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Abstract: One of the most important and challenging problems in coding theory is to construct codes with
optimal parameters. As a generalization of cyclic codes, quasi-cyclic (QC) codes as well as quasi-
twisted (QT) codes have been shown to contain record-breaking codes. In this paper, various computer
algorithms have been used to search for good QC codes. A lot of good new QC codes have been found
and they have been used to construct new linear codes. A total 11 new codes that improve the bound
on the minimum distance are presented.
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1. Introduction

A linear [n, k, d]q code over finite field GF (q) is a k-dimensional subspace of GF (q)n, where n is
the block length, k is the dimension of the code, and d is the minimum distance between any two
different codewords. The minimum distance determines the error-correcting or error-detecting capability.
A central and fundamental problem in coding theory is to find the optimal values of the parameters of
a linear code and construct codes with these parameters. Grassl [16] maintains online code tables of
linear codes for small block length and code dimension over small finite fields. The code tables contain
both the lower bounds and upper bounds on the minimum distance. A code with a minimum distance
meeting the upper bound is said to be optimal, while a code with a minimum distance meeting the lower
bound is called best-known (since no other code with the same block length n, code dimension k, and
with larger minimum distance is known). To construct codes with the best possible minimum distances
is shown to be very difficult and challenging. For small code dimension and block length, it is possible
to do exhaustive computer search. The problem becomes intractable when both the code dimension and
block length become large. It has been shown that subclasses of linear codes with rich mathematical
structures can be used to reduce the search time complexity. During the last decades, the classes of

Eric Zhi Chen (Corresponding Author), Fredrik Jönsson; Department of Computer Science, Kristianstad Uni-
versity, 291 88 Kristianstad, Sweden (email: eric.chen@hkr.se, fredrik.jonsson@hkr.se).

39

https://orcid.org/0000-0002-2492-7754
https://orcid.org/0000-0001-7589-1723


E. Z. Chen, F. JÃűnsson / J. Algebra Comb. Discrete Appl. 10(1) (2023) 39–44

quasi-cyclic (QC) codes and quasi-twisted (QT) codes have been shown to contain many good codes, and
many record-breaking QC/QT codes have been constructed [1–3, 5–9, 11–15, 17–23] A lot of codes that
reach the lower bound on the minimum distance are QC/QT codes [16]. An online database of good
QC/QT codes is available [10]. In this paper, various algorithms to search for good QC/QT codes have
been applied, and lot of good new QC/QT codes have been obtained. By applying Construction X with
new constructed QC codes, 5 new linear codes have been constructed. A total of 11 new linear codes
that improve the lower bounds on the minimum distance have been presented in this paper.

2. Computer search for quasi-cyclic codes

A linear [n, k, d]q code C is called cyclic if a codeword (a0, a1, . . . , an−1) is in C, then so is
(an−1, a0, a1, . . . , an−2). A code is said to be quasi-cyclic (QC) if a cyclic shift of any codeword by p
positions is also a codeword. Therefore, a cyclic code is a QC code with p = 1. The length n of a QC
code is a multiple of p, i.e., n = pm. A cyclic matrix is also called a circulant matrix. An m×m cyclic
matrix is defined as

A =


a0 a1 a2 . . . am−1

am−1 a0 a1 . . . am−2
am−2 am−1 a0 . . . am−3

...
...

...
. . .

...
a1 a2 a3 . . . a0

 , (1)

and the algebra of m × m cyclic matrices over GF (q) is isomorphic to the algebra in the ring
GF (q)[x]/(xm − 1), if A is mapped onto the polynomial formed by the elements of its first row,
a(x) = a0 + a1x + . . . + am−1x

m−1, with the least significant coefficient on the left. The polynomial
a(x) is also called the defining polynomial of the matrix A.

