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Abstract: In this paper, we are interested in monomial codes with associated vector a = (a0, a1, . . . , an−1),
introduced in [4], and more generally in linear codes invariant under a monomial matrix M =
diag(a0, a1, . . . , an−1)Pσ where σ is a permutation and Pσ its associated permutation matrix. We
discuss some connections between monomial codes and codes invariant under an arbitrary monomial
matrix M . Next, we identify monomial codes with associated vector a = (a0, a2, . . . , an−1) by the
ideals of the polynomial ring Rq,n := Fq [x]

/
〈xn −

∏n−1
i=0 ai〉, via a special isomorphism ϕa which

preserves the Hamming weight and differs from the classical isomorphism used in the case of cyclic
codes and their generalizations. This correspondence leads to some basic characterizations of mono-
mial codes such as generator polynomials, parity check polynomials, and others. Next, we focus on
the structure of `−quasi-monomial ( `−QM) codes of length n = m`, where on the one hand, we
characterize them by the Rq,m−submodules of R`

q,m
. On the other hand, `−QM codes are seen as

additive monomial codes over the extension Fq`/Fq . So, as in the case of quasi-cyclic codes [8], we
characterize those codes that have Fq`−linear images with respect to a basis of the extension Fq`/Fq ,
based on the CRT decomposition. Finally, we show that `−QM codes and additive monomial codes
are asymptotically good.
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1. Introduction

Due to their rich algebraic structures and the convenience of their implementation in practice,
cyclic codes and their generalizations are among the most studied families of linear codes in coding
theory. The strong point of cyclic codes and their generalizations is the concept of cyclicity, which
permits the use of the polynomial ring in their studies. For more details, we refer the reader to [10,
Chapter 4 and 5], and the vast literature on this topic. In [4], the notion of a monomial code with
associated vector a = (a0, a2, . . . , an−1) was introduced as a linear code in which the monomial shift
(an−1cn−1, a0c0, . . . , an−2cn−2) of any codeword c = (c0, c1, . . . , cn−1) is again a codeword of C. Hence,
they are invariant under the right multiplication under a special monomial matrix Aa (will be de-
fined later). Monomial codes form a generalization of λ−constacyclic codes a = (1, . . . , 1, λ), cyclic (
and negacyclic ) codes a = (1, . . . , 1,±1). In that paper the authors investigated the algebraic struc-
ture of monomial codes, based on the theory of invariant subspaces and the irreducible factorization of

f
a
(x) = xn −

n−1∏
i=0

ai, the minimal polynomial of Aa.

In this paper, we continue the study of monomial codes, in general, the study of codes invariant under
a monomial matrix M = diag(a0, a1, . . . , an−1)Pσ where σ is a permutation and Pσ its associated permu-
tation matrix. We find that monomial codes are invariant under Aa = diag(a0, a1, . . . , an−1)Pσ, where
σ is an n−cycle of "standard form" (Remark 2.5), and we discuss some connections between monomial
codes and codes invariant under an arbitrary monomial matrix. Next, we identify monomial codes with

associated vector a = (a0, a2, . . . , an−1) by the ideals of the polynomial ring R
q,n

:= F
q
[x]
/
〈xn −

n−1∏
i=0

ai〉,

via an F
q
−vector space isomorphism ϕ

a
which preserves the Hamming weight and it is different from

the classical isomorphism used in the case of cyclic codes and their generalizations. This correspondence
leads to some basic characterizations of these codes such as generator and parity check polynomials among
others. We are also interested in the algebraic structure of `−quasi-monomial codes of length n = `m
with associated vector a = (a0, a1, . . . , am−1), which are identified by the R

q,m
−submodules of R`

q,m
. In

[8] the additive structure of `−quasi-cyclic codes has been investigated, where the authors characterize
the Fq`−linear images of `−QC codes with respect to a basis of the extension Fq`/Fq , and show that such
codes must be invariant under certain matrices related to the basis of the extension Fq`/Fq. Moreover,
when the basis of the extension Fq`/Fq is normal the characterization is particularly simple. Following
that paper, we gave a similar characterization for `−QM codes. Finally, we are interested in the asymp-
totic performance of QM codes, where we follow [1] and [14] to show that `−QM codes and additive
monomial codes are asymptotically good.

This paper is organized as follows. We give the necessary background on monomial codes and linear
codes invariant under a monomial matrix in section 2. The algebraic structure of `−quasi-monomial codes
and their polynomials characterizations are in section 3. Section 4 is devoted to investigating the additive
structure of quasi-monomial codes and a characterization of their Fq`−linear images with respect to a
basis of the extension Fq`/Fq . Finally, in section 5, we study the asymptotic performance of QM codes
and additive monomial codes.

2. Codes invariant under a monomial matrix

Let us start with the following definition of a monomial code.

Definition 2.1 ( Definition 3.1 [4]). A linear code C ⊆ Fn
q
is called monomial code with associated

vector a =
(
a

0
, a

1
, . . . , a

n−1

)
∈ F∗n

q
if for each codeword c = (c0, c1, . . . , cn−1) ∈ C, we have c

′
=(

a
n−1

c
n−1

, a
0
c
0
, . . . , a

n−2
c
n−2

)
is also a codeword.

Remark 2.2. From the above definition we observe that monomial codes are invariant under the operator
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T
a
, called the monomial shift induced by a =

(
a

0
, a

1
, . . . , a

n−1

)
, defined by:

T
a

(
v
0
, v

1
, . . . , v

n−1

)
=
(
a
n−1

v
n−1

, a
0
v
0
, . . . , a

n−2
v
n−2

)
. (1)

We recall now the definition of a monomial matrix.

Definition 2.3 ([5]). 1. An n× n matrix M = (Mij)1≤i,j≤n is called a monomial if it is a regular
matrix and has in each row and each column exactly one non-zero component.

2. An n × n matrix P = (Pij)1≤i,j≤n called a permutation matrix if there is a permutation
σ ∈ Sn such that P is obtained by permuting the columns of the identity matrix In i.e., Pij ={

1 if i = σ(j)

0 if i 6= σ(j)
, for any 1 ≤ i, j ≤ n and we write P = Pσ.

