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Abstract: In this paper, we are interested in monomial codes with associated vector a = (ao,a1,...,an-1),
introduced in [4], and more generally in linear codes invariant under a monomial matrix M =
diag(ao,a1,...,an—1)P; where o is a permutation and P, its associated permutation matrix. We
discuss some connections between monomial codes and codes invariant under an arbitrary monomial
matrix M. Next, we identify monomial codes with associated vector a = (ao, az2,...,an—1) by the
ideals of the polynomial ring R, , = F [2]/(z" — [[/, ai), via a special isomorphism ¢, which
preserves the Hamming weight and differs from the classical isomorphism used in the case of cyclic
codes and their generalizations. This correspondence leads to some basic characterizations of mono-
mial codes such as generator polynomials, parity check polynomials, and others. Next, we focus on
the structure of {—quasi-monomial ( £—QM) codes of length n = m{, where on the one hand, we
characterize them by the R, —submodules of Rf;m. On the other hand, /—QM codes are seen as
additive monomial codes over the extension F,/FF,. So, as in the case of quasi-cyclic codes [8], we
characterize those codes that have F ¢ —linear images with respect to a basis of the extension F ¢ /F_,
based on the CRT decomposition. Finally, we show that /—QM codes and additive monomial codes
are asymptotically good.
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1. Introduction

Due to their rich algebraic structures and the convenience of their implementation in practice,
cyclic codes and their generalizations are among the most studied families of linear codes in coding
theory. The strong point of cyclic codes and their generalizations is the concept of cyclicity, which
permits the use of the polynomial ring in their studies. For more details, we refer the reader to [10,
Chapter 4 and 5|, and the vast literature on this topic. In [4], the notion of a monomial code with
associated vector a = (ag,az,...,a,—1) was introduced as a linear code in which the monomial shift
(An—1Cn—1,a0C0, - - -, Gp_2Cn—2) of any codeword ¢ = (¢, c1,...,cn—1) is again a codeword of C. Hence,
they are invariant under the right multiplication under a special monomial matrix Az (will be de-
fined later). Monomial codes form a generalization of A—constacyclic codes a = (1,...,1,A), cyclic (
and negacyclic ) codes a = (1,...,1,%1). In that paper the authors investigated the algebraic struc-
ture of monomial codes, based on the theory of invariant subspaces and the irreducible factorization of

n—1
fo(z)=2a" — I_Iai7 the minimal polynomial of Az.
i=0
In this paper, we continue the study of monomial codes, in general, the study of codes invariant under
a monomial matrix M = diag(ag, a1, ...,a,—1)P, where o is a permutation and P, its associated permu-
tation matrix. We find that monomial codes are invariant under Az = diag(ag, a1, - .., an—1)P,, where

o is an n—cycle of "standard form" (Remark 2.5), and we discuss some connections between monomial
codes and codes invariant under an arbitrary monomial matrix. Next, we identify monomial codes with

n—1
associated vector a = (ag, as, ..., a,—1) by the ideals of the polynomial ring R, :=F [z]/(z" — Hai),
=0

=
via an F_—vector space isomorphism ¢_ which preserves the Hamming weight and it is different from
the classical isomorphism used in the case of cyclic codes and their generalizations. This correspondence
leads to some basic characterizations of these codes such as generator and parity check polynomials among
others. We are also interested in the algebraic structure of {—quasi-monomial codes of length n = ¢m
with associated vector a = (ag,a1,...,am—1), which are identified by the R, —submodules of R?m. In
[8] the additive structure of {—quasi-cyclic codes has been investigated, where the authors characterize
the I« —linear images of /—QC codes with respect to a basis of the extension F./IF_, and show that such
codes must be invariant under certain matrices related to the basis of the extension F . /IF,. Moreover,
when the basis of the extension F ¢ /F, is normal the characterization is particularly simple. Following
that paper, we gave a similar characterization for /—QM codes. Finally, we are interested in the asymp-
totic performance of QM codes, where we follow [1] and [14] to show that /—QM codes and additive
monomial codes are asymptotically good.

This paper is organized as follows. We give the necessary background on monomial codes and linear
codes invariant under a monomial matrix in section 2. The algebraic structure of /—quasi-monomial codes
and their polynomials characterizations are in section 3. Section 4 is devoted to investigating the additive
structure of quasi-monomial codes and a characterization of their F —linear images with respect to a
basis of the extension F,/F_. Finally, in section 5, we study the asymptotic performance of QM codes
and additive monomial codes.

2. Codes invariant under a monomial matrix

Let us start with the following definition of a monomial code.

Definition 2.1 ( Definition 3.1 [4]). A linear code C C ]F: is called monomial code with associated
vector a = (ao,al,...,an_l) € F:‘n if for each codeword ¢ = (co,c1,...,cn—1) € C, we have ¢ =

(an_lcn_l,aoco, ce,Q, o C ) 1s also a codeword.

n—2-"n—2

Remark 2.2. From the above definition we observe that monomial codes are invariant under the operator
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T

a’

called the monomial shift induced by a = (a,,a,,...,a,_,), defined by:

» Y1

T (Voo Vys ooV ) = (@, 0,1, GV G40, ) (1)

n—1"n—17 n—2"n—2

We recall now the definition of a monomial matrix.

Definition 2.3 ([5]). 1. An n x n matric M = (Msj), o, ;<,, s called a monomial if it is a regular
matriz and has in each row and each column exactly one non-zero component.

