
ISSN 2148-838X

J. Algebra Comb. Discrete Appl.
10(2) • 105–113

Received: 5 January 2022
Accepted: 14 March 2022

Journal of Algebra Combinatorics Discrete Structures and Applications

Sequences of linear codes where the rate times distance
grows rapidly

Research Article

Faezeh Alizadeh, S. P. Glasby, Cheryl E. Praeger

Abstract: For a linear code C of length n with dimension k and minimum distance d, it is desirable that the
quantity kd/n is large. Given an arbitrary field F, we introduce a novel, but elementary, construc-
tion that produces a recursively defined sequence of F-linear codes C1, C2, C3, . . . with parameters
[ni, ki, di] such that kidi/ni grows quickly in the sense that kidi/ni >

√
ki − 1 > 2i − 1. Another

example of quick growth comes from a certain subsequence of Reed-Muller codes. Here the field is
F = F2 and kidi/ni is asymptotic to 3nc

i/
√
π log2(ni) where c = log2(3/2) ≈ 0.585.
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1. Introduction

Let F be an arbitrary field and let Fn denote the space of all vectors of length n over F. An F-linear
code C of length n is a subspace of the vector space Fn, see [4, Section 1.2], and elements of C are called
codewords. Denote the dimension of C by k. Given a codeword x ∈ C, the (Hamming) weight of x,
denoted by wt(x), is the number of non-zero coordinates in x. The (minimum) distance of C, denoted by
d or d(C), is d(C) = min{d(x, y) | x, y ∈ C, x 6= y} where d(x, y) = wt(x− y) is the number of coordinate
entries where x and y differ. An F-linear code of length n, dimension k and distance d is abbreviated an
[n, k, d]-linear code. The (information) rate of an [n, k, d]-linear code C is R(C) = k/n. We henceforth
consider only linear codes.

Let C1, C2, C3, . . . be a sequence of F-linear codes where Ci has parameters [ni, ki, di]. We are
interested in the question: How quickly can kidi/ni approach infinity? It is easiest to understand the
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growth as a function of one variable, such as ki, di or ni. Since kidi/ni 6 min{ki, di} 6 ni such functions
will be at most linear. Asymptotically good code sequences are ones which satisfy both ki/ni > c and
di/ni > c for some constant c > 0, see [2, (1.1)] and [10], and hence these code sequences achieve linear
growth in ni since kidi/ni > c2ni. Such code sequences have been known to exist since [1], but they are
not well understood, and the existence of asymptotically good cyclic codes has been a long standing open
problem [7, 10] related to the uncertainty principle [2]. Other code sequences with reasonably good growth
rates include the quadratic residue codes, see [4, Section 6.6]. These have parameters [p, (p+1)/2, d] where
p is a prime, and d >

√
p by [6, p. 483, Theorem 1] so kd/n is at least O(

√
n). In Example 2.1, we describe

a subsequence of Reed-Muller codes over F2 (c.f. [5]) with faster growth viz. kd/n = O(nlog2(3/2)). On the
other hand, we might ask about ‘non-examples’, that is, code sequences for which kidi/ni does not grow.
There are such examples even among well-known code families. For example, for any fixed prime-power
q, there is an Fq-linear Reed-Solomon code [9] with parameters [n, k, n − k + 1] provided q > n. The
family of all such codes has kd/n bounded as kd/n 6 min{k, d} 6 n 6 q.

We want k to be large (relative to n) to transmit a lot of information, and d to be large to correct
many errors, see Section 2 for more details. For linear codes over a finite field, the Singleton bound
(d 6 n−k+1) exhibits the tension between k and d, and Maximum Distance Separable (MDS) codes have
d = n− k + 1, see [8]. In Theorem 1.1 we exhibit an explicit construction for a sequence C1, C2, C3, . . .
of F-linear codes, where F is a fixed but arbitrary field, and where Ci has parameters [ni, ki, di] and
kidi/ni = O(

√
ki).