3. A permutation matrix Pσ is a monomial matrix with all non-zero components equal to 1.

Lemma 2.4 ([5], Lemma 2). If M is a monomial matrix of order n with non-zero components
a0, a1, . . . , an−1 ∈ F∗

q
, then there is a permutation σ ∈ Sn such that M = diag(a0, a1, . . . , an−1)Pigma

Remark 2.5. Observe that monomial codes are invariant under the action of the following monomial
matrix

Aa = diag(a0, a1, . . . , an−1)Pσ =



0 0 . . . 0 an−1

a0 0 . . . 0 0

0 a1
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 an−2 0

 (2)

with σ is the n−cycle defined by σ(1, 2, . . . , n) = (n, 1, . . . , n−1). We refer to this n−cycle as a standard
n−cycle or as an n−cycle of standard form.

Let λ =

n−1∏
i=0

ai. It is shown in [4] that there is an invertible matrix Q such that A
λ

= Q−1A
a
Q, where

Aλ =



0 0 . . . 0

n−1∏
i=0

ai

1 0 . . . 0 0
... 1

. . .
...

...
... . . .

. . . 0
...

0 0 . . . 1 0


, Q =



0 0 . . . 0

n−1∏
i=0

ai

a0 0 . . . 0 0
... a0a1

. . .
...

...
... . . .

. . . 0
...

0 0 . . .

n−2∏
i=0

ai 0


(3)

Proposition 2.6. A linear code C ⊆ Fn
q
is a monomial code with associated vector a = (a0, a1, ..., an−1)

if and only if Q−1C is a λ−constacyclic code, where λ =

n−1∏
i=0

ai.

Proof. If C is monomial then T
a
(C) = A

a
C ⊆ C. As Aλ = Q−1A

a
Q, we have

AλQ
−1C = Q−1A

a
QQ−1C = Q−1A

a
C ⊆ Q−1C.

It follows that Q−1C is a λ−constacyclic code.

In the following proposition we present a result about codes invariant under a monomial matrix
M = diag(a0, a1, . . . , an−1)Pσ, where σ is an n−cycle.
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Proposition 2.7. Let M = diag(a0, a1, . . . , an−1)Pσ, where σ is an n−cycle and C ⊆ Fn
q
be a linear

code invariant under M. Then

1. if σ is of standard form, then C is a monomial code with associated vector a = (a0, a1, . . . , an−1).

2. if σ is not of standard form, then there is a permutation ρ ∈ Sn, and an invertible matrix Qρ = PρQ,
such that Q−1ρ C is a monomial code with associated vector a = (a0, a1, . . . , an−1).

Proof. 1. From Remark 2.5, M is exactly the monomial matrix Aa.

2. Let M = diag(a0, a1, . . . , an−1)Pσ be a monomial matrix and σ
′
be the n−cycle of standard form

as in Remark 2.5. As Pσ and Pσ′ have same minimal polynomial f(x) = xn − 1, one can construct
a permutation ρ such that σ

′
= ρσρ−1 and Pσ′ = P−1ρ PσPρ. Therefore the multiplication by

diag(a0, a1, . . . , an−1) both sides leads to Aa = P−1ρ MPρ. Hence by a similar argument as in the
proof Proposition 2.6, the result holds.

From the two propositions above, we deduce the following result.

Corollary 2.8. Let M = diag(a0, a1, . . . , an−1)Pσ be a monomial matrix, where σ is an n−cycle, and C

is a linear code of length n over F
q
. Then C is invariant under M if and if Q−1ρ C is a

n−1∏
i=0

ai−constacyclic

code, where Qρ = QPρ, Pρ is the permutation matrix of ρ, as in Proposition 2.7, and Q is the invertible
matrix as in (3).

Proof. Follows from Aλ = Q−1ρ MQρ.

We now present a result about codes invariant under a monomial matrix M =
diag(a0, a1, . . . , an−1)Pσ, where σ is an arbitrary permutation not necessarily an n−cycle. First, re-
call that any permutation σ ∈ Sn can be written as a product of r disjoint ni−cycles σi where
n = n1 + n2 + . . .+ nr. We have

Proposition 2.9. Let M = diag(a0, a1, . . . , an−1)Pσ, where σ = σ1σ2 . . . σr a product of r disjoint
ni−cycles σi, and let C ⊆ Fn

q
be a linear code invariant under M. Then C can be decomposed as

C = C1 ⊕ C2 ⊕ . . .⊕ Cr
where each Ci is a linear code of length ni invariant under the monomial matrix Mi =
diag(ai1 , ai2 , . . . , aini )Pσi , where the support of each σi is supp (σi) = {i1, i2, . . . , ini}. Moreover, if each
σi of is of standard form, then C can be decomposed as a direct sum of monomial codes Ci with associated
vector (ai1 , ai2 , . . . , aini ) ∈ Fni

q
.

Proof. Follows from the fact that diag(M1,M2, . . . ,Mr) and M are similar matrices.

Remark 2.10 (Codes invariant under a permutation). With the same notations as in the propositions
above, if ai = 1 for all i = 0, . . . , n− 1, then we obtain cyclic codes and their various generalizations such
as quasi-cyclic codes and generalized quasi-cyclic codes.

To use the polynomial ring in the study of monomial codes, let us consider ϕa , the Fq−vector space

isomorphism between Fn
q
and R

q,n
:= F

q
[x]/〈xn −

n−1∏
i=0

ai〉, defined by :

ϕ
a

: Fn
q

−→ R
q,n

v = (v0, v1, . . . , vn−1) 7−→ ϕ
a
(v) =

n−2∑
i=0

(
vi+1

i∏
k=0

a−1k

)
xi +

(
v0

n−1∏
i=0

a−1i

)
xn−1

(4)
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Theorem 2.11. A linear code C ⊆ Fn
q
is a monomial code with associated vector a = (a0, a1, . . . , an−1)

if and only if ϕ
a
(C) is an ideal of R

q,n
. So, a monomial code is a constacyclic code after a monomial

permutation.

