.

Therefore,

GG′ = I +Qq(0, 0, 1, )Qq(0, 0, 1)
′

= I +Qq(0, 1, 0)Qq(0, 1, 0)
′

= (k + 2)I + kJ

and det(GG
′
) = (k + 2)q−1(k + 2 + kq) 6= 0 in GF (l) if p - (k + 2), p - (q + 1)k + 2. Hence, C is an LCD

code.

Example 3.10. Let q = 3 and l = 5. Then 5 - (k+ 2), 5 - (q+ 1)k+ 2 and the linear code with generator
matrix

G = [I|Q3(0, 1, 0)]

is a [6, 3, 2] LCD code over GF (5).

Example 3.11. Let q = 11 and l = 3. Then 3 - (k+2), 3 - (q+1)k+2 and the linear code with generator
matrix

G = [I|Q11(0, 0, 1)]

is a [22, 11, 6] LCD code over GF (3).
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The following result is associated with the construction (3) in which we consider A to be a matrix
satisfying AA

′
= δ1I, for some δ1 ∈ GF (l). In particular, we can also choose the circulant matrix A to

be an orthogonal matrix.

Theorem 3.12. Let C be a linear code over the finite field GF (l) with the generator matrix G =

[A|Qq(a, b, c)]. If Qq(a, b, c)Qq(a, b, c)
′

= δ2I for some δ2 ∈ GF (l) and δ1 6= −δ2, then C is an LCD code
over GF (l).

Proof. Since GG
′

= AA
′
+Qq(a, b, c)Qq(a, b, c)

′
= (δ1 + δ2)I, the result follows by Lemma 3.1.

We can also choose A such that it does not satisfy the above mentioned condition and get the
following results.

Theorem 3.13. Let q = 3 + 4k and C be a linear code over a finite field GF (l) of characteristic p and
the generator matrix of C be G = [Qq(1, 0, 1)|Qq(0, 1, 1)] or G = [Qq(1, 1, 0)|Qq(0, 1, 1)]. If p - k + 2 and
p | q + k − 1, then C is an LCD code over GF (l).

Proof. Since

Qq(0, 1, 1)Qq(0, 1, 1)
′

= Qq(q − 1, q − 2, q − 2) = I + (q − 2)J

and

Qq(1, 0, 1, )Qq(1, 0, 1)
′

= Qq(1, 1, 0)Qq(1, 1, 0)
′

= (k + 1)I + (k + 1)J,

we have GG′ = (k + 2)I + (q + k − 1)J. The result now follows using Lemma 3.1.

Example 3.14. Take q = 7 and k = 1, i.e., p = 7. Then p - k + 2 and p | q + k − 1 = 0. Therefore,
the linear codes with the generator matrix G = [Qq(1, 0, 1)|Qq(0, 1, 1)] or G = [Qq(1, 1, 0)|Qq(0, 1, 1)] are
LCD codes over GF (l). The parameters of both codes are [14, 7, 4].

Theorem 3.15. Let q = 3 + 4k and C be a linear code over a finite field GF (l) of characteristic p and
the generator matrix of C be G = [Qq(0, 1, 0)|Qq(0, 1, 1)]. If p - k + 2 and p - k(q + 1) + q2 − 2q + 2, then
C is an LCD code over GF (l).

Proof. Note that

Qq(0, 1, 0)Qq(0, 1, 0)
′

= (k + 1)I + kJ

and

Qq(0, 1, 1)Qq(0, 1, 1)
′

= I + (q − 2)J.

Then GG′ = (k + 2)I + (k + q − 2)J and det(GG′) = (k + 2)q−1(k(q + 1) + q2 − 2q + 2). The result now
follows using Lemma 3.1.

Example 3.16. Take q = 3 and k = 1, i.e., l = p = 7. Then p - k + 2 and p - k(q + 1) + q2 − 2q + 2.
Therefore, the linear code with the generator matrix G = [Qq(0, 1, 0)|Qq(0, 1, 1)] is an LCD code over
GF (l) with the parameters [6, 3, 3].