The polynomials bxja(x), where b is a non-zero element in GF (q), and j = 0, 1, 2, . . . ,m − 1, form
an equivalent class, and they generate the equivalent cyclic codes. Therefore, it is enough to take one
representative from each equivalent class. The number of nonzero representatives (used as defining
polynomials) for m×m circulant matrices over GF (q) is given below [23]:

b(m, q) =
1

(q − 1)m

∑
d|m

φ(d)(q
m
d − 1) gcd(d, q − 1), (2)

where φ(d) is Euler’s totient function.

The generator matrix of a QC code can be transformed into rows of m ×m circulant matrices by
suitable permutation of columns. An h-generator QC code has a generator matrix of the following form:

G =


G1,1 G1,2 G1,3 . . . G1,p

G2,1 G2,2 G2,3 . . . G2,p

G3,1 G3,2 G3,3 . . . G3,p

...
...

...
. . .

...
Gh,1 Gh,2 Gh,3 . . . Gh,p

 , (3)

where Gi,j are m×m circulant matrices, for i = 1, 2, . . . , h, and j = 1, 2, . . . , p. Let gij(x) be the defining
polynomial of the matrix Gi,j . Then the defining polynomials for the h-generator QC code with generator
matrix given in (3) can be written as

(g11(x), g12(x), g13(x), . . . , g1p(x), . . . , gh1(x), gh2(x), gh3(x), . . . , ghp(x)).

In Magma [4], the parameter h is called the height.
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In the computer search algorithms presented in [8, 17–19], a weight matrix W is used in the com-
putation of the minimum distance of a 1-generator QC code. The general r × s weight matrix has the
following form:

W =


w0,0 w0,1 . . . h0,s−1
w1,0 w1,1 . . . h1,s−1
...

...
. . .

...
wr−1,0 wr−1,1 . . . wr−1,s−1

 , (4)

where the entry wi,j is the Hamming weight of Ii(x)gj(x) mod xm − 1, Ii(x) is the i-th distinct infor-
mation polynomial after the equivalent reduction, and gj(x) is the j-th defining polynomial [17–20, 23].
With this weight matrix, to construct a best QC [pm, k] code, it is sufficient to find p columns that give
the maximum of minimum row sums.

In practical implementation of search algorithms, the computer storage is limited. When the code
dimension becomes large, the number of defining polynomials would be too large, which makes the
weight matrix too large for a general computer to complete the search in reasonable time. In [6], defining
polynomials of specific weights were selected, while in [8, 9], a specified number of randomly chosen
defining polynomials were selected. For example, the number of defining polynomials for m = 88, k = 18
and q = 3 is 2204293. It is too large to store a weight matrix of 2204293× 2204293 inside the computer
memory. If 100 randomly chosen defining polynomials are used, then the weight matrix is reduced to the
size of 2204293× 100, which is possible in most laptop or desktop computers. Of course, the selection of
the number of defining polynomials during the search would limit how good a code can be found. But
the experience shows that even 100 randomly chosen defining polynomials are used, many good QC codes
can be found. For example, by applying the limited search algorithms, a new QC [176, 18, 88]3 code is
found, which improves the bound on minimum distance.

3. The new good and improved codes

For a given size m of the circulant matrix and code dimension k, first the non-equivalent defining
polynomials and distinct information polynomials were calculated [17, 19]. Then 100 defining polynomials
are selected randomly to compute the weight matrix. For small p (p = 2 or 3), an exhaustive search
among these polynomials is taken, otherwise the iterative search algorithm is applied [8]. Via the computer
search, more than 300 good QC codes have been obtained. These codes are included in online database
of quasi-twisted codes [10]. For example, for m = 11, all best-known QC [pm, 10]7 codes with p = 2, . . . , 9
have been found, as shown in Table 1. The details of the codes can be found in the online database [10].
In the rest of this paper, the codes that improve the minimum distances in [16] are presented.