2. An n X n matric P = (Pij)1<ij<n called a permutation matrix if there is a permutation
o € S, such that P is obtained by permuting the columns of the identity matriz 1,, i.e., Py =
Lif i — o(i

{ $i=0(j) , for any 1 <1i,5 <n and we write P = P,.

0if i #0(j)
3. A permutation matrix P, is a monomial matriz with all non-zero components equal to 1.

Lemma 2.4 ([5], Lemma 2). If M is a monomial matriz of order n with non-zero components
AQyQ1y-neyUp_1 € IE":, then there is a permutation o € S, such that M = diag(ag, a1, ..., 0n-1)Pigma

Remark 2.5. Observe that monomial codes are invariant under the action of the following monomial
matric

0 0 ... 0 apn-a
ao 0 0 0
Az = diag(ao, a1,...,an-1)P,=| 0 a1 . (2)
S0 :
0 ... 0 an—2 0

with o is the n—cycle defined by o(1,2,...,n) = (n,1,...,n—1). We refer to this n—cycle as a standard
n—cycle or as an n—cycle of standard form.

n—1
Let A = Hai. It is shown in [4] that there is an invertible matrix @ such that A, = Q~1A_Q, where
i=0
n—1
n—1 0 0 - 0 a;
00 ...0 J]a 11
i=0 a 0 ... O 0
10 ...0 O . .
A, = 1 , Q= Aoy (3)
0
. .. .0 N n—2
00 ...1 0 0 0 ... JJa o0
1=0
Proposition 2.6. A linear code C C F: is a monomial code with associated vector a = (ag, @1, ..., Ap_1)
n—1
if and only if Q~'C is a A—-constacyclic code, where \ = Hai.
i=0

Proof. 1If C is monomial then T (C) = A_.C C C. As Ay = Q"' A_Q, we have
AHQTIC=QA,QQTIC = QA CCQIC

It follows that Q~'C' is a A—constacyclic code. 0

In the following proposition we present a result about codes invariant under a monomial matrix
M = diag(ag, a1, .., an—1)P,, where o is an n—cycle.

~
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0

Proposition 2.7. Let M = diag(ag,a1,...,an-1)P,, where o is an n—cycle and C C IFq be a linear
code invariant under M. Then
1. if o is of standard form, then C is a monomial code with associated vector a = (ag, a1, ..., An_1)-
2. if o is not of standard form, then there is a permutation p € Sy, and an invertible matriz ), = P,Q,
such that Q;lC is a monomial code with associated vector a = (ag,a1,...,an_1)-
Proof. 1. From Remark 2.5, M is exactly the monomial matrix Ag.
2. Let M = diag(ag,a1,--.,an—1)P, be a monomial matrix and o be the n—cycle of standard form

as in Remark 2.5. As P, and P,/ have same minimal polynomial f(z) = 2™ — 1, one can construct
a permutation p such that o = pop~! and P, = P 1P, P,. Therefore the multiplication by
diag(ag, a1, - ..,an—1) both sides leads to Az = Pp_lMPp. Hence by a similar argument as in the
proof Proposition 2.6, the result holds.

O

From the two propositions above, we deduce the following result.
Corollary 2.8. Let M = diag(ap, a1, ...,a,—1)P, be a monomial matriz, where o is an n—cycle, and C
n—1

is a linear code of length n over ¥ . Then C is invariant under M if and if Qp_lC is a Hai—constacyclic

i=0
code, where Q, = QF,, P, is the permutation matriz of p, as in Proposition 2.7, and Q) is the invertible
matriz as in (3).

Proof. Follows from Ay = Q;lMQp. O

We now present a result about codes invariant under a monomial matrix M =
diag(ag, a1, ...,an—1)Py, where o is an arbitrary permutation not necessarily an n—cycle. First, re-
call that any permutation ¢ € S, can be written as a product of r disjoint n;—cycles o; where
n=ny+ns+...+n,. We have

Proposition 2.9. Let M = diag(ag,a1,...,a,-1)P,, where 0 = o102...0, a product of r disjoint
n;—cycles o;, and let C' C Fq' be a linear code invariant under M. Then C' can be decomposed as

C=0190,0...0C,

where each C; is a linear code of length m; invariant under the monomial matriz M; =
diag(ai,, @iy, - - -, a4, )Py,, where the support of each o; is supp (0;) = {i1,42,...,in, }. Moreover, if each
o of is of standard f’orm, then C' can be decomposed as a direct sum of monomial codes C; with associated
vector (@i, , iy - - -, ai,, ) € F.

Proof. Follows from the fact that diag(M;, Ma, ..., M,) and M are similar matrices. O

Remark 2.10 (Codes invariant under a permutation). With the same notations as in the propositions
above, if a; =1 for alli =0,...,n—1, then we obtain cyclic codes and their various generalizations such
as quasi-cyclic codes and generalized quasi-cyclic codes.

To use the polynomial ring in the study of monomial codes, let us consider ¢_, the F, —vector space

n—1
isomorphism between Fq and R, :=TF [z]/(z" — Hai>, defined by :
i=0
o F: — R,
n—2 i n—1 (4)
v = (g, V1y...,Un—1) — @_(v) = Z (Ui+1 Hak1> '+ (UOH‘%’l) "1
i=0 k=0 i=0
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Theorem 2.11. A linear code C C Fq is @ monomial code with associated vector a = (ag,a1,...,0n—1)
if and only if ¢_(C) is an ideal of R, . So, a monomial code is a constacyclic code after a monomial
permutation.