Now, we generalize the construction (2) to provide a new construction (4) of linear codes over a finite
field of characteristic 2 and characterize LCD codes. Consider a linear code with the generator matrix of
the form

G =


β1 β2 · · ·β2 β3 β4 · · ·β4
β5
...
β5

Qq(a, b, c)

β6
...
β6

I

 , (4)
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where a, b, c, βi ∈ GF (l) for 1 ≤ i ≤ 6 and l = 2m, m ≥ 1. The linear code obtained from this construction
is called bordered quadratic double circulant code.

Theorem 3.17. Let C be a linear code over a finite field of characteristic 2, with the generator matrix
G given in the construction (4). If

1. Σ4
i=1β

2
i = 1,

2. (β2
5 + β2

6)J +Qq(a, b, c)Qq(a, b, c)
′

= O and

3. β1β5 + β2(a+ bλq + cλq) + β3β6 + β4 = 0,

where λq = q−1
2 , then C is a Euclidean LCD code of length 2q + 2. In particular, if β1 = 1 and β4 = 0

then C is a [2q + 2, q + 1] code.

Proof. Let B1 = (β1), B2 = (β2 β2 . . . β2), B3 = (β3), B4 = (β4 β4 . . . β4), B5 = (β5 β5 . . . β5) and
B6 = (β6 β6 . . . β6). Then G can be written as

G =

[
B1 B2 B3 B4

B
′

5 Qq(a, b, c) B
′

6 I

]

and GG
′
is[

B1B
′

1 +B2B
′

2 +B3B
′

3 +B4B
′

4 B1B5 +B2Qq(a, b, c)
′
+B3B6 +B4I

B
′

5B
′

1 +Qq(a, b, c)B
′

2 +B
′

6B
′

3 + IB
′

4 B
′

5B5 +Qq(a, b, c)Qq(a, b, c)
′
+B

′

6B6 + I

]
.

Also,

B1B
′

1 +B2B
′

2 +B3B
′

3 +B4B
′

4 = β2
1 + qβ2

2 + β2
3 + qβ2

4 ,

B
′

5B5 +Qq(a, b, c)Qq(a, b, c)
′
+B

′

6B6 + I = (β2
5 + β2

6)J +Qq(a, b, c)Qq(a, b, c)
′
+ I,

B1B5 +B2Qq(a, b, c)
′
+B3B6 +B4I =

 β1β5 + β2(a+ bλq + cλq) + β3β6 + β4
...

β1β5 + β2(a+ bλq + cλq) + β3β6 + β4


′

,

B
′

5B
′

1 +Qq(a, b, c)B
′

2 +B
′

6B
′

3 + IB
′

4 =

 β1β5 + β2(a+ bλq + cλq) + β3β6 + β4
...

β1β5 + β2(a+ bλq + cλq) + β3β6 + β4

 .
Now, substituting the given conditions (1− 3) and using Lemma 3.1, we conclude that C is a Euclidean
LCD code.

Example 3.18. Take β1 = β6 = 1, β2 = β3 = β4 = β5 = 0, q = 5 and l = 4. Then the linear code C
with generator matrix given by construction (4) using Qq(1, 1, 1) is a [12, 6, 1] Euclidean LCD code over
GF (4). Also, the dual of C is an LCD code with the parameters [12, 6, 2].

Example 3.19. Take β1 = β6 = 1, β2 = β3 = β4 = β5 = 0, q = 3, l = 4 and GF (l) = F2[w]. Then the
linear code C with generator matrix given by construction (4) using Qq(0, w, w2) is a [8, 4, 3] Euclidean
LCD code over GF (4). Moreover, it is a near to optimal code.
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Example 3.20. Take β1 = β2 = β5 = β6 = 0, β3 = β4 = 1, q = 3, l = 2 and GF (2). Then the linear
code C with generator matrix given by construction (4) using Qq(1, 1, 1) is a [8, 4, 2] Euclidean LCD code
over GF (2).