Theorem 1.1. For each field F, there exists an infinite sequence C1, C2, C3, . . . of F-linear codes such
that Ci has parameters [ni, ki, di] that satisfy

kidi
ni

= 2i >
√
ki − 1 > 2i− 1 for i > 1.

The codes C1, C2, C3, . . . in Theorem 1.1 are described in Definitions 4.4 and 4.6. They involve a
novel construction described in Section 3, and their parameters [ni, ki, di] are determined in Theorem 4.7.
The codes are F-linear, where F is an arbitrary field, and their limiting properties are similar to well-known
codes, see Examples 2.1 and 2.2.

New codes can also be constructed from old codes via “direct sums” and “repetition”. Both of these
constructions fix the quantity kd/n, for suppose that C is an F-linear code with parameters [n, k, d], and
s is a positive integer. The direct sum code

⊕s
i=1 C 6 Fns has parameters [ns, ks, d], and the quantity

(ks)d/(ns) = kd/n is independent of s. Similarly, the repetition code diag(
⊕s

i=1 C) = {(u, . . . , u) | u ∈
C} has parameters [ns, k, ds], and again k(ds)/(ns) = kd/n is independent of s. By contrast, repeated
application of the construction introduced to prove Theorem 4.7 allows kd/n to grow without bound.

2. Further remarks

We represent the vectors in Fn by n-dimensional column vectors over F. Let C be an [n, k, d]-linear
code in Fn and let B = (a1, . . . , ak) be an ordered basis of C. Let H = [a1, . . . , ak] be the n× k matrix
formed by this basis. Then the code C is equal to the set {Hx | x ∈ Fk}, and we regard an element
x ∈ Fk as an information vector which is encoded as a codeword Hx. As H has rank k, by permuting
the coordinates of Fn if necessary, we will assume that the k × k sub-matrix formed by the first k rows
of H is invertible. Thus the information vector x is uniquely determined by the first k entries of the
associated codeword Hx and the last n−k entries of Hx may be regarded as redundancy added to enable
transmission errors to be corrected.

The proportion k/n is called the rate R(C) of C, and is a measure of the efficiency of C in encoding
information. The third parameter, the minimum distance d of C is directly related to the error correction
capability of C: if strictly less than d/2 entries in a codeword are changed during transmission then the
received n-tuple is closer (in the Hamming metric) to the original codeword transmitted than to any
other codeword, and hence these ’errors’ can be corrected and the correct codeword determined. A high
value of d relative to n denotes high reliability in transmitting information correctly.
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Both k/n and the relative distance d/n are less than 1: the larger the rate k/n the more efficient is
the code, while the larger the relative distance d/n the more reliable is the code. The question addressed
in this paper is: How quickly can the quantity kidi/ni approach infinity? Our construction demonstrates
that this quantity kd/n can grow as fast as

√
k for codes over any field F.

Example 2.1. A Reed-Muller code RM(m, r) is an F2-linear code, with parameters [2m,
∑r

j=0

(
m
j

)
, 2m−r]

by [4, Theorem 1.10.1]. Thus krdr/nr = 2−r
∑r

j=0

(
m
j

)
for RM(m, r). The subsequence (RM(2r+1, r))r>1

has dim(RM(2r+1, r)) = kr =
∑r

j=0

(
2r+1

j

)
= 22r and parameters [22r+1, 22r, 2r+1]. Therefore krdr/nr =√

kr = O(
√
nr). It turns out that the Reed Muller codes RM(2r+1, r), and the codes Cr in the Theorem 4.7

have krdr/nr = O(
√
kr), and the quadratic residue codes have krdr/nr at least

√
kr.

A faster growing subsequence is (RM(m, bm3 c + 1))m>1. It follows from [3, Theorem 2] that the
parameters [nm, km, dm] of RM(m, bm3 c+ 1) have kmdm/nm asymptotic to

3√
πm

(
3

2

)m

= O

(
n
log2(3/2)
m√
log2(nm)

)
where nm = 2m and log2

(
3

2

)
≈ 0.585.