Proof. Suppose that C' is a monomial code and let ¢ = (cg,c1,...,¢,-1) € C. Then

n—1
zp_(c) :x<c1a51+(a0al)_1cQﬂc+ 4 Cne 1Ha Lpn= 2+60Ha;1x”_1>
i=0

:C1a0_1x+(a0a1) r? + .+ e 1Ha Lgn= 1+c0Hai_1x" (5)
n—2 N n—1

=co+ (clao ):c + ( —1 flcQ) 2+ .+ (cn_l Hai_1> anl ( mod z" — Hai>
=0 i=0

As the inverse of <p;1 is given by

n—2

—1 n—1y\ __

Y (cotcz+...4+¢c, ,x = | cn- 1Ha1, AyCy 5 AQG,Cq 5 ooy Cn_2Hai )
i=0

we obtain
n—1 n—2 n—2 n—3
—1 _ 1 —1 -1
P ( 905(6)) il Hai Hai 1 A Cos Ay €, Ay » Cna Haz Haz
1=0 =0 =0 1=0
(6)
= (C'nflanfl ’ aO CO7 a’O C1 LA ’Cn72a’n72)
=T (co,¢1,...,¢n-1) € C, since C is monomial.
And so,

zp(c) € ¢ (C).

By induction we show that for each polynomial f(z) € F, [z], f(z)e,(c) = ¢, (f(Az)(c)). Finally ¢_(C)
is an ideal of R_ . O

From the above theorem we deduce the following characterization of monomial codes.

Proposition 2.12. Let C' C IF: be a monomial code of length n over I, .

1. There is a monic polynomial of least degree g(x) € F_[x] such that g(x) divides f,(x ]__[aZ

and ¢ (C) = (g())-
2. The set {g(x),xg(z),...,x* Lg(z)} forms a basis of p_(C) and the dimension of C is k = n—deg(g).

3. A generator matriz G of C is given by:
v (g(@))

oo (zg(x))

o (2 - "g(=))

where k = n — deg(g) and g(z Z gzt
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n—1

Remark 2.13. Note that the irreducible factorization of f,_(x) = z™ — Hai over F_ permits to construct
i=0

all monomial codes C' C ]Fq with associated vector a = (ag, a1, ...,an-1).

Let us recall that Euclidean dual of a linear code C' C IFq is defined by
ct = {xGF: : {x,¢) =0, YceC }

Theorem 2.14. Let C' be a monomial code with associate vector a = (ao,al, cen,a
1

a monomial code with associate vector a=* = (ao_l, al_l, e 7(1:1) .

) . Then C+ is also

n—1

Proof. If C is a monomial code, then by Proposition 2.6, Q~'C is a A—constacyclic code. It follows
that (Q~1C)*+ = Q~1C+ is a A™!—constacyclic code, i.e.,

A)\leilCJ_ C Q*lcl_
As A -1 = Q_lATlQ, we have

Q'A_,QQlCct=Q'A_,ctcqQ i

It follows that A, C*+ C C* which means that C* is a monomial code with associate vector a~' =

-1 -1 —1
(7 art v ). 0

From the above proposition, we deduce easily the following result.

Corollary 2.15. Let M = diag(ag,a1,...,an—1)Py be a monomial matriz, with o an n—-cycle, and
C a linear code invariant under M. Then PfflCJ‘ is a monomial code with associate vector a=' =
(a;l, a:l, cee a;_ll) , where P, is the permutation matriz of p € S, as in Corollary 2.8.

Proof.  Follows from A__, = P,MP;". O

Example 2.16. Let a = (1,a,2,02,4) € F> = F§(«), where o is a root of f. (x) = 2 + 2z + 2. Let the
irreducible factorization of f_(r) =2° — (1 x a x 2 x a? x 4) = 2° — (2a + 1) be:

fo@)=2—Q2a+1)=(x+2a+1) - (2 +z+20+2) (22 + (a+ 1)z + 22 +2).

Hence, one can construct 22 —2 = 6 non trivial monomial codes of length 5 over F, with associated vector
a=(1,a,2,a2,4), with generator polynomials

g1 =+ 20+ 1,

g=2"+22"+ (a+2)z+a,

g3 =23+ (2a+2) 2% + azx + a,

ga =2 + (a+2) 23 + (2a + 2) 22 + 202 + 2,
gs=2>+(a+ 1)z +2a+2,

gs =22+ 2 +20+2

For example, the linear code C such that ¢(C) = (2® + 222+ (a + 2) x4+ @), is a [5,2, 4] —linear code with
a generator matrix

G- a+2 2a0+1 2 0 20+ 2
o a 2a0+2 1 200+ 2 0/’

which is an MDS' code, we can easily check that the Singleton bound is attained here.
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3. Monomial codes as invariant subspaces

Following [4, 12, 15| and [13], we can give a characterization of monomial codes by the theory of

invariant subspaces. As f_(x Hal is the minimal polynomial of T, its irreducible factorization

allows us to obtain the desired result. So let

fole) = [/ @) (®)

where f,(x) are irreducible polynomials. By the Cayley-Hamilton theorem [9, Theorem 4 p. 194], the
matrix A_ satisfies

f(A) =0

For i =1,...,7, let U, be the null space of each f;  (z), i.e.,
U, = ker <f:¥l (fLa)) = {U € F: s fY (A= 0} . 9)

For polycyclic codes, the following Lemma has been proved in [12, Theorem 3]. In our case of
monomial codes, we omit the proof and state that one can obtain the result by replacing the operator 7
by T}, in terms of [12].

i

Lemma 3.1 ([12], Theorem 3). The subspaces U, of F; satisfy the following conditions :

1LF, =U,eU,& --aU,.
2. U, is an tnvariant subspace of ]F: under T_

3. If W is an invariant subspace of]F under T and W, = WNU,, fori=1,...,r, then W, is also
invariant under T and W =W, & W O---oW.