Proof. Suppose that C is a monomial code and let c = (c0, c1, . . . , cn−1) ∈ C. Then

xϕa(c) = x

(
c1a
−1
0 + (a0a1)−1c2x+ . . .+ cn−1

n−2∏
i=0

a−1i xn−2 + c0

n−1∏
i=0

a−1i xn−1

)

= c1a
−1
0 x+ (a

0
a

1
)−1c2x

2 + . . .+ cn−1

n−2∏
i=0

a−1i xn−1 + c0

n−1∏
i=0

a−1i xn

= c0 +
(
c1a
−1
0

)
x+

(
a−1

0
a−1

1
c2
)
x2 + . . .+

(
cn−1

n−2∏
i=0

a−1i

)
xn−1

(
mod xn −

n−1∏
i=0

ai

) (5)

As the inverse of ϕ−1
a

is given by

ϕ−1
a

(c0 + c1x+ . . .+ cn−1x
n−1) =

(
cn−1

n−1∏
i=0

ai , a0c0 , a0a1c1 , . . . , cn−2

n−2∏
i=0

ai

)
,

we obtain

ϕ−1
a

(xϕa(c)) =

(
cn−1

n−1∏
i=0

ai

n−2∏
i=0

a−1
i
, a0c0 , a0a1c1a

−1
0
, . . . ; cn−2

n−2∏
i=0

ai

n−3∏
i=0

a−1i

)

= (c
n−1

a
n−1

, a
0
c
0
, a

0
c
1
, . . . , c

n−2
a
n−2

)

= T
a
(c0, c1, . . . , cn−1) ∈ C, since C is monomial.

(6)

And so,

xϕa(c) ∈ ϕa(C).

By induction we show that for each polynomial f(x) ∈ Fq [x], f(x)ϕa(c) = ϕa (f(Aa)(c)) . Finally ϕa(C)
is an ideal of Rq,n .

From the above theorem we deduce the following characterization of monomial codes.

Proposition 2.12. Let C ⊆ Fn
q
be a monomial code of length n over F

q
.

1. There is a monic polynomial of least degree g(x) ∈ F
q
[x] such that g(x) divides f

a
(x) = xn −

n−1∏
i=0

ai.

and ϕ
a
(C) = 〈g(x)〉.

2. The set {g(x), xg(x), . . . , xk−1g(x)} forms a basis of ϕ
a
(C) and the dimension of C is k = n−deg(g).

3. A generator matrix G of C is given by:

G =



ϕ−1
a

(g(x))

ϕ−1
a

(xg(x))
...
...

ϕ−1
a

(
xk−1g(x)

)


(7)

where k = n− deg(g) and g(x) =

n−k∑
i=0

gix
i.
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Remark 2.13. Note that the irreducible factorization of fa(x) = xn−
n−1∏
i=0

ai over Fq permits to construct

all monomial codes C ⊆ Fn
q
with associated vector a = (a0, a1, . . . , an−1).

Let us recall that Euclidean dual of a linear code C ⊆ Fn
q
is defined by

C⊥ :=
{
x ∈ F

n

q
: 〈x, c〉 = 0, ∀c ∈ C

}
.

Theorem 2.14. Let C be a monomial code with associate vector a =
(
a

0
, a

1
, . . . , a

n−1

)
. Then C⊥ is also

a monomial code with associate vector a−1 =
(
a−1

0
, a−1

1
, . . . , a−1

n−1

)
.

Proof. If C is a monomial code, then by Proposition 2.6, Q−1C is a λ−constacyclic code. It follows
that (Q−1C)⊥ = Q−1C⊥ is a λ−1−constacyclic code, i.e.,

Aλ−1Q−1C⊥ ⊆ Q−1C⊥

As Aλ−1 = Q−1A
a−1Q, we have

Q−1A
a−1QQ

−1C⊥ = Q−1A
a−1C

⊥ ⊆ Q−1C⊥.

It follows that A
a−1C

⊥ ⊆ C⊥ which means that C⊥ is a monomial code with associate vector a−1 =(
a−1

0
, a−1

1
, . . . , a−1

n−1

)
.

From the above proposition, we deduce easily the following result.

Corollary 2.15. Let M = diag(a0, a1, . . . , an−1)Pσ be a monomial matrix, with σ an n−cycle, and
C a linear code invariant under M. Then P−1ρ C⊥ is a monomial code with associate vector a−1 =(
a−1

0
, a−1

1
, . . . , a−1

n−1

)
, where Pρ is the permutation matrix of ρ ∈ Sn as in Corollary 2.8.

Proof. Follows from A
a−1 = PρMP−1ρ .

Example 2.16. Let a = (1, α, 2, α2, 4) ∈ F5
9

= F5
3(α), where α is a root of f

α
(x) = x2 + 2x+ 2. Let the

irreducible factorization of f
a
(x) = x5 − (1× α× 2× α2 × 4) = x5 − (2α+ 1) be:

f
a
(x) = x5 − (2α+ 1) = (x+ 2α+ 1) · (x2 + x+ 2α+ 2) · (x2 + (α+ 1)x+ 2α+ 2).

Hence, one can construct 23−2 = 6 non trivial monomial codes of length 5 over F
9
with associated vector

a = (1, α, 2, α2, 4), with generator polynomials

g1 = x+ 2α+ 1,
g2 = x3 + 2x2 + (α+ 2)x+ α,
g3 = x3 + (2α+ 2)x2 + αx+ α,
g4 = x4 + (α+ 2)x3 + (2α+ 2)x2 + 2αx+ 2,
g5 = x2 + (α+ 1)x+ 2α+ 2,
g6 = x2 + x+ 2α+ 2

For example, the linear code C such that ϕ(C) = 〈x3 + 2x2 + (α+ 2)x+α〉, is a [5, 2, 4]−linear code with
a generator matrix

G =

(
α+ 2 2α+ 1 2 0 2α+ 2

α 2α+ 2 1 2α+ 2 0

)
,

which is an MDS code, we can easily check that the Singleton bound is attained here.
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3. Monomial codes as invariant subspaces

Following [4, 12, 15] and [13], we can give a characterization of monomial codes by the theory of

invariant subspaces. As f
a
(x) = xn −

n−1∏
i=0

ai is the minimal polynomial of T
a
, its irreducible factorization

allows us to obtain the desired result. So, let

fa(x) =

r∏
i=1

f
α
i

i
(x) (8)

where f
i
(x) are irreducible polynomials. By the Cayley-Hamilton theorem [9, Theorem 4 p. 194], the

matrix A
a
satisfies

f(Aa) = 0

For i = 1, . . . , r, let U
i
be the null space of each f

α
i

i (x), i.e.,

U
i

:= ker
(
f
α
i

i
(A

a
)
)

=
{
v ∈ F

n

q
: fαi (A

a
) v = 0

}
. (9)

For polycyclic codes, the following Lemma has been proved in [12, Theorem 3]. In our case of
monomial codes, we omit the proof and state that one can obtain the result by replacing the operator Ta
by T

R
, in terms of [12].

Lemma 3.1 ([12], Theorem 3). The subspaces U
i
of Fn

q
satisfy the following conditions :

1. Fn
q

= U
1
⊕ U

2
⊕ · · · ⊕ U

r
.