Table 1. Best-known [pm, 10, d]7 codes with m = 11.

p n k d reference
2 22 10 10 [10]
3 33 10 18 [16]
4 44 10 26 [10]
5 55 10 34 [16]
6 66 10 42 [16]
7 77 10 50 [10]
8 88 10 59 [10]
9 99 10 68 [10]
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Theorem 3.1. There exist QC [93, 9, 62]5, [75, 11, 45]5, and [176, 18, 88]3 codes.

Proof. The QC [93, 9, 62]5 code is constructed with m = 31, and its defining polynomials are g1(x) =
x27 + x26 + 2x25 + x24 + 2x23 + 4x22 + 2x21 + 4x20 + 3x19 + 4x18 + 3x16 + x13 + x11 + x10 + 4x8 +
3x7 + 4x6 + 4x5 + 3x4 + 3x + 4, g2(x) = x27 + x24 + 3x23 + 2x21 + 2x20 + 2x19 + 2x18 + x17 + 3x15 +
3x14 + x13 + 2x12 + x11 + 2x10 + 2x9 + 3x8 + 4x7 + 3x6 + 2x5 + 2x4 + x3 + 2x2 + 3x + 2, and g3(x) =
x29+3x28+4x26+x25+x24+3x22+4x21+3x20+x19+4x18+2x17+x16+3x15+3x14+3x13+2x12+
x11 + x10 + 3x9 + 3x8 + x7 + 2x6 + x5 + 2x4 + x3 + 3x2 + x+ 2.

The QC [75, 11, 45]5 code is constructed with m = 15, and its defining polynomials are g1(x) =
x14 + x13 +3x12 +4x11 + x10 + x9 +4x8 + x7 +3x6 +2x5 + x4 +3x3 + x2 +3x+2, g2(x) = x12 +3x11 +
4x10 + 3x9 + 4x8 + 4x7 + 2x5 + 3x4 + 4x3 + 3x2 + x+ 4, g3(x) = x13 + 2x12 + 3x10 + x9 + 4x8 + 4x6 +
3x5 + x3 + 4x2 + 2x+ 3, g4(x) = x13 + x12 + 3x10 + 4x9 + 3x8 + 3x7 + x6 + x5 + 3x3 + 2x2 + 4x+ 2, and
g5(x) = x11 + 4x10 + x9 + 2x8 + 2x7 + x5 + 2x4 + x2 + 2x+ 4.

The QC [176, 18, 88]3 code is constructed with m = 88 and its defining polynomials are g1(x) =
x83 +2x82 +2x81 + x80 +2x79 +2x77 + x76 + x75 + x74 +2x73 + x72 + x70 +2x69 +2x68 +2x63 +2x62 +
2x60+2x59+x58+2x56+x55+x54+x53+x52+x51+x50+x47+x46+2x45+2x43+2x42+2x41+2x40+2x37+
2x36+x35+x34+x33+2x32+2x30+2x29+x28+x27+x26+2x24+x22+2x21+2x20+x17+2x15+2x14+
2x12+2x11+2x10+2x8+x6+x5+2x4+x3+x+1, and g2(x) = x83+x81+x79+2x78+2x77+2x76+2x75+
x73+x72+2x71+2x70+2x69+x68+x67+x64+2x63+2x62+2x61+2x59+x58+2x57+x55+2x54+x51+
2x49+2x47+2x46+2x45+x44+2x42+2x41+x39+2x38+x37+2x35+x34+x32+2x30+2x29+x28+x25+
2x24+2x23+2x22+x20+x18+2x16+2x14+x13+x11+x10+2x9+2x8+2x7+2x6+2x4+x3+x2+x+1.

All the codes have been checked in Magma algebraic system [4] [4] and their weight distributions
of these codes can be found in online database of quasi-twisted codes [10]. It should be noted, that a
new [176, 18, 89]3 code was found after our codes were reported [16], and it was based on our reported
[176, 17, 90]3 code as given in Theorem 3.2 below.