4. ¢, (U,) is the ideal of R, generated by F(x), where F(x) = Jff(x) .

5. The dimension of U, is given by dimp_(U,) = deg (fal) = o, deg(f,).
6. If P(x) is a divisor of f_(x) in F [z], then ker(P(Ag)) is a direct sum of invariant subspaces of F:

7. If ged(n,p) = 1, then U, is a minimal invariant subspace of IF: under T_

i

8. Ifged(n,p) = 1 and P(x) is a divisor of f_(x) in F [z], then ker(P(Ag)) is a direct sum of minimal
invariant subspaces of Fq

From the above Lemma and Proposition 2.12 we have the following characterization of the monomial
codes.

Theorem 3.2. Let C be a monomial code of length n over F_ generated by g(x ka , 0<k; <a

and h(x) € F_[z] such that f (x) = h(x)g(x). Then

1. ¢ (C) = ¢y (ker(h(T)))

181
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2. C =ker(h(T},)) and dimp,_(C) = rank (h(T;)) = deg(g).

3.C=C0C,d---@C, where C, is the monomial code generated by
g,(z) = lem (g(:v)7 f (gc)> = fkl (2)f7 (x), for alli=1,...,r.
4. If ged(n,p) =1, then C = C, & Cy @ --- ® O, where C; is a minimal monomial code.

n—1
Proof. 1. Let c(z) = Zcixi € ¢, (C). Since ¢_(C) = (g(x)), there is a(z) € F_[z] such that c(z) =
a(z)g(x). It follows tfgg
h@)c(z) = h(z)a(z)g(z) = 0 mod £, (z).

So
deg(h) ' deg(h) . deg(h) .
ha)e(x) = > hatel) = Y b, (Ti0) = o, ( hiTa'(c)) — ¢, (W(T,) (¢)
=0 =0 =0

Hence, h(T,)(c) = 0, which means that ¢ € ker(h(T},)) and ¢_(C) C ¢_(ker(h(T}))).

a

Conversely, let a(x) € ¢, (ker(h(T,))). There exist q(x),r(x) € F_[z] such that

a(z) = q(x)g(x) + r(x) where deg(r(z)) < deg(g())-

Then h(z)r(z) =0 mod f_(x).
Assume that r(x) # 0. Let K(z) € F_[z] such that h(x)r(z) = K(x)f,(x). Since f,(x) is monic,

deg(h(z)r(z)) = deg (K(z) [, (x)) = deg(K(x)) + deg(f,(z)) = n.
Otherwise, as h(x) is monic we have
deg(h(x)r(z)) = deg(h) + deg(r(x)) <n
Contradiction. Hence r(x)) = 0 and a(z) € ¢_(C).
2. The result follows from the statement above.

3. Let C, =CnNU,, foralli=1,...,r. The monomial code C, is generated by

g.() =lem (g(2), /7 (@) = /1" (@) ()
By the statement 3 of Lemma 3.1, we have that C =C, & C, & --- & C..

4. Follows immediately from the statement above.

4. Quasi-monomial codes

Definition 4.1 (Quasi-monomial code). Let n = ml and a = (a,,q,,...,a,,_,) € IE‘: A linear code

CcC IE‘: is called {—quasi-monomial of index { over F_, if and only if for each codeword

[ c

Sy 1 m—1
c= C0,00€C0,19+++9C00—-19C1,00C119- -9 C1 1y 9 Cm_100Cm—1,17 1 Crn10-1 € Ca

£ is the smallest integer such that c, = (a c apCys .-, G, ,C ) eC.

m—1"m-—1) m—2-"m-—2
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Remark 4.2. Observe that each {—quasi-monomial code C' of length n = mt, over F_ can be viewed as
a monomial code of length m over F .

Let a = (ao, ay,... ,amfl) € IB‘:L, and define the /—quasi-monomial shift v_ by:
P F — F.
v =(V0,V1,.-,Un_1) — P_(v) = Az(vo,v1,..., 1)
where
0 0 Aam71
A, O 0
Az = ) (10)
: 0
0 0
dm—2 mexml
¢ times
and each A, = diag(a;,...,a;), is the £ x £ square matrix with a; on the position (j, j) and 0 elsewhere.

Proposition 4.3. A linear code C C F: is an {—quasi-monomial code of length n = ml if and only if it
1s invariant under \_.

m—1
Let I be the principal ideal of IF_[z] generated by f (z) = 2™ — H a;. As f_(x) is the minimal
i=0
polynomial of ¢_, IE.IFM = {0}, the operator ¢_ equips qu with an R —module structure where the
multiplication is given by:

me me
R xF — F
q,m q q

(11)
(P,v) +— Puv:= P )(v).