Example 2.2. The codes in Theorem 1.1 are similar to simplex codes [6, Section 1.9] in that n and d
are very large compared to k; and simplex codes give another family for which kd/n grows. The simplex
codes over Fq have parameters [qk − 1, k, qk−1] and kd/n > k/q.

3. Bounded linear codes

In this section we present and investigate a construction which, given a linear code as input, produces
a linear code with strictly larger length, dimension and minimum distance. We will be concerned with
the extent to which the construction preserves the property of being bounded, which is defined as follows.

Definition 3.1. Let u be a positive integer, C an F-linear [n, k, d]-code, and B = (a1, . . . , ak) an ordered
basis for C. Then C is said to be u-bounded relative to B if the following three conditions hold:

(i) wt(aj) = u for each j;

(ii) wt(
∑k

j=1 aj)=d; and

(iii) u > d(1 + k−1).

We say that C is bounded if there exist u and B such that C is u-bounded relative to B.

3.1. The construction

Here we present the construction applied to an arbitrary linear code, and examine when the bound-
edness property is preserved.

Construction 3.2. We have the following input and output.
Input: Let C an F-linear [n, k, d]-code in Fn with ordered basis B = (a1, . . . , ak).
Output: The F-linear code Code(B) in Fn(k+1) which is the F-linear span of the sequence Basis(B) =
(a′1, . . . a

′
k+1), where

a′1 =


0

a1
a2
...
ak

 , a
′
2 =


ak
0

a1
...

ak−1

 , . . . , a
′
k+1 =


a1
a2
...
ak
0

 ,
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and 0 denotes the zero vector in Fn.

We show that the output Basis(B) from Construction 3.2 is linearly independent, determine the
parameters of the code Code(B), and find conditions under which Code(B) is bounded relative to Basis(B).

Proposition 3.3. Let F, C, n, k, d,B be as in Construction 3.2.

(a) Then Basis(B) is an ordered basis for Code(B), and Code(B) is an F-linear [n′, k′, d′]-code, where

n′ = (k + 1)n, k′ = k + 1 and d′ satisfies d′ > kd.

(b) Further, if C is u-bounded relative to B, then d′ = (k + 1)d, and, setting u′ = ku, Code(B) is
u′-bounded relative to Basis(B) if and only if u > d(1 + 2k−1).

Proof. (a) By Construction 3.2, Code(B) has length n′ = (k + 1)n. Further, the fact that the aj are
linearly independent implies that the a′j are linearly independent, so Basis(B) is an ordered basis for
Code(B), and therefore Code(B) has dimension k′ = k + 1. It remains to bound the minimum distance
d′. An arbitrary non-zero codeword w in Code(B) has the form w =

∑k+1
j=1 cja

′
j for elements cj ∈ F, not

all zero. We will prove that wt(w) > kd, whence d′ > kd. Write

w =


w1

w2

...
wk+1

 ,
where each wi ∈ Fn. Then by the definition of the a′j in Construction 3.2,

wi =

k∑
j=1

ci−jaj , for i = 1, . . . , k + 1, reading subscripts modulo k + 1. (1)

In particular each wi is a codeword of C. Thus if each of the wi is nonzero, then wt(w) =
∑k+1

i=1 wt(wi) >
(k + 1)d. Suppose now that, for some i, wi = 0. Since the aj are linearly independent, it follows from
(1) that ci−j = 0 for j = 1, . . . , k. Then since w 6= 0, we must have ci 6= 0 so w = cia

′
i, and hence

wt(w) = wt(a′i) =

k∑
j=1

wt(aj) > kd (2)

since each ai is a codeword of C and so has weight at least d. This proves part (a).