2. U
i
is an invariant subspace of Fn

q
under T

a

3. If W is an invariant subspace of Fn
q
under Ta and Wi = W ∩ Ui , for i = 1, . . . , r, then Wi is also

invariant under Ta and W = W1 ⊕W2 ⊕ · · · ⊕Wr .

4. ϕ
a

(U
i
) is the ideal of R

q,n
generated by f̂αi

i
(x), where f̂αi

i
(x) =

f
a
(x)

f
α
i

i
(x)

.

5. The dimension of U
i
is given by dimFq (U

i
) = deg

(
f
α
i

i

)
= α

i
deg (f

i
) .

6. If P (x) is a divisor of fa(x) in Fq [x], then ker(P (Aa)) is a direct sum of invariant subspaces of Fn
q
.

7. If gcd(n, p) = 1, then U
i
is a minimal invariant subspace of Fn

q
under T

a

8. If gcd(n, p) = 1 and P (x) is a divisor of fa(x) in Fq [x], then ker(P (Aa)) is a direct sum of minimal
invariant subspaces of Fn

q
.

From the above Lemma and Proposition 2.12 we have the following characterization of the monomial
codes.

Theorem 3.2. Let C be a monomial code of length n over Fq generated by g(x) =

r∏
i=1

fki
i

(x), 0 ≤ ki ≤ αi

and h(x) ∈ F
q
[x] such that f

a
(x) = h(x)g(x). Then

1. ϕ
a
(C) = ϕ

a
(ker(h(T

a
)))
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2. C = ker(h(T
a
)) and dimFq (C) = rank (h(T

a
)) = deg(g).

3. C = C
1
⊕ C

2
⊕ · · · ⊕ C

r
where C

i
is the monomial code generated by

g
i
(x) = lcm

(
g(x), f̂

α
i

i
(x)
)

= f
ki

i
(x)f̂

α
i

i
(x), for all i = 1, . . . , r.

4. If gcd(n, p) = 1, then C = C1 ⊕ C2 ⊕ · · · ⊕ CR , where Ci is a minimal monomial code.

Proof. 1. Let c(x) =

n−1∑
i=0

c
i
xi ∈ ϕ

a
(C). Since ϕ

a
(C) = 〈g(x)〉, there is a(x) ∈ F

q
[x] such that c(x) =

a(x)g(x). It follows that

h(x)c(x) = h(x)a(x)g(x) = 0 mod f
a
(x).

So

h(x)c(x) =

deg(h)∑
i=0

h
i
xic(x) =

deg(h)∑
i=0

h
i
ϕ
a

(
T
i

a
(c)
)

= ϕ
a

deg(h)∑
i=0

h
i
T
i

a
(c)

 = ϕ
a

(h(T
a
) (c)

Hence, h(Ta)(c) = 0, which means that c ∈ ker(h(Ta)) and ϕa(C) ⊆ ϕa(ker(h(Ta))).
Conversely, let a(x) ∈ ϕ

a
(ker(h(T

a
))). There exist q(x), r(x) ∈ F

q
[x] such that

a(x) = q(x)g(x) + r(x) where deg(r(x)) < deg(g(x)).

Then h(x)r(x) = 0 mod f
a
(x).

Assume that r(x) 6= 0. Let K(x) ∈ F
q
[x] such that h(x)r(x) = K(x)f

a
(x). Since f

a
(x) is monic,

deg(h(x)r(x)) = deg (K(x)f
a
(x)) = deg(K(x)) + deg(f

a
(x)) ≥ n.

Otherwise, as h(x) is monic we have

deg(h(x)r(x)) = deg(h) + deg(r(x)) < n

Contradiction. Hence r(x)) = 0 and a(x) ∈ ϕ
a
(C).

2. The result follows from the statement above.

3. Let Ci = C ∩ Ui , for all i = 1, . . . , r. The monomial code Ci is generated by

gi(x) = lcm
(
g(x), f̂

α
i

i (x)
)

= f
k
i

i
(x)f̂

α
i

i (x)

By the statement 3 of Lemma 3.1, we have that C = C
1
⊕ C

2
⊕ · · · ⊕ C

r
.

4. Follows immediately from the statement above.

4. Quasi-monomial codes

Definition 4.1 (Quasi-monomial code). Let n = m` and a =
(
a

0
, a

1
, . . . , a

m−1

)
∈ Fm

q
. A linear code

C ⊆ Fn
q
is called `−quasi-monomial of index ` over Fq , if and only if for each codeword

c =

 c
0︷ ︸︸ ︷

c0,0 , c0,1 , . . . , c0,`−1 ,

c
1︷ ︸︸ ︷

c1,0 , c1,1 , . . . , c1,`−1 , . . . ,

c
m−1︷ ︸︸ ︷

cm−1,0 , cm−1,1 , . . . , cm−1,`−1

 ∈ C,
` is the smallest integer such that c

a
=
(
a
m−1

c
m−1

, a0c0 , . . . , am−2
c
m−2

)
∈ C.
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Remark 4.2. Observe that each `−quasi-monomial code C of length n = m`, over F
q
can be viewed as

a monomial code of length m over Fq` .

Let ã =
(
a

0
, a

1
, . . . , a

m−1

)
∈ Fm

q
, and define the `−quasi-monomial shift ψ

a
by:

ψa : Fn
q

7−→ Fn
q

v = (v0, v1, . . . , vn−1) 7−→ ψ
a
(v) = Aã(v0, v1, . . . , vn−1)t

where

Aã =


0 . . . 0 Aam−1

Aa0
0 . . . 0

...
. . . . . . 0

0 . . . A
am−2

0


m`×m`

(10)

and each A
ai

= diag(

` times︷ ︸︸ ︷
ai, . . . , ai), is the `× ` square matrix with ai on the position (j, j) and 0 elsewhere.

Proposition 4.3. A linear code C ⊆ Fn
q
is an `−quasi-monomial code of length n = m` if and only if it

is invariant under ψ
a
.

Let I
a
be the principal ideal of F

q
[x] generated by f

a
(x) = xm −

m−1∏
i=0

ai. As fa(x) is the minimal

polynomial of ψ
a
, I

a
.Fm`
q

= {0}, the operator ψ
a
equips Fm`

q
with an R

q,m
−module structure where the

multiplication is given by:

R
q,m
× Fm`

q
−→ Fm`

q

(P, v) 7−→ P.v := P (ψ
a
)(v).