Let us define the following R_, —module isomorphism ¢, by:

(PR F;”Z — f,'m.
(12)
(CorCrsnnry) — (G(2),6,(2), ... ¢, (2))

where for 0 < k < /-1,

m—2 i m—1

C (@) = 0, (Co s Crpr s Cri ) = Z (CHM Hak1> z' + (Co,k H ai1> "L

i=0 k=0 i=0
Thus we deduce the following result.
Theorem 4.4. A linear code C C IE‘Q”Z, is an L— QM code with associated vector a = (ag,a1,...,0m—1)

if and only if ¢, ,(C) is an R, —submodule of Rﬁ)m.

Definition 4.5 (r—generator quasi-monomial code). An {—QM code C' C IF:IK is called a r—generator
(—=QM code if o, ,(C) is generated by r elements as an R, —submodule of Rf,w i.e., there exist
a1 (x),az(x),...,ar(z) in Rf.m such that

0., (C)=R, a(r)+ R, a(z)+...+ R, a(r).

q,m

183
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184

We close this section by the following characterization of an r-generator quasi-monomial code.

Proposition 4.6. Let C C Fq' be an r-generator right quasi-monomial code generated by
(@), (@), ... ay(2) where a,(x)'= (a,,(2).a,,(2),....q,,_,(2)) for 1 < i < r. Then, there exist

bij(x), 1<j<r 0<j<{l—1, such that a, ;(x) = b; j(x)gj(x) where g; j(x) divides f_(x).

a
Proof. As C'is an r-generator quasi-monomial code, we have

¢a.(C) = R, a1(x) + R, as(2) +... + R, a-(z)

q,m

for some a, (z) = (a,,(z),a,,(z),...,a,, ,(x)) €R] ,1<i<r. Aseach R  ai(z), i=1,...,s isa
1-generator quasi-monomial code, then

R, ai(x)=R,  aiox)®R,  a1(z)®...OR,, air1(v),

q,m %

where R, a;j(x), j =0,...,{—11s a monomial code of length m. Let g; ; () be its generator polynomial.
Then there exists b; j(z) € R, ,, such that a; ;(z) = b; ;g; (). O

q,m

An important class of quasi-monomial codes is the 1-generator quasi-monomial codes, as we can
define the generator polynomial, the parity check polynomial, and then compute the dimension of each
1-generator quasi-monomial code. Let us recall that C' is a 1—generator /—QM code if it is generated by
one element a(x) = (ag(z), a1, ..., ar-1(z)) € R, (i)

0., (C)=R,, -a(x)=R,  (ao(x),a1(x),...,a-1(z)) C Rf,m'

Definition 4.7. Let C be a I-generator quasi-monomial code generated by a(x) =
(a1(z),as(x),...,ar(x)). The polynomial

1. g(x) = ged(a(z), f.(x)) is called the generator polynomial (g.p.) of C.

2. h(z) = is called the parity check polynomial (p.c.p.) of C.

From Proposition 2.12, we easily deduce the following characterisation of 1-generator quasi-monomial
codes.

Proposition 4.8. Let C be a 1-generator quasi-monomial code generated by a(x)
(ap(x),a1(x),...,ap—1(x)) € Ri,m with g(x), h(x) as g.p and p.c.p. respectively, g;(x)
ged(ai(w), fi(w)), i=0,..., 0~ 1, and g(x) = (9o(x), 91 (), . ge—1(x)). Then,

1. C has a generator of the form
(po(z)go(2), p1(2)g1(2), - - ., Pe—1(z)ge—1(2))
where ged(p;, h) = 1.
2. g(x) = ged(g1(x), g2(x), - . ., gr(2)) and h(x) =lem {h;(x) : 1 <i<r}.
8. dimg_(C) = deg(h(z)), and
S={(z'q(2),2°g2(2),...,2°g-(x)) : 0<i<deg(h(z))—1}

forms a basis of C.
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4. a generator matriz of C is given by

9(x) go(x) g1(2) ol ge—i(x)
2g(2) z0(@) | wgr(e) |...| wge1()
= . = . . . . (13)
Ikilg(l‘) xkilgo(m) $k7191 (ZC) wkilgeﬂ(m)
where k = deg(h(z)).
m—1
Assume that ged(m, ¢) = 1 and let the irreducible factorization of fz = 2™ — H a; be
i=0
m—1
(@) =a™ = [ ai = A@) fo(2) .. fol2)
i=0
By the Chinese Remainder Theorem (CRT) we have the following ring isomorphism:
R, = DFlal/ {fi()
i=1
n—1
Let 3 be a primitive m * root of unity and g™ = Hai. Then the roots of fg are B¢%, i =0,...,m — 1.
i=0

As each fi(z),i =0,...,n — 1 is irreducible, E, := F,(8£") is a field, where u; is the smallest integer
such that 8&"¢ is a root of f;(z). Hence Rf,m can be decomposed as follows

R ~E'oEe.. oE.

q,m

So, each {—QM code ¢_ ,(C) can be viewed as an (E; @ - - - & E,)-submodule of E{ & - - - ® E£ and can be
decomposed as

6l(C) = Cro 8 C, (1)

where each C} is a linear code of length ¢ over E,, and called a constituent of C.