(b) Now assume that C is u-bounded relative to B. Let w =
∑k+1

j=1 cja
′
j be an arbitrary non-zero

codeword in Code(B), and define the wi as above so that wt(w) =
∑k+1

i=1 wt(wi), and equation (1) holds.
If each of the wi is nonzero then wt(w) > (k + 1)d. On the other hand if some wi = 0, then we showed
above that equation (2) holds, so wt(w) =

∑k
j=1 wt(aj). In this case, by Definition 3.1(i), we have

wt(aj) = u for each j, and hence wt(w) = ku. Further, by Definition 3.1(iii), u > d(1 + k−1), and hence
wt(w) = ku > (k + 1)d. Thus the minimum distance d′ of Code(B) satisfies d′ > (k + 1)d. To see that
equality holds, consider the codeword w obtained by taking c1 = · · · = ck+1 = 1. For each i, equation
(1) shows that wi =

∑k
j=1 aj , and hence wt(wi) = d by Definition 3.1(ii). Therefore, for this codeword

w we have wt(w) =
∑k+1

i=1 wt(wi) = (k + 1)d, and we conclude that d′ = (k + 1)d.

Now set u′ = ku. First, from the definition of the a′j we have wt(a′j) =
∑k

i=1 wt(ai), which is
equal to ku = u′ by Definition 3.1(i). Second, we showed in the previous paragraph that wt(

∑k+1
i=1 a

′
i) =

(k + 1)d = d′. Third, since u′ = ku and d′(1 + (k′)−1) = (k + 1)d(1 + (k + 1)−1) = d(k + 2), it follows
that u′ > d′(1 + (k′)−1) if and only if u > d(k+ 2)/k = d(1 + 2k−1). Thus, by Definition 3.2, Code(B) is
u′-bounded relative to Basis(B) if and only if u > d(1 + 2k−1). This completes the proof.
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3.2. Recursive applications of the construction

By Proposition 3.3(a), the output code Code(B) of Construction 3.2 is always a linear code with
ordered basis Basis(B), and hence Construction 3.2 may be applied repeatedly, producing larger and larger
codes. Moreover, Proposition 3.3(b) implies that, provided the parameter u is sufficiently large, Code(B) is
bounded relative to Basis(B). We investigate how many times we may apply Construction 3.2 recursively
and still obtain a bounded code. To keep track of these repeated applications of Construction 3.2 we
introduce some natural notation for the output codes and bases.

Definition 3.4. Let i be a positive integer, and let C be an F-linear code with an ordered basis B. In
terms of the output of Construction 3.2 applied repeatedly to C,B, for i = 1, let

Code(B, 1) = Code(B) and Basis(B, 1) = Basis(B),

and for i > 2, define recursively,

Code(B, i) = Code(Basis(B, i− 1)) and Basis(B, i) = Basis(Basis(B, i− 1)).

We examine the parameters and boundedness of Code(B, i) for various values of i.

Proposition 3.5. Let i be a positive integer, and let C be an F-linear [n, k, d]-code with an ordered basis
B.

(a) Then Code(B, i) is an F-linear [ni, ki, di]-code, where

ni = n

i∏
j=1

(k + j), ki = k + i, di > d

i∏
j=1

(k + j − 1).

(b) Further, suppose that C is u-bounded relative to B, and u > d(1 + ik−1), that is i 6 k(ud−1 − 1).
Then the minimum distance di of Code(B, i) is

di = d

i∏
j=1

(k + j), and setting ui = u

i∏
j=1

(k + j − 1),

Code(B, i) is ui-bounded relative to Basis(B, i) if and only if u > d(1 + (i+ 1)k−1).

Proof. (a) Our proof is by induction on i. It follows from Proposition 3.3(a) that Code(B, 1) is an
F-linear [n1, k1, d1]-code where n1 = n(k+1), k1 = k+1 and d1 > dk. Suppose that i > 2 and assume that
the assertions of part (a) hold for Code(B, i−1). Proposition 3.3(a) implies that ni = ni−1(ki−1+1), ki =
ki−1 + 1 and di > di−1ki−1. Hence the assertions of part (a) hold for also for Code(B, i).