Construction X is a method to construct new codes by combining 3 existing codes. Let C1 =
[n, k1, d1]q and C2 = [n, k2, d2]q be a pair of nested codes, where C1 ⊂ C2. Let C3 = [n3, k2 − k1, d3]q be
an auxiliary code. Then there exists a C = [n+ n3, k2, d]q code with d ≥ min(d1, d2 + d3).

Theorem 3.2. There exists [39, 10, 21]5, [73, 9, 47]5, [68, 11, 40]5, [178, 18, 90]3, and [119, 30, 34]2 codes.

Proof. Let C1 be the QC [38, 10, 20]5 code with m = 19. Its defining polynomials are g1(x) = x15 +
x14+4x13+x12+x11+3x10+3x9+x7+2x6+x5+4x4+2x3+4x2+4, and g2(x) = x16+2x15+4x14+x13+
4x12+x11+x9+3x8+x6+2x5+3x4+3x3+4x2+4. Let C2 be the QC [38, 9, 21]5 code with m = 19. Its
defining polynomials are g1(x) = x16+3x14+2x13+2x11+2x9+x8+x7+4x6+3x5+3x4+2x3+x2+4x+1,
and g2(x) = x17+x16+2x15+2x14+3x13+2x12+4x11+x10+2x9+2x8+x7+x6+x5+x3+x2+4x+1.
Let C3 be an [1, 1, 1]5 code. By applying Construction X, the new [39, 10, 21]5 code can be constructed.

Let C1 be the QC [72, 9, 46]5 code with m = 24. Its defining polynomials are g1(x) = x22 + 4x20 +
3x19+2x18+x17+x16+2x15+3x14+4x13+2x12+2x10+3x8+3x7+4x6+2x4+2x3+4x2+3x+4, g2(x) =
x20+3x19+x18+2x17+x16+3x15+x14+2x13+x12+x11+4x9+2x8+4x7+3x6+2x5+3x4+3x3+3x2+3x+2,
and g3(x) = x21 +4x20 +4x18 +4x17 +3x16 +4x15 +4x14 + x13 +4x12 + x11 +3x10 +4x9 +4x8 +2x7 +
x6+3x5+x4+3x2+2x+2. Let C2 be the QC [72, 8, 47]5 code with m = 24. Its defining polynomials are
g1(x) = x23+3x22+4x21+x19+2x18+4x17+4x15+3x14+4x13+x12+2x11+x10+3x9+2x8+3x7+2x6+2x5+
3x4+3x+2, g2(x) = x21+x20+2x17+x16+2x13+4x12+3x11+4x10+4x9+x6+4x5+2x4+2x3+2x2+x+1,
and g3(x) = x22 + 2x21 + 2x20 + 4x19 + x18 + 3x16 + x15 + 3x14 + 2x13 + 3x12 + x11 + 3x10 + x9 + 4x8 +
2x7 + x6 + 3x4 + 3x3 + x2 + 3x + 1. Let C3 be an [1, 1, 1]5 code. By applying Construction X, the new
[73, 9, 47]5 code can be constructed.

Let C1 be the QC [66, 11, 38]5 code with m = 22. Its defining polynomials are g1(x) = x19 +
x18 + 4x17 + 4x16 + x15 + 3x14 + 3x13 + 2x11 + 2x9 + 4x8 + 4x7 + x6 + 2x5 + 2x4 + x2 + 4x + 2,
g2(x) = x19+x18+4x17+x15+4x14+3x13+2x12+4x11+x10+3x9+4x7+2x6+4x5+3x4+x3+4x+1,
and g3(x) = x18 + 4x17 + 2x16 + 3x15 + 3x14 + x13 + 2x11 + 4x10 + 3x9 + 2x5 + 4x2 + 1. Let C2 be the
QC [66, 10, 40]5 code with m = 22. Its defining polynomials are g1(x) = x20 + 3x18 + 2x16 + 2x15 +
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2x13 + 2x12 + 3x11 + 2x10 + 2x9 + 2x7 + x6 + 3x4 + x3 + 3x2 + 3x+ 3, g2(x) = x20 + 3x18 + x17 + x16 +
3x15 + 4x14 + 4x13 + 2x12 + 2x11 + 2x10 + 2x9 + 4x8 + 3x7 + 2x6 + 4x5 + 3x4 + 4x3 + 4x2 + 2x+ 4, and
g3(x) = x19 +3x18 +3x17 + x16 +3x14 +4x13 +2x12 +2x11 +4x10 +2x9 +2x6 +3x5 +4x3 + x2 + x+4.
Let C3 be an [2, 1, 2]5 code. By applying Construction X, a new [68, 11, 40]5 code can be constructed.