Now, we characterize Hermitian LCD codes over GF (l) (where l = pm such that m is even) from the
linear codes associated with the three constructions (1), (3) and (4) provided earlier. We proceed with
the assumption that m is an even positive integer whenever the Hermitian inner product is taken under
consideration. It can be seen that a linear code over GF (l) with the generator matrix G = [I|Qq(a, b, c)]
given by construction (1) is a Hermitian LCD code if and only if det(I + Qq(a, b, c)Qq(a, b, c)∗) 6= 0.
For the modified construction (3), we have the following result in which we consider A to be a matrix
satisfying AA∗ = δ1I, for some δ1 ∈ GF (l).

Theorem 3.21. Let C be a linear code over a finite field GF (l) with the generator matrix G =
[A|Qq(a, b, c)]. If Qq(a, b, c)Qq(a, b, c)∗ = δ2I for some δ2 ∈ GF (l) and δ1 6= −δ2, then C is a Her-
mitian LCD code over GF (l).

Proof. Since GG∗ = AA∗ +Qq(a, b, c)Qq(a, b, c)∗ = (δ1 + δ2)I, the result follows by Lemma 3.2.

The following result provides some conditions under which linear code associated with construction
(4) is a Hermitian LCD code.

Theorem 3.22. Let C be a linear code over a finite field of characteristic 2, with the generator matrix
G given in the construction (4). If

1. Σ4
i=1β

1+
√
l

i = 1,

2. (β1+
√
l

5 + β1+
√
l

6 )J +Qq(a, b, c)Qq(a, b, c)∗ = O,

3. β1β
√
l

5 + β2(a
√
l + λqb

√
l + λqc

√
l) + β3β

√
l

6 + β4 = 0 and

4. β5β
√
l

1 + β
√
l

2 (a+ λqb+ λqc) + β6β
√
l

3 + β
√
l

4 = 0,

where λq = q−1
2 , then C is a Hermitian LCD code of length 2q + 2. In particular, if β1 = 1 and β4 = 0,

then C is a [2q + 2, q + 1] code.

Proof. Let B1 = (β1), B2 = (β2β2 . . . β2), B3 = (β3), B4 = (β4 . . . β4), B5 = (β5 . . . β5) and B6 =
(β6 . . . β6). Then G can be written as

G =

[
B1 B2 B3 B4

B
′

5 Qq(a, b, c) B
′

6 I

]

and GG∗ is[
B1B

∗
1 +B2B

∗
2 +B3B

∗
3 +B4B

∗
4 B1(B′5)∗ +B2Qq(a, b, c)∗ +B3(B′6)∗ +B4I

B
′

5B
∗
1 +Qq(a, b, c)B∗2 +B

′

6B
∗
3 + IB∗4 B

′

5(B′5)∗ +Qq(a, b, c)Qq(a, b, c)∗ +B
′

6(B′6)∗ + I

]
,

where

B1B
∗
1 +B2B

∗
2 +B3B

∗
3 +B4B

∗
4 = β1+

√
l

1 + qβ1+
√
l

2 + β1+
√
l

3 + qβ1+
√
l

4 ,

B
′

5(B′5)∗ +Qq(a, b, c)Qq(a, b, c)∗ +B
′

6(B′6)∗ + I = (β1+
√
l

5 + β1+
√
l

6 )J +Qq(a, b, c)Qq(a, b, c)∗ + I,
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B1(B′5)∗ +B2Qq(a, b, c)∗ +B3(B′6)∗ +B4I

=


β1β

√
l

5 + β2(a
√
l + λqb

√
l + λqc

√
l) + β3β

√
l

6 + β4
...

β1β
√
l

5 + β2(a
√
l + λqb

√
l + λqc

√
l) + β3β

√
l

6 + β4


′

and

B
′

5B
∗
1 +Qq(a, b, c)B∗2 +B

′

6B
∗
3 + IB∗4 =


β5β

√
l

1 + β
√
l

2 (a+ λqb+ λqc) + β6β
√
l

3 + β
√
l

4
...