(b) Now suppose that C is u-bounded relative to the ordered basis B. Then u > d(1 + k−1) by
Definition 3.1(iii), and by Proposition 3.3(b), the minimum distance d1 of Code(B, 1) is d1 = d(k + 1);
also Code(B, 1) is u1-bounded, where u1 = ku, if and only if u > d(1 + 2k−1). Thus part (b) holds for
i = 1. Assume now that i > 2 and i 6 k(ud−1 − 1), and also that part (b) holds for Code(B, i− 1), that
is,

di−1 = d

i−1∏
j=1

(k + j), and setting ui−1 = u

i−1∏
j=1

(k + j − 1),

Code(B, i − 1) is ui−1-bounded relative to Basis(B, i − 1) if and only if u > d(1 + ik−1). Since we are
assuming that the inequality u > d(1 + ik−1) holds, we conclude that Code(B, i − 1) is ui−1-bounded
relative to Basis(B, i− 1). Thus applying Proposition 3.3(b) to Code(B, i− 1) with Basis(B, i− 1), shows
that di = di−1(ki−1 + 1) and that Code(B, i) is (ui−1ki−1)-bounded relative to Basis(B, i) if and only if
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ui−1 > di−1(1 + 2k−1i−1). Since ki−1 + 1 = k + i by part (a), we conclude that di is as in part (b). Also,
since ui−1ki−1 = u

∏i
j=1(k + j − 1) is equal to ui, Code(B, i) is ui-bounded relative to Basis(B, i) if and

only if the inequality ui−1 > di−1(1 + 2k−1i−1) holds. Substituting the values above for ui−1, di−1, ki−1,
this inequality is

u

i−1∏
j=1

(k + j − 1) >

d i−1∏
j=1

(k + j)

 k + i+ 1

k + i− 1
,

that is, u > dk−1(k + i+ 1) = d(1 + (i+ 1)k−1). Thus part (b) is proved by induction.

Remark 3.6. We note that, the quantity mentioned in the introduction, namely the rate times the
minimum distance, grows slowly with the number i of applications of Construction 3.2: for 1 6 i 6
k(ud−1 − 1) we have, by Proposition 3.5, that

kidi
ni

=
(k + i)d

n
=
kd

n
+
id

n
.

4. Explicit instances of the construction

In this section we construct a family of linear codes which are defined as column spaces of a certain
family of square matrices. First we introduce the matrices.

4.1. A family of matrices

As always F denotes an arbitrary field. We introduce an infinite family of matrices over F, and
explore some of their properties. We denote the space of m× n matrices over F by Fm×n; we denote the
zero matrix in this ring by 0m×n, or sometimes just by 0; and if m = n we denote the identity matrix
by Im, and the determinant of A ∈ Fm×m by det(A). For a matrix A ∈ Fm×n, its ij-entry is denoted
Aij , and its transpose obtained by interchanging rows and columns is denoted AT , that is (AT )ij = Aji

for all i, j. For simplicity of the exposition we will sometimes represent matrices as block matrices where
some (a× b)-block may be an empty matrix, that is a = 0 or b = 0 are allowed.

Definition 4.1. For a positive integer i, we define matrices Ai and Bi as follows. For i = 1, these are

A1 =

[
0 −1
1 0

]
, and B1 =

[
1 −1
−1 1

]
,

and recursively, for i > 1, if Ai,Bi have been defined, then we let

Ai+1 =

[
A1 Bi
−BTi Ai

]
, and Bi+1 =

[
B1 Bi

]
.

Our first observations about the family are given in this lemma. The idea behind the proof of
Lemma 4.2 we found in [11, Section 5, Acknowledgements].

Lemma 4.2. Let i be a positive integer and Ai,Bi be as in Definition 4.1. Then

(a) Bi = [B1 · · · B1] ∈ F2×2i; for a ∈ {1, 2} and b ∈ {1, . . . , 2i} we have (Bi)ab = (−1)a+b and BTi A1Bi =
BTi A

−1
1 Bi = 02×2.