(11)

Let us define the following R
q,m
−module isomorphism ϕ

a,`
by:

ϕ
a,`

: Fm`
q

−→ R`
q,m

(c0 , c1 , . . . , cm−1) 7−→ (c̃0(x), c̃1(x), . . . , c̃
`−1

(x))

(12)

where for 0 ≤ k ≤ `− 1,

c̃
k
(x) = ϕ

a
(c

0,k
, c

1,k
, . . . , c

m−1,k
) =

m−2∑
i=0

(
c
i+1,k

i∏
k=0

a−1
k

)
xi +

(
c
0,k

m−1∏
i=0

a−1
i

)
xn−1.

Thus we deduce the following result.

Theorem 4.4. A linear code C ⊆ Fm`
q
, is an `−QM code with associated vector a = (a0, a1, . . . , am−1)

if and only if ϕ
a,`

(C) is an R
q,m
−submodule of R`

q,m
.

Definition 4.5 (r−generator quasi-monomial code). An `−QM code C ⊆ Fm`
q

is called a r−generator
`−QM code if ϕ

a,`
(C) is generated by r elements as an Rq,m−submodule of R`

q,m
, i.e., there exist

a1(x), a2(x), . . . , ar(x) in R`
q,m

such that

ϕ
a,`

(C) = R
q,m
a1(x) +R

q,m
a2(x) + . . .+R

q,m
ar(x).
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We close this section by the following characterization of an r-generator quasi-monomial code.

Proposition 4.6. Let C ⊆ Fmr
q

be an r-generator right quasi-monomial code generated by
a1(x),a2(x), . . . ,as(x) where ai(x) = (ai,0(x), ai,1(x), . . . , a

i,`−1
(x)) for 1 ≤ i ≤ r. Then, there exist

bi,j(x), 1 ≤ j ≤ r, 0 ≤ j ≤ `− 1, such that ai,j (x) = bi,j(x)gj(x) where gi,j(x) divides fa(x).

Proof. As C is an r-generator quasi-monomial code, we have

ϕ
a,`

(C) = R
q,m

a1(x) +R
q,m

a2(x) + . . .+R
q,m

ar(x)

for some ai(x) = (ai,0(x), ai,1(x), . . . , a
i,`−1

(x)) ∈ Rr
q,m
, 1 ≤ i ≤ r. As each Rq,mai(x), i = 1, . . . , s, is a

1-generator quasi-monomial code, then

R
q,m

ai(x) = R
q,m
ai,0(x)⊕R

q,m
ai,1(x)⊕ . . .⊕R

q,m
ai,`−1(x),

where R
q,m
ai,j(x), j = 0, . . . , `−1 is a monomial code of lengthm. Let gi,j(x) be its generator polynomial.

Then there exists bi,j(x) ∈ R
q,m

such that ai,j(x) = bi,jgi,j(x).

An important class of quasi-monomial codes is the 1-generator quasi-monomial codes, as we can
define the generator polynomial, the parity check polynomial, and then compute the dimension of each
1-generator quasi-monomial code. Let us recall that C is a 1−generator `−QM code if it is generated by
one element a(x) = (a0(x), a1, . . . , a`−1(x)) ∈ R`

q,m
, (i.e)

ϕ
a,`

(C) = Rq,m · a(x) = Rq,m(a0(x), a1(x), . . . , a`−1(x)) ⊆ R`
q,m
.

Definition 4.7. Let C be a 1-generator quasi-monomial code generated by a(x) =
(a1(x), a2(x), . . . , ar(x)). The polynomial

1. g(x) = gcd(a(x), f
a
(x)) is called the generator polynomial (g.p.) of C.

2. h(x) =
f
a
(x)

g(x)
is called the parity check polynomial (p.c.p.) of C.

From Proposition 2.12, we easily deduce the following characterisation of 1-generator quasi-monomial
codes.

Proposition 4.8. Let C be a 1-generator quasi-monomial code generated by a(x) =
(a0(x), a1(x), . . . , a`−1(x)) ∈ R`

q,m
with g(x), h(x) as g.p and p.c.p. respectively, gi(x) =

gcd(ai(x), fi(x)), i = 0, . . . , `− 1, and g(x) = (g0(x), g1(x), . . . , g`−1(x)). Then,

1. C has a generator of the form

(p0(x)g0(x), p1(x)g1(x), . . . , p`−1(x)g`−1(x))

where gcd(pi, h) = 1.

2. g(x) = gcd(g1(x), g2(x), . . . , gr(x)) and h(x) = lcm {hi(x) : 1 ≤ i ≤ r} .

3. dimFq (C) = deg(h(x)), and

S =
{

(xig1(x), xig2(x), . . . , xigr(x)) : 0 ≤ i ≤ deg(h(x))− 1
}

forms a basis of C.
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4. a generator matrix of C is given by

G =


g(x)
xg(x)

...
xk−1g(x)

 =


g0(x) g1(x) . . . g`−1(x)
xg0(x) xg1(x) . . . xg`−1(x)

...
...

...
...

xk−1g0(x) xk−1g1(x) . . . xk−1g`−1(x)

 (13)

where k = deg(h(x)).

Assume that gcd(m, q) = 1 and let the irreducible factorization of fa = xm −
m−1∏
i=0

ai be

f
a
(x) = xm −

m−1∏
i=0

ai = f1(x)f2(x) . . . fs(x)

By the Chinese Remainder Theorem (CRT) we have the following ring isomorphism:

R
q,m
∼=

s⊕
i=1

Fq[x]/ 〈fi(x)〉

Let β be a primitive m th root of unity and βm =

n−1∏
i=0

ai. Then the roots of fa are βξi, i = 0, . . . ,m− 1.

As each fi(x), i = 0, . . . , n − 1 is irreducible, E
i

:= Fq(βξui) is a field, where ui is the smallest integer
such that βξui is a root of fi(x). Hence R`

q,m
can be decomposed as follows

R`
q,m
∼= E`

1
⊕ E`

2
⊕ . . .⊕ E`

s
.

So, each `−QM code ϕ
a,`

(C) can be viewed as an (E1 ⊕ · · · ⊕ Es)-submodule of E`1⊕ · · ·⊕E`s and can be
decomposed as

ϕ
a,`

(C) = C1 ⊕ · · · ⊕ Cs (14)

where each Ci is a linear code of length ` over E
i
, and called a constituent of C.