As in [8] one can establish that each C;, 1 < i < s is of the form

Ci := Spang {(co ("), .-, -1 (£"))}

for each c(z) = (¢o(x),...,c-1(2)) € ¢, ,(C).

Example 4.9. In this ezample we are interested in 3— QM codes of length 15 over F,, with associated
vector a = (1,a,2,02,4) € IE‘S As in Example 2.16, let

f@)=2"—QRa+1)=(x+2a+1) - (2 +x+20+2) (22 + (a+ 1)z + 22 +2).

Consider the linear code C C F® such that ¢, ,(C) = R, ,a(x) = R, ,(a1(z), az(x), a3), where

9,6 —

ar* + e+ 1D 2?2+ (a+2)x+a+1

ax(z)
az(z) = a+2)2* + (a+2) 23 + 2a+ 1) 2% + 2ax + a + 1
az(z) = 2a+ 1) 2% + az? + 22 + 2
This is a 1—generator 3— QM code with generator g(x) = ged(aq (), az(x), ag(x), f-(z)) = x+2a+1, and
parity check polynomial h(z) = %(Ef)) =2+ (a+2)23 + (2a+2)2? + 20z +2. It follows that dimp, (C) = 4.
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Let b(x) = (by(z),ba(x),bs3(x)) € R2_, with

9,57

by (x) S+ (a+2)22 +2a+2
ba(x) 24 (a+ 1)z +20+2
bs(z) = a+ 1) a®+ (a+2)2> + (a+ 1)z +2

xT
€T

Then the linear code C' C Fi5 such that @Q(C/) = R, a(z) + R, ,b(z), is a 2—generator 3—QM code of
dimension

dimg, (C") = dimg, (R, ,a(z)) + dimg, (R, b(z)) — dimz, (R, a(z) "R, bx)) =4+3-0=7

5. Additive structure of monomial codes

Let us start this section with the definitions of additive code and additive monomial code.

Definition 5.1. Let C C IFZZ be a subset of ]F;nli, where £ is a positive integer. Then C is called an
additive code of length m over F e if C is an F_—subspace of IFZ}.

Definition 5.2. An additive code C C IFZ; is called an additive monomial code with associ-
ated vector a = (ao,al,...,am_l) if for each codeword ¢ = (co,c¢1,...,¢m-1) € C, we have ¢ =
(am_lcm_1 Qo Cos vy am_gcm_,z) s again a codeword.

Remark 5.3. As in Remark 4.2 we observe that each additive monomial code C of length m, over

Fye can be viewed as a monomial code of length m over Fg..

Let \ € ]F:, a subset C' C IF:;, is called an additive A—constacyclic code of length m over F. if for

’
each ¢ = (¢,,¢,,...,¢,_,) € C we have ¢ = (A¢m—1,C0,...,Cm—2) € C.

Proposition 5.4. A linear code C C IE‘Z,Z 18 a monomial code with associated vector a =

n—1
(ap, a1y, Gp_1) € IE‘: if and only if Q~'C is a A\—-constacyclic code where \ = Hai, and @Q is the
i=0
n X n matric as in (3).
Proof. The proof is similar to the proof of Proposition 2.6. O
The following map ¢ is an R_, —module isomorphism  between IFZ; and
m—1
Ryeom :=TFyfx]/(z™ — H a;).
i=0
p: F — Ryem
m—2 i m—1 (15)
v =(V0, V15, Um-1) — @)= Z (viﬂ Hak1> z' + (vo H %‘1) g™t
i=0 k=0 i=0

Theorem 5.5. An additive code C C IFZZ is a monomial code with associated vector a =

(ag,a,,...,a,_,) if and only if o(C) is an R, —submodule of Rye.m.

Proof. Similar to the proof of Theorem 2.11. O
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n

Let B = {eo,...,e¢_1} be a basis of the extension F . /F,. Let us define the following R —module
isomorphism between Rf,m and R e.m, by:

Pp Ré — R_ "
a4, @qt
-1 (16)
o(z) = (& (), ¢, (x),...,E,, (2)) — Pp(c(x)) =Y ¢ (2)e:.
i=0
m—2 A ) m—1
where ¢, (x) = Z (ciﬂy,cHakl) '+ (Co,k H %1) 2" for k=0,..,0—1.
i=0 k=0 i=0
Thus ®p gives a correspondence between f—quasi-monomial codes of length n = mf over FF_,
and monomial codes of length m over F, ( additive monomial codes with associated vector a =
(ag,a1,...,am—1)). The proof of the following result is omitted, as it is similar to the case of quasi-

cyclic codes.

Proposition 5.6. A linear code C' C IE‘:IZ is an {—quasi-monomial code with associated a =
(ao,a1,...,am—1), if and only if p(C) is an additive monomial code of length m over I ..

Now, we ask when the image ®5(C') is a monomial code (not just additive monomial ) of length m
over .. To answer this question, let us consider for each 0 <i,j < —1,

-1
€;jej = E )\Z’Jek S qu,
k=0

and define the £ x ¢ matrices M;,0 <i < /¢ —1 by
DYDY D Y
e (17)
N N
Following [7], we can prove the following result for /—QM codes.

Theorem 5.7. Let C be a {—quasi-monomial code of length n = mt, and let ¢_ ,(C) = C1HCo@--- & C;
be its constituent decomposition as in (14). Then,

@5(C) is Fye—linear <= ¢, ,(C) is invariant under the matrices M;, 0 <i </ — 1.
<« C; CE! i=1,...,s is invariant under the matrices M;, 0 <i < {— 1.