(b) Ai ∈ F2i×2i satisfies det(Ai) = 1.
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Proof. (a) A straightforward inductive argument, based on the definition of Bi+1 in Definition 4.1
shows that Bi = [B1 · · · B1] ∈ F2×2i for each i > 1. Then it is easy to see that (Bi)ab = (−1)a+b for
all a, b. It follows from Bi = [B1 · · · B1] that BTi A1Bi =

∑i
j=1 BT1 A1B1, and computing we see that

BT1 A1B1 = B1A1B1 = 02×2. Hence BTi A1Bi = 02×2, and the final assertion BTi A
−1
1 Bi = 02×2 follows

from the fact that A−11 = −A1.

(b) It is easy to see that det(A1) = 1, and Ai ∈ F2i×2i for each i > 1. Assume that i > 1, assume
inductively that det(Ai) = 1, and consider Ai+1 as defined in Definition 4.1. Modifying an idea from [11,
Section 5], we see by direct computation that[

A1 Bi
−BTi Ai

][
I2 −A−11 Bi

02i×2 I2i

]
=

[
A1 02×2i
−BTi BTi A

−1
1 Bi +Ai

]
=

[
A1 02×2i
−BTi Ai

]

where the last equality follows from part (a). Since the second matrix on the left side has determinant
1, it follows that det(Ai+1) = det(A1) det(Ai) = 1 where the last equality uses the inductive hypothesis.
Thus part (b) follows by induction.

The next lemma looks at properties of the columns of the Ai.

Lemma 4.3. Let i be a positive integer, and let Ai = [a1, a2, . . . , a2i] be as in Definition 4.1, where aj is
the jth column of Ai. Then

(a) wt(aj) = 2i− 1 for j ∈ {1, . . . , 2i},

(b) a2j−1 + a2j = [01×2(j−1),−1, 1, 01×2(i−j)]T ∈ F2i×1 for j ∈ {1, . . . , i},

(c)
∑2i−1

j=1 aj = [0, . . . , 0, 1]T ∈ F2i×1, and in particular, wt(
∑2i−1

j=1 aj) = 1.

Proof. (a) Part (a) follows immediately from Definition 4.1.

(b) We use induction on i. For i = 1, a1+a2 = [−1, 1]T by Definition 4.1, so (b) holds in this case (as
i = j = 1 and the first and last entries in this vector in (b) are empty matrices). Now let i > 1 and assume
inductively that (b) holds for Ai = [a1, . . . , a2i], and consider Ai+1 = [a′1, . . . , a

′
2i+2]. By Definition 4.1

and the structure of Bi given by Lemma 4.2(a), it follows that a′1 + a′2 = [−1, 1, 01×2i]T ∈ F2(i+1)×1. For
j ∈ {2, . . . , i+ 1}, it follows from Definition 4.1 that

a′2j−1 + a′2j =

[
02×1

a2j−3 + a2j−2

]
.

Hence the structure of a′2j−1 + a′2j follows from the inductive hypothesis. Thus part (b) is proved by
induction.

(c) This part is also proved by induction on i. The case i = 1 follows from the definition of A1. So
assume that i > 1 and that part (c) holds for Ai, that is b :=

∑2i−1
`=1 a` = [0, . . . , 0, 1]T ∈ F2i×1. Suppose

that Ai and Ai+1 have columns aj and a′j as in the proof of part (b). Using the structure of Bi from
Lemma 4.2(a), the form of a′1 + a′2 above, and the inductive hypothesis, we have

2i+1∑
j=1

a′j = (a′1 + a′2) +

 1

−1∑2i−1
`=1 a`

 =

 −11
02i×1

+

 1

−1
b

 = [ 0, . . . , 0, 1 ]T ∈ F2(i+1)×1.

Part (c) follows by induction.
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4.2. Codes constructed from matrices

We now construct F-linear codes from the matrices in Subsection 4.1, noting that the columns of Ai

are linearly independent by Lemma 4.2(b) .

Definition 4.4. Let i be a positive integer, let Ai = [a1, a2, . . . , a2i] ∈ F2i×2i be as in Definition 4.1,
where aj is the jth column of Ai, and let C(i) be the F-linear code in F2i with ordered basis B(i) =
(a1, . . . , a2i−1).