As in [8] one can establish that each Ci, 1 ≤ i ≤ s is of the form

Ci := SpanE
i
{(c̃0 (ξui) , . . . , c̃`−1 (ξui))}

for each c(x) = (c̃0(x), . . . , c̃`−1(x)) ∈ ϕ
a,`

(C).

Example 4.9. In this example we are interested in 3−QM codes of length 15 over F9 , with associated
vector a = (1, α, 2, α2, 4) ∈ F5

9
. As in Example 2.16, let

f
a
(x) = x5 − (2α+ 1) = (x+ 2α+ 1) · (x2 + x+ 2α+ 2) · (x2 + (α+ 1)x+ 2α+ 2).

Consider the linear code C ⊆ F15
9

such that ϕ
a,3

(C) = R
9,5

a(x) = R
9,5

(a1(x), a2(x), a3), where

a1(x) = αx4 + (2α+ 1)x2 + (α+ 2)x+ α+ 1
a2(x) = (2α+ 2)x4 + (α+ 2)x3 + (2α+ 1)x2 + 2αx+ α+ 1
a3(x) = (2α+ 1)x3 + αx2 + 2x+ 2

This is a 1−generator 3−QM code with generator g(x) = gcd(a1(x), a2(x), a3(x), fa(x)) = x+2α+1, and
parity check polynomial h(x) =

f
a
(x)

g(x) = x4+(α+2)x3+(2α+2)x2+2αx+2. It follows that dimF9
(C) = 4.
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Let b(x) = (b1(x), b2(x), b3(x)) ∈ R3
9,5
, with

b1(x) = x3 + (α+ 2)x2 + 2α+ 2
b2(x) = x2 + (α+ 1)x+ 2α+ 2
b3(x) = (2α+ 1)x3 + (α+ 2)x2 + (α+ 1)x+ 2

Then the linear code C
′ ⊆ F15

9
such that ϕa(C

′
) = R

9,5
a(x) +R

9,5
b(x), is a 2−generator 3−QM code of

dimension

dimF9
(C
′
) = dimF9

(
R

9,5
a(x)

)
+ dimF9

(
R

9,5
b(x)

)
− dimF9

(
R

9,5
a(x) ∩R

9,5
b(x)

)
= 4 + 3− 0 = 7

5. Additive structure of monomial codes

Let us start this section with the definitions of additive code and additive monomial code.

Definition 5.1. Let C ⊆ Fmq` be a subset of Fmq` , where ` is a positive integer. Then C is called an
additive code of length m over Fq` if C is an Fq−subspace of Fmq` .

Definition 5.2. An additive code C ⊆ Fmq` is called an additive monomial code with associ-
ated vector a =

(
a

0
, a

1
, . . . , a

m−1

)
if for each codeword c = (c0, c1, . . . , cm−1) ∈ C, we have c

′
=(

a
m−1

c
m−1

, a
0
c
0
, . . . , a

m−2
c
m−2

)
is again a codeword.

Remark 5.3. As in Remark 4.2 we observe that each additive monomial code C of length m, over
Fq` can be viewed as a monomial code of length m over Fq` .

Let λ ∈ F∗
q
, a subset C ⊆ Fmq` is called an additive λ−constacyclic code of length m over Fq` if for

each c =
(
c
0
, c

1
, . . . , c

m−1

)
∈ C we have c

′
= (λcm−1, c0, . . . , cm−2) ∈ C.

Proposition 5.4. A linear code C ⊆ Fnq` is a monomial code with associated vector a =

(a0, a1, ..., an−1) ∈ Fn
q
if and only if Q−1C is a λ−constacyclic code where λ =

n−1∏
i=0

ai, and Q is the

n× n matrix as in (3).

Proof. The proof is similar to the proof of Proposition 2.6.

The following map ϕ is an Rq,m−module isomorphism between Fmq` and

Rq`,m := Fq` [x]/〈xm −
m−1∏
i=0

ai〉.

ϕ : Fmq` −→ Rq`,m

v = (v0, v1, . . . , vm−1) 7−→ ϕ(v) =

m−2∑
i=0

(
vi+1

i∏
k=0

a−1k

)
xi +

(
v0

m−1∏
i=0

a−1i

)
xm−1

(15)

Theorem 5.5. An additive code C ⊆ Fnq` is a monomial code with associated vector a =(
a

0
, a

1
, . . . , a

n−1

)
if and only if ϕ(C) is an R

q,m
−submodule of Rq`,m .

Proof. Similar to the proof of Theorem 2.11.
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Let B = {e0, . . . , e`−1} be a basis of the extension Fq`/Fq. Let us define the following R
q,m
−module

isomorphism between R`
q,m

and Rq`,m , by:

ΦB : R`
q,m

−→ R
a,q`

c(x) =
(
c̃0(x), c̃1(x), . . . , c̃

`−1
(x)
)
7−→ ΦB(c(x)) =

`−1∑
i=0

c̃i(x)ei.

(16)

where c̃
k
(x) =

m−2∑
i=0

(
c
i+1,k

i∏
k=0

a−1
k

)
xi +

(
c
0,k

m−1∏
i=0

a−1
i

)
xn−1, for k = 0, ..., `− 1.

Thus ΦB gives a correspondence between `−quasi-monomial codes of length n = m` over F
q
,

and monomial codes of length m over Fq` ( additive monomial codes with associated vector a =
(a0, a1, . . . , am−1)). The proof of the following result is omitted, as it is similar to the case of quasi-
cyclic codes.

Proposition 5.6. A linear code C ⊆ Fm`
q

is an `−quasi-monomial code with associated a =

(a0, a1, . . . , am−1), if and only if ΦB(C) is an additive monomial code of length m over Fq` .

Now, we ask when the image ΦB(C) is a monomial code (not just additive monomial ) of length m
over Fq` . To answer this question, let us consider for each 0 ≤ i, j ≤ `− 1,

eiej =

`−1∑
k=0

λi,jk ek ∈ Fq` ,

and define the `× ` matrices Mi, 0 ≤ i ≤ `− 1 by

Mi =

 λi,00 λi,10 . . . λi,`−10
...

...
...

...
λi,0`−1 λi,1`−1 · · · λ

i,`−1
`−1

 (17)

Following [7], we can prove the following result for `−QM codes.

Theorem 5.7. Let C be a `−quasi-monomial code of length n = m`, and let ϕ
a,`

(C) = C1⊕C2⊕· · ·⊕Cs
be its constituent decomposition as in (14). Then,

ΦB(C) is Fq`−linear ⇐⇒ ϕ
a,`

(C) is invariant under the matrices Mi, 0 ≤ i ≤ `− 1.
⇐⇒ Ci ⊆ E`i , i = 1, . . . , s is invariant under the matrices Mi, 0 ≤ i ≤ `− 1.