Proof. Let ¢ = (co,c1, -+ ,cm—1) € C, and ¢(x) := (¢,(x),¢, (x),...,¢,_,(x)) € ¢, ,(C). Then

3=0

-1
= ZEj(x)eiej.

5=0

-1 -1
Sy e

5=0 k=0

ie—1

= co(x) ()\6’060 +oeee >\28166—1> + () ()‘6’47160 +o AL 6571)
- ()\6’050(3:) +o )\é’g_lEg,l(x)) o+ + (A;;;Ola)(x) ot Aé’f]lEg,l(x)) ee_1
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Op(C) is Fye-linear <= Vi=0,...,0 -1, e;®p(c(r)) € 2p(C)
= Vi=0,... -1, YV0<j<l—1, ()\;’OEO(JU), . ,)\;’e_lgg_l(x)) €.,(C)
— Vi=0,....0 -1, M; c(z)t € ¢_,(O)
This means that ¢_(C) is invariant under multiplication by the matrix M;, 0 <7 < ¢ —1. O
Remark 5.8. Suppose that B = {l,a,cﬂ,...,ahl} is a basis of the extension Fp = F (o), and

falx) =2+ oy 1271+, 4ag € I, [z] be the minimal polynomial of c, then following assertions hold.

1. The matriz My in the above theorem is the identity matriz, and each M; is the matriz corresponding
to the multiplication by o', fori=1,... 0 —1.

2. The matriz My is the companion matriz Cy, of the polynomial fo(x).

From the above remark, we deduce the following characterization of the F ¢ —linearity of ®p(C).

Corollary 5.9. Let C be an {—QM code of length n = mt, and let ¢_ ,(C) = C1®Ca @ --- B C; be its
constituent decomposition as in (14). Then the following statements are equivalent.

1. @p(C) is Fe—linear
2. ¢, ,(C) is invariant under the matriz My = Cfy, .

3. FEach C; C Ef7 i=1,...,s is invariant under the matriz Cy, .

4. C; C EY is a right polycyclic code of length £ over E; with associated vector r =
(—ag, —a,...,—ap_1) € EL

5. There is a monic dwisor g(x) of fo(x) such that C; = {(g(x)) is an ideal of E,[x]/{fa(x)) and
dimg, = deg(g(z)).

Assume that ged(m, ¢) = 1 and let ¢; = [E; : F,] be the degree of the extension E;/F,, b; = ged (4, ¢;),

14
and d; = e According to [11, Theorem 3.46], the irreducible factorization of f,(x) over each E; is
i

fa(@) = fin(2) fi2() - fip (@),
where each f; j(z) € Ei[z],j =1...,b;, is of degree d;.

As in section 3, let for i = 1,...,s, j =1,...,b; the null space U, ; of each f; j(x)(C},), where Cf,
is the companion matrix of f, which is viewed as an ¢ x ¢ matrix in My (E;), given by

Ui ; = ker (fJ (Cfa)) = {v € Ef © fij (Cp)v=0, j= O,...7bi}. (18)

Then we have

oE=U;s ®@Uis® - @ Usp,,
o Each U j, j =1,...,b; is a minimal invariant subspace of Ef under Cy,, .

o If W; is an invariant subspace of Ef under Cy, and W; ; = W; NU;;, for j =1,...,b;, then W, ; is
also invariant under C¢, and W; = W; 1 @ W; 2@ - - @ Wy,

o dimg, (Us ;) = deg(f, ;(x)). Hence we deduce the following result on the I, —linearity of ®5(C)
when ged(m, q) = 1.
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Theorem 5.10. Let C be an {—QM code of length n = mt over F_ such that ®p(C) is F—linear, and
0., (O)=Ci®Co®- ®Cs CE{ ®ES @ -+  EL,

be the (constituent) decomposition of C. Then,

1. if ged(€,t;) = 1, then C; is either {0} or the full space E.

2. otherwise, dimg, (C;) = k;d; for some 0 < k; < b;.
Proof. If ®5(C) is F,c—linear, then each C; C E! is invariant under Cy, . It follows that
C;=C; N ]Ef =Ci1®Ci2&---&Cip,, whereeach C;; :=C;NU;; asin (18).

1. If ged(£,t;) = 1, then f,(x) is irreducible in E,[x], and so there is no trivial subspace of Ef which
is invariant under Cy, . Thus C; is either {0} or the full space E!.

2. Otherwise, since each U; ; is a minimal invariant subspace, then as in Corollary 5.9 we see that

0 if Cl N Ul‘,j = {0}

dime, (Ci;) = dime, (Ci N Vi) = {deg(f ) =d; if C;NU;,; # {0}
1,7) — Wi 4 2,3

b;
It follows that dimg, (C;) = Z dimg, (C; ;) = k;d; for some 0 < k; < b;.
j=1

O

Corollary 5.11. Let C be a 1—generator {— QM code generated by a(x) = (ap(x),a1(x),...,ar—1(x)) €
Rf,m’ and g(x) be its generator polynomial. If ®p(C) is Fye—linear then for each i =1,...,s such that
ged(4,t;) = 1, the corresponding constituent C; = {0}. This is equivalent to saying that the irreducible
factor fi(x) of f.(x) corresponding to E, := F(8™) must divide g(x).