β5β
√
l

1 + β
√
l

2 (a+ λqb+ λqc) + β6β
√
l

3 + β
√
l

4

 .
Now, substituting the given conditions (1− 4) and using Lemma 3.2, we conclude that C is a Hermitian
LCD code.

Example 3.23. Take β1 = β2 = β3 = 1, β4 = 2, β5 = 1, β6 = 2. Then the linear code C with generator
matrix given by construction (4) using Q5(1, 1, 2) is a Hermitian LCD code over GF (4) with parameters
[12, 6, 4].

Example 3.24. Take β1 = 1, β2 = 2, β3 = 1, β4 = 3, β5 = 1, β6 = 2. Then the linear code C with
generator matrix given by construction (4) using Q3(1, 1, 3) is a Hermitian LCD code over GF (4) with
parameters [8, 4, 2].

Using the generator matrices provided in construction (1), we obtain several double circulant codes
(with the help of Magma computation system [3]) of length 2q over GF (l) in Table 1. This way, we obtain
double circulant codes over GF (l) with the parameters [2q, q, d]. We denote the primitive element of the
finite field GF (l) by ω. In the fourth column, we represent a code with the maximum possible distance
for a given length and dimension, i.e., optimal code (according to the Grassl table [12] available online)
by ∗ and the code having distance one less than the maximum possible (i.e., near to optimal code) by #.
In the last column, we also mention their nature in terms of Euclidean or Hermitian LCD codes.

4. Conclusion

In this paper, we have studied LCD codes in terms of their generator matrices and presented several
conditions for double circulant codes obtained from the constructions (1), (3) to be LCD. Moreover,
we have provided a new modified construction for quadratic double circulant codes (bordered case) and
characterized Euclidean and Hermitian LCD codes from them. Towards this, we have used the quadratic
residue approach to obtain conditions for these codes derived from modified construction to be Euclidean
and Hermitian LCD. Further, several optimal and near to optimal Euclidean and Hermitian LCD codes
have been obtained from these constructions. The concepts of strongly regular graphs (SRGs) and doubly
regular tournaments (DRTs) used in [8] to study LCD codes are very interesting. These can be used to
obtain conditions for the linear codes obtained from our constructions to be LCD. Presently we leave it
as an open problem for interested readers of this topic to explore in future.
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Table 1. Double circulant LCD codes with generator matrix [I|Qq(a, b, c)] of length 2q over GF (l).

q l Qq(a, b, c) Parameters of C Remark

7 2 Q7(1, 1, 0) [14, 7, 3]#2 Euclidean LCD

5 2 Q5(0, 0, 1) [10, 5, 3]#2 Euclidean LCD

7 3 Q7(0, 2, 1) [14, 7, 5]#3 Euclidean LCD

5 3 Q5(1, 2, 2) [10, 5, 4]#3 Euclidean LCD

3 3 Q3(0, 1, 1) [6, 3, 3]∗3 Euclidean LCD

5 4 Q5(0, 0, 1) [10, 5, 3]4 Hermitian LCD

7 4 Q7(1, ω, ω
2) [14, 7, 5]#4 Hermitian LCD

7 4 Q7(0, 1, ω) [14, 7, 6]∗4 Euclidean LCD

5 4 Q5(ω, 0, ω
2) [10, 5, 4]#4 Euclidean LCD

3 4 Q3(1, 1, ω) [6, 3, 4]∗4 Euclidean LCD

7 5 Q7(0, 1, 4) [14, 7, 6]∗5 Euclidean LCD

5 5 Q5(1, 2, 3) [10, 5, 5]∗5 Euclidean LCD

3 5 Q3(1, 1, 2) [6, 3, 4]∗5 Euclidean LCD

3 9 Q3(0, 0, ω
2) [6, 3, 2]9 Hermitian LCD

5 9 Q5(0, 0, 2) [10, 5, 3]9 Hermitian LCD

7 9 Q7(0, 0, ω) [14, 7, 4]9 Hermitian LCD
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