Proof. Let c = (c0, c1, · · · , cm−1) ∈ C, and c(x) := (c̃
0
(x), c̃

1
(x), . . . , c̃

`−1
(x)) ∈ ϕ

a,`
(C). Then

eiΦB(c(x)) = ei

`−1∑
j=0

c̃
j
(x)ej .

=

`−1∑
j=0

c̃
j
(x)eiej .

=

`−1∑
j=0

c̃j (x)

`−1∑
k=0

λi,jk ek

= c̃0(x)
(
λi,00 e0 + · · ·+ λi,0`−1e`−1

)
+ · · ·+ c̃`−1(x)

(
λi,`−10 e0 + · · ·+ λi,`−1`−1 e`−1

)
=
(
λi,00 c̃0(x) + · · ·+ λi,`−10 c̃`−1(x)

)
e0 + · · ·+

(
λi,0`−1c̃0(x) + · · ·+ λi,`−1`−1 c̃`−1(x)

)
e`−1
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ΦB(C) is Fq`-linear ⇐⇒ ∀i = 0, . . . , `− 1, eiΦB(c(x)) ∈ ΦB(C)

⇐⇒ ∀ i = 0, . . . , `− 1, ∀ 0 ≤ j ≤ `− 1,
(
λi,0j c̃0(x), · · · , λi,`−1j c̃`−1(x)

)
∈ ϕ

a,`
(C)

⇐⇒ ∀i = 0, . . . , `− 1, Mi c(x)t ∈ ϕ
a,`

(C)

This means that ϕa(C) is invariant under multiplication by the matrix Mi, 0 ≤ i ≤ `− 1.

Remark 5.8. Suppose that B =
{

1, α, α2, . . . , α`−1
}

is a basis of the extension Fq` = F
q
(α), and

fα(x) = x` +α`−1x
`−1 + . . .+α0 ∈ Fq [x] be the minimal polynomial of α, then following assertions hold.

1. The matrix M0 in the above theorem is the identity matrix, and each Mi is the matrix corresponding
to the multiplication by αi, for i = 1, . . . , `− 1.

2. The matrix M1 is the companion matrix Cfα of the polynomial fα(x).

From the above remark, we deduce the following characterization of the Fq`−linearity of ΦB(C).

Corollary 5.9. Let C be an `−QM code of length n = m`, and let ϕ
a,`

(C) = C1 ⊕ C2 ⊕ · · · ⊕ Cs be its
constituent decomposition as in (14). Then the following statements are equivalent.

1. ΦB(C) is Fq`−linear

2. ϕ
a,`

(C) is invariant under the matrix M1 = Cfα .

3. Each Ci ⊆ E`i , i = 1, . . . , s is invariant under the matrix Cfα .

4. Ci ⊆ E`i , is a right polycyclic code of length ` over Ei with associated vector r =
(−α0,−α1, . . . ,−α`−1) ∈ E`i .

5. There is a monic divisor g(x) of fα(x) such that Ci = 〈g(x)〉 is an ideal of Ei [x]/〈fα(x)〉 and
dimEi = deg(g(x)).

Assume that gcd(m, q) = 1 and let ti = [Ei : Fq] be the degree of the extension Ei/Fq, bi = gcd(`, ti),

and di =
`

bi
. According to [11, Theorem 3.46], the irreducible factorization of fα(x) over each Ei is

fα(x) = fi,1(x)fi,2(x) · · · fi,bi(x),

where each fi,j(x) ∈ Ei[x], j = 1 . . . , bi, is of degree di.

As in section 3, let for i = 1, . . . , s, j = 1, . . . , bi the null space U
i,j

of each fi,j(x)(Cfα), where Cfα
is the companion matrix of fα which is viewed as an `× ` matrix in M` (Ei) , given by

Ui,j := ker
(
f
i,j

(Cfα)
)

=
{
v ∈ E`

i
: fi,j (Cfα) v = 0, j = 0, . . . , bi

}
. (18)

Then we have

◦ E`
i

= Ui,1 ⊕ Ui,2 ⊕ · · · ⊕ Ui,bi ,

◦ Each Ui,j , j = 1, . . . , bi is a minimal invariant subspace of E`
i
under Cfα .

◦ If Wi is an invariant subspace of E`i under Cfα and Wi,j = Wi ∩ Ui,j , for j = 1, . . . , bi, then Wi,j is
also invariant under Cfα and Wi = Wi,1 ⊕Wi,2 ⊕ · · · ⊕Wi,bi .

◦ dimEi(Ui,j) = deg(f
i,j

(x)). Hence we deduce the following result on the Fq`−linearity of ΦB(C)
when gcd(m, q) = 1.
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Theorem 5.10. Let C be an `−QM code of length n = m` over F
q
such that ΦB(C) is Fq`−linear, and

ϕ
a,`

(C) = C1 ⊕ C2 ⊕ · · · ⊕ Cs ⊆ E`1 ⊕ E`2 ⊕ · · · ⊕ E`s,

be the (constituent) decomposition of C. Then,

1. if gcd(`, ti) = 1, then Ci is either {0} or the full space E`i .

2. otherwise, dimEi(Ci) = kidi for some 0 ≤ ki ≤ bi.

Proof. If ΦB(C) is Fq`−linear, then each Ci ⊆ E`
i
is invariant under Cfα . It follows that

Ci = Ci ∩ E`i = Ci,1 ⊕ Ci,2 ⊕ · · · ⊕ Ci,bi , where each Ci,j := Ci ∩ Ui,j as in (18).

1. If gcd(`, ti) = 1, then fα(x) is irreducible in Ei [x], and so there is no trivial subspace of E`i which
is invariant under Cfα . Thus Ci is either {0} or the full space E`i .

2. Otherwise, since each Ui,j is a minimal invariant subspace, then as in Corollary 5.9 we see that

dimEi(Ci,j) = dimEi (Ci ∩ Ui,j) =

{
0 if Ci ∩ Ui,j = {0}
deg(fi,j) = di if Ci ∩ Ui,j 6= {0}

It follows that dimEi(Ci) =

bi∑
j=1

dimEi(Ci,j) = kidi for some 0 ≤ ki ≤ bi.