Example 5.12. In this example, we are interested in 4— QM codes of length 20 over F, with associated
vector a = (2,1,1,2,2) € ]Fg Let o be a primitive element of Faa with minimal polynomial Cy, (z) =
2+ 223+ 22 +22+1=0. Hence B = {1, o, o, a?’} is a basis of the extension Fsa /Fs. Let the irreducible
factorization of fz(z) be

fo(x)=2°-2 =(x+1) (z* +223 + 22 + 22 + 1)
= fi(@) fo(z).

Then E, :=TF, [z]/(fi(z)) = F, and E, := F_[z]/{fo(x)) = Fza. Let C be the 4—QM code generated by
a(x) = (a1(x), az(x), a3(x), as(x)) € R§,5, where

ai(z) = 2® + 22

as(z) = 223 + 222

az(z) = 2* + 22 + 2 + 2
as(z) = 2% +1

It follows that the constituent components of C' are

C1 = Spang (a1(—1),a2(=1), as(-1),as(-1)) = {0} < {0}.
C3 = Spang, {(a1(a),as(@), az(a),as(a))} = Spang,_ {(1, 2, 20% 4+ 202 + 20, 202 + @)} CEL

189
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As ged(4,3) = 1, the polynomials fi and fo are irreducible over B, and E, respectively. Recall that the
companion matriz of Cy, (x) is

@

(el enil N e
o= OO
= O oo
=N = DN

It follows that
C. Cy = szm]E2 {(2043 +2,208 +a?+ 1, + 2% +2, a® + 202 + 2a + 2)} C(Cy

which means that C = C; ® Cy C E‘f &) E% has an F3a—linear image with respect to the basis B.

6. Asymptotics

In this, we are interested in the performance of {—QM codes. First recall that if (F),)nen is a family
of codes of parameters [n, k,, d,], the rate r and relative distance § of (F),),cy are defined as

k d
r= lim sup — and § = lim inf —.
n— 00 n n—00 n

A family (F,)nen is said to be asymptotically good if 7§ > 0.

Proposition 6.1. Let C C be an £—QM code of length n = mt, and let d(C) be its Hamming distance.
Then

A(@5(C))

d(C) = =

Proof. Let c(z) = (co(x),c1(x)...,¢—1(x)) be a non zero element of ¢_,(C), then

-1 -1 [m—1 _ m—1 /0—1 _
¢ (z) =Ppc(z))e; = Za(x)ei = Z ZEM%] e = Z (ZEM@%) 2 e dp(C).
i=0 i=0 \ j=0 =0 \i=0
-1
Observe that c;» = Z'Emei = 0 implies that ¢; ; =0 for all  =0,...,¢ — 1, since B is a basis. Thus
i=0
-1
Zw (¢ij) <lw(c;), j=0,...,m—1
i=0
It follows that
£—1m—1 m—1
w(c(z)) = w (@) <Y wle) =w(c (x))
i=0 j=0 i=0
Finally,
d(®p(C
(0 = 1®2(C)
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In [1] the authors proved that t—CIS QPC codes ( particular subclass of quasi-polycyclic codes) are
asymptotically good. Simillarly, in [14] M. Shi and others showed that {—QT codes are asymptotically
good. Following these two works, we prove that /—QM codes and additive monomial codes are also
asymptotically good. First recall that the g-ary entropy function is defined for 0 < y < % by,

Hy(y) = ylog,(q¢ — 1) —ylog,(y) — (1 —y)log, (1 —y).

We invite the reader to see [2, Chapter 2] for more details on the entropy function. Adapting the proof
[1, Theorem 5.4] in the case t-CIS QP codes, we obtain the following result on /—QM codes.

Proposition 6.2 ( Similar to [1], Theorem 5.4). For any fized integer £ > 1, there are infinite families
of £—QM codes length n = m/, rate % and of relative distance d, such that

Hy0) >

Proof. As each A—constacyclic code of length m is a monomial code with associated vector a =
(1,...,1,A) € F", the result it is obtained by [1, Theorem 5.4]. O

Proposition 6.3 ([14]). For any prime power q there are infinite families of additive monomial codes of
length m — oo over Fye of rate % and relative distance

1.
5> 71 Y1 -1/0)

Proof. By [14, Theorem 3.4] and Proposition 6.1. O

7. Conclusion

In this paper, we studied the structure of codes invariant under a monomial matrix M =
diag(ag, a1, ...,an—1)P, where o is a permutation and P, is its associated permutation matrix, par-
ticularly the structure of monomial codes introduced in [4], where we view them as the ideals in the
polynomial ring R_,, and we derive their polynomial characterization as in the case of cyclic codes.
Secondly, we studied the algebraic and additive structure of {—quasi-monomial codes, where we prove
a one-to-one correspondence between them and R, ;—submodules of be’q. We characterize those codes
that have IF ¢ —linear images with respect to a basis of F,¢ /IF_, based on the CRT decomposition. Finally,
we proved that quasi-monomial codes are asymptotically good. An important problem here is to study
the structure of monomial codes as hyperinvariant subspaces, introduced in [6] for cyclic codes, and also
to investigate their c—LCD structure as in [3].

Acknowledgment: The authors would like to thank the reviewers for their comments and sugges-
tions that allowed us to correct several errors and improve the readability and quality of the article.
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