We use the results from Subsection 4.1 to determine the properties of C(i), and the results from
Section 3 to study the codes obtained using Proposition 3.5.

Proposition 4.5. For a positive integer i, let C(i) and B(i) be as in Definition 4.4.

(a) For i > 2, the code C(i) is an F-linear [2i, 2i − 1, 1]-code which is (2i − 1)-bounded relative to the
ordered basis B(i).

(b) For 1 6 j 6 4i2 − 6i + 1, the code Code(B(i), j), as defined in Definition 3.4, is an F-linear
[nj , kj , dj ]-code that is uj-bounded relative to the ordered basis Basis(B(i), j), where

nj = 2i

j∏
`=1

(2i− 1 + `), kj = 2i− 1 + j, dj =

j∏
`=1

(2i− 1 + `), and uj = (2i− 1)

j∏
`=1

(2i− 2 + `).

Proof. (a) By Lemma 4.2(b), B(i) is an ordered basis for C(i). Thus C(i) has length 2i and dimension
is 2i − 1. Moreover, d(C(i)) = 1 as [0, . . . , 0, 1]T ∈ C(i) by Lemma 4.3(c). By Lemma 4.3(a), wt(aj) =
2i − 1 for each j 6 2i − 1, and wt(

∑2i−1
j=1 aj) = 1. To see that C(i) is (2i − 1)-bounded relative to B(i)

for each i > 2 we use Definition 3.1 and note that 2i − 1 > 1 + (2i − 1)−1 holds (this is true for i > 2).
This proves part (a).

(b) We apply Proposition 3.5(b) to C(i) and B(i). By part (a) the parameters n, u, k, d of that
result are: n = 2i, u = k = 2i− 1, d = 1, and we wish to apply Proposition 3.5(b) with a positive integer
parameter j satisfying u > d(1 + (j + 1)k−1), or equivalently j + 1 6 k(ud−1 − 1) = (2i − 1)(2i − 2) =
4i2 − 6i + 2. This latter inequality is our assumption on j, so we may therefore apply Construction 3.2
j times and conclude, by Proposition 3.5(b), that Code(B(i), j) is an F-linear [nj , kj , dj ]-code that is
uj-bounded relative to the ordered basis Basis(B(i), j), where the parameters nj , kj , dj , uj are as in the
statement. This proves part (b).

In Proposition 4.5(b) we have nj = 2idj and uj(2i + j − 1) = (2i − 1)dj , respectively. Note that
setting j = 0 in the expressions for nj , kj , dj , uj in Proposition 4.5(b), we obtain the parameters n, k, d, u,
respectively, for the code C(i) examined in Proposition 4.5(a). Thus if we set Code(B(i), 0) := C(i),
then all the assertions of Proposition 4.5(b) hold with j = 0. Thus we have constructed explicitly a
two-parameter family of bounded linear codes over an arbitrary field F, namely:

Code(B(i), j) for all i > 2 and all integers j satisfying 0 6 j 6 4i2 − 6i+ 1.

We write Code F(B(i), j) and Basis F(B(i), j) if we wish to emphasize the field F of scalars. To prove our
main result we investigate a one-parameter subfamily of these codes, choosing, for each value of i, the
code with the largest value of j. We now replace i with i+ 1.

Definition 4.6. For a field F of scalars, and each i > 1, define

Ci := Code F(B(i+ 1), 4i2 − 2i− 1) and Bi := Basis F(B(i+ 1), 4i2 − 2i− 1).

The following theorem follows immediately from Proposition 4.5.
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Theorem 4.7. Given a field F and an integer i > 1, the code Ci is a linear [Ni,Ki, Di]-code over F,
which is Ui-bounded relative to its ordered basis Bi, where

Ni = 2(i+ 1)

4i2−2i−1∏
`=1

(2i+ 1 + `), Ki = 4(i+ 1)i, Di =

4i2−2i−1∏
`=1

(2i+ 1 + `),

and Ui = (2i+ 1)

4i2−2i−1∏
`=1

(2i+ `). Moreover,
KiDi

Ni
= 2i grows linearly with i.