Let C1 be the QC [176, 17, 90]3 code with m = 88. Its defining polynomials are g1(x) = x84 + x82 +
2x79 + 2x78 + 2x76 + 2x75 + x72 + x71 + x69 + 2x68 + 2x64 + x63 + 2x62 + 2x61 + x60 + x58 + 2x57 +
2x55 + 2x54 + 2x53 + 2x52 + 2x51 + x50 + x48 + 2x47 + 2x45 + 2x44 + x43 + x42 + x41 + 2x40 + 2x38 +
x37 + 2x35 + 2x34 + 2x32 + 2x31 + x30 + 2x28 + 2x27 + x26 + 2x25 + 2x24 + x23 + x21 + 2x20 + x18 +
x17 + 2x16 + x15 + 2x14 + 2x13 + x12 + x11 + 2x10 + 2x9 + 2x8 + x7 + 2x6 + x3 + x2 + 2x + 1, and
g2(x) = x84 +x83 +x82 +x81 +x80 +x78 +x77 +x76 +2x75 +x74 +2x73 +x71 +x70 +2x68 +x67 +x65 +
x63 + x62 + 2x61 + 2x60 + 2x57 + x56 + 2x54 + x52 + x51 + 2x50 + 2x49 + 2x48 + x47 + x46 + x44 + 2x43 +
x42 +2x41 + x40 + x37 +2x36 + x34 + x33 + x32 +2x31 + x30 + x28 + x26 + x24 + x23 +2x22 + x21 + x20 +
x19 + x18 + 2x17 + 2x16 + 2x15 + x13 + x12 + 2x11 + x9 + x8 + x7 + 2x6 + 2x5 + 2x3 + 2x2 + 2x+ 1. Let
C2 be the QC [176, 18, 88]3 code given above. Let C3 be the [2, 1, 2]3 code. By applying Construction X,
a new [178, 18, 90]3 can be constructed.

Let C1 be the 3-generator QC [116, 30, 32]2 code with m = 29. Its defining polynomials are g1(x) =
x + 1, g2(x) = x12 + x11 + x9 + x6 + x5 + x3 + x2 + 1, g3(x) = x24 + x23 + x18 + x17 + x16 + x15 +
x14 + x12 + x9 + x7 + x5 + x4 + x3 + x2 + x + 1, g4(x) = x20 + x19 + x17 + x15 + x9 + x4 + x + 1,
g5(x) = g7(x) = g10(x) = g12(x) = x28 + x27 + x26 + x25 + x24 + x23 + x22 + x21 + x20 + x19 + x18 +
x17 + x16 + x15 + x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1, and
g6(x) = g8(x) = g9(x) = g11(x) = 0. Let C2 be the QC [116, 28, 34]2 code with m = 29. Its defining
polynomials are g1(x), g2(x), g3(x) and g4(x) as given in the [116, 30, 32]2 code above. Let C3 be an
[3, 2, 2]2 code. By applying Construction X, a new [119, 30, 34]2 code can be constructed.

All the codes given above improve the minimum distances in [16]. By applying puncturing method,
new improved [92, 9, 61]5, [67, 11, 39]5, [118, 30, 33]2, and [177, 18, 89]3 codes are obtained. All the codes
given in the paper have been checked with the Magma algebraic system [4] and included in [16] now.
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