Corollary 5.11. Let C be a 1−generator `−QM code generated by a(x) = (a0(x), a1(x), . . . , a`−1(x)) ∈
R`
q,m
, and g(x) be its generator polynomial. If ΦB(C) is Fq`−linear then for each i = 1, . . . , s such that

gcd(`, ti) = 1, the corresponding constituent Ci = {0}. This is equivalent to saying that the irreducible
factor fi(x) of f

a
(x) corresponding to E

i
:= Fq(βξui) must divide g(x).

Example 5.12. In this example, we are interested in 4−QM codes of length 20 over F3 with associated
vector a = (2, 1, 1, 2, 2) ∈ F5

3
. Let α be a primitive element of F34 with minimal polynomial Cfα(x) =

x4 +2x3 +x2 +2x+1 = 0. Hence B =
{

1, α, α2, α3
}
is a basis of the extension F34/F3. Let the irreducible

factorization of fa(x) be

fa(x) = x5 − 2 = (x+ 1) · (x4 + 2x3 + x2 + 2x+ 1)
= f1(x)f2(x).

Then E1 := F3 [x]/〈f1(x)〉 = F3 and E2 := F3 [x]/〈f2(x)〉 = F34 . Let C be the 4−QM code generated by
a(x) = (a1(x), a2(x), a3(x), a4(x)) ∈ R4

3,5, where

a1(x) = x3 + x2

a2(x) = 2x3 + 2x2

a3(x) = x4 + 2x3 + x+ 2
a4(x) = x3 + 1

It follows that the constituent components of C are

C1 = SpanE1
(a1(−1), a2(−1), a3(−1), a4(−1)) = {0} ⊆ {0}.

C2 = SpanE
2
{(a1(α), a2(α), a3(α), a4(α))} = SpanE

2

{(
1, 2, 2α3 + 2α2 + 2α, 2α2 + α

)}
⊆ E4

2
.
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As gcd(4, 3) = 1, the polynomials f1 and f2 are irreducible over E
1
and E

2
respectively. Recall that the

companion matrix of Cfα(x) is

Cfα =

 0 0 0 2
1 0 0 1
0 1 0 2
0 0 1 1


It follows that

CfαC2 = SpanE
2

{(
2α3 + 2, 2α3 + α2 + 1, α3 + 2α2 + 2, α3 + 2α2 + 2α+ 2

)}
⊆ C2

which means that C = C1 ⊕ C2 ⊆ E4
1
⊕ E4

2
has an F34−linear image with respect to the basis B.

6. Asymptotics

In this, we are interested in the performance of `−QM codes. First recall that if (Fn)n∈N is a family
of codes of parameters [n, kn, dn], the rate r and relative distance δ of (Fn)n∈N are defined as

r = lim
n→∞

sup
kn
n

and δ = lim
n→∞

inf
dn
n
.

A family (Fn)n∈N is said to be asymptotically good if rδ > 0.

Proposition 6.1. Let C ⊆ be an `−QM code of length n = m`, and let d(C) be its Hamming distance.
Then

d(C) ≥ d(ΦB(C))

`
.

Proof. Let c(x) = (c̃0(x), c̃1(x) . . . , c̃`−1(x)) be a non zero element of ϕ
a,`

(C), then

c
′
(x) = ΦB(c(x))ei =

`−1∑
i=0

c̃i(x)ei =

`−1∑
i=0

m−1∑
j=0

c̃i,jx
j

 ei =

m−1∑
j=0

(
`−1∑
i=0

c̃i,jei

)
︸ ︷︷ ︸

c
′
j

xj ∈ ΦB(C).

Observe that c
′

j =

`−1∑
i=0

c̃i,jei = 0 implies that c̃i,j = 0 for all i = 0, . . . , `− 1, since B is a basis. Thus

`−1∑
i=0

w (c̃i,j) ≤ `w(c
′

j), j = 0, . . . ,m− 1.

It follows that

w(c(x)) =

`−1∑
i=0

m−1∑
j=0

w (c̃i,j) ≤ `
m−1∑
i=0

w(c
′

j) = w(c
′
(x))

Finally,

d(C) ≥ d(ΦB(C))

`
.
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In [1] the authors proved that t−CIS QPC codes ( particular subclass of quasi-polycyclic codes) are
asymptotically good. Simillarly, in [14] M. Shi and others showed that `−QT codes are asymptotically
good. Following these two works, we prove that `−QM codes and additive monomial codes are also
asymptotically good. First recall that the q-ary entropy function is defined for 0 < y < q−1

q by,

Hq(y) = y logq(q − 1)− y logq(y)− (1− y) logq(1− y).

We invite the reader to see [2, Chapter 2] for more details on the entropy function. Adapting the proof
[1, Theorem 5.4] in the case t-CIS QP codes, we obtain the following result on `−QM codes.

Proposition 6.2 ( Similar to [1], Theorem 5.4). For any fixed integer ` > 1, there are infinite families
of `−QM codes length n = m`, rate 1

` and of relative distance δ, such that

Hq(δ) ≥
`− 1

`
.

Proof. As each λ−constacyclic code of length m is a monomial code with associated vector a =
(1, . . . , 1, λ) ∈ Fmq , the result it is obtained by [1, Theorem 5.4].

Proposition 6.3 ([14]). For any prime power q there are infinite families of additive monomial codes of
length m→∞ over Fq` of rate 1

` and relative distance

δ ≥ 1

`
H−1q (1− 1/`)

Proof. By [14, Theorem 3.4] and Proposition 6.1.

7. Conclusion

In this paper, we studied the structure of codes invariant under a monomial matrix M =
diag(a0, a1, . . . , an−1)Pσ where σ is a permutation and Pσ is its associated permutation matrix, par-
ticularly the structure of monomial codes introduced in [4], where we view them as the ideals in the
polynomial ring Rq,n , and we derive their polynomial characterization as in the case of cyclic codes.
Secondly, we studied the algebraic and additive structure of `−quasi-monomial codes, where we prove
a one-to-one correspondence between them and Rn,q−submodules of R`n,q. We characterize those codes
that have Fq`−linear images with respect to a basis of Fq`/Fq , based on the CRT decomposition. Finally,
we proved that quasi-monomial codes are asymptotically good. An important problem here is to study
the structure of monomial codes as hyperinvariant subspaces, introduced in [6] for cyclic codes, and also
to investigate their σ−LCD structure as in [3].

Acknowledgment: The authors would like to thank the reviewers for their comments and sugges-
tions that allowed us to correct several errors and improve the readability and quality of the article.
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