Proof. The first assertions follow immediately from Proposition 4.5 by replacing i with i+ 1. Finally,

from these parameters we see that
KiDi

Ni
=

4(i+ 1)i

2i
= 2i.

Proof of Theorem 1.1. By Proposition 4.7 there are [ni, ki, di]-codes Ci, i > 1, where kidi/ni = 2i and
ki = 4(i+ 1)i. A simple calculation shows that

2i >
√
4i(i+ 1)− 1 >

√
4i2 − 1 = 2i− 1.

Acknowledgement: The authors thank Patrick Solé for his remarks and for alerting us to [10].
The first author is grateful to UWA and the Centre for the Mathematics of Symmetry and Computation,
and also to Shahid Rajaee Teacher Training University for their financial support when she was a visit-
ing scholar. The second and third authors acknowledge support from the Australian Research Council
Discovery Project DP190100450.

References

[1] C. L. Chen, W. W. Peterson, E. J. Weldon, Jr., Some results on quasi-cyclic codes, Information and
Control 15 (1969) 407–423.

[2] S. Evra, E. Kowalski, A. Lubotzky, Good cyclic codes and the uncertainty principle, Enseign. Math.
63 (2017) 3–4.

[3] S. P. Glasby, G. R. Paseman, On the maximum of the weighted binomial sum 2−r
∑r

i=0

(
m
i

)
,Electron.

J. Combin. 29(2) (2022) 2–5.
[4] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press,

Cambridge, 2003.
[5] G. Lachaud, Projective Reed-Muller codes, Coding theory and applications, 1986 Lecture Notes in

Comput. Sci., vol. 311, Springer, Berlin (1988) 25–129.
[6] F. J. MacWilliams, N. J.A. Sloane, The theory of error-correcting codes. I, North-Holland Mathe-

matical Library, Vol. 16, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
[7] Conchita Martínez-Pérez, W. Willems, Is the class of cyclic codes asymptotically good?, IEEE Trans.

Inform. Theory 52(2) (2006) 696–700.
[8] San Ling, Chaoping Xing, Coding theory: A first course, Cambridge University Press, Cambridge,

2004.
[9] G. Quintin, M. Barbier, C. Chabot, On generalized Reed-Solomon codes over commutative and

noncommutative rings, IEEE Trans. Inform. Theory 59 (2013) 5882–5897.
[10] M. Shi, R. Wu, P. Solé, Asymptotically good additive cyclic codes exist, IEEE Communications

Letters 22(10) (2018) 1980–1983.
[11] J. R. Silvester, Determinants of block matrices, The Mathematical Gazette 84 (2000) 460–467.

113

https://doi.org/10.1016/S0019-9958(69)90497-5
https://doi.org/10.1016/S0019-9958(69)90497-5
https://doi.org/10.4171/lem/63-3/4-4
https://doi.org/10.4171/lem/63-3/4-4
https://doi.org/10.37236/10751
https://doi.org/10.37236/10751
https://doi.org/10.1017/CBO9780511807077
https://doi.org/10.1017/CBO9780511807077
https://doi.org/10.1007/3-540-19368-5_13
https://doi.org/10.1007/3-540-19368-5_13
https://shop.elsevier.com/books/the-theory-of-error-correcting-codes/macwilliams/978-0-444-85193-2
https://shop.elsevier.com/books/the-theory-of-error-correcting-codes/macwilliams/978-0-444-85193-2
https://doi.org/10.1109/TIT.2005.862123
https://doi.org/10.1109/TIT.2005.862123
https://doi.org/10.1017/CBO9780511755279
https://doi.org/10.1017/CBO9780511755279
https://doi.org/10.1109/TIT.2013.2264797
https://doi.org/10.1109/TIT.2013.2264797
https://doi.org/10.48550/arXiv.1709.09865
https://doi.org/10.48550/arXiv.1709.09865
https://doi.org/10.2307/3620776

	Introduction
	Further remarks
	Bounded linear codes
	Explicit instances of the construction
	References

