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Abstract: A Butson Hadamard matrix of order n over the kth root of unity is a square matrix H which entries
are some complex kth root of unity such that HH∗ = nIn, where H∗ is the complex conjugate of H.
A set of Butson Hadamard matrices of order n over the kth root of unity is denoted by BH(n, k).
It is well-known that a Butson Hadamard matrices is a generalization of a Hadamard matrix. In
this paper, we give some properties of Butson Hadamard matrices of order 4 which implies to the
upper and the lower bounds of the number of its equivalence classes. We also showed that the entries
of Butson Hadamard matrices of order 4 is 2k-th root of unity for some integer k. Furthermore,
we describe the equivalence classes of Butson Hadamard matrices of order 4 by constructing the
representative of the class.
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1. Introduction

A Hadamard matrix of order n is a square {±1} matrix H such that HHT = nIn, where In is
the identity matrix of order n and HT is the transpose of H. We write H(n) to denote the set of all
Hadamard matrices of order n. There is a well known unsolved problem that is related to Hadamard
matrices which states that there exists a Hadamard matrix of order n, for n = 1, 2, or a multiple of
4. The problem is known as the conjecture of Hadamard [3]. There is a possible method to solve the
conjecture and it involves a Butson Hadamard matrix.
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Let n and k be positive integers. A Butson Hadamard matrix of order n over the kth root of unity
is a square matrix H which entries are some complex kth root of unity such that HH∗ = nIn, where
H∗ is the complex conjugate of H. We use BH(n, k) to denote the set of all Butson Hadamard matrices
of order n over the kth root of unity. Some results regarding Butson Hadamard matrices can be found
in [8]. A complex Hadamard matrix is a special case of a Butson Hadamard matrix, and it was firstly
introduced by Turyn [13]. Turyn also find a method to obtain Hadamard matrices of order 2n from a
complex Hadamard matrix of order n, which conclude that the existence of complex Hadamard matrix
is crucial for Hadamard’s conjecture. We remark that the properties of complex Hadamard matrices
are given in [12, 14]. Furthermore, Compton, et al. found a method to obtain Hadamard matrices of
order 4n from Butson Hadamard matrices BH(n, 6) with no real entries [2]. This leads us to predict the
relation between the construction of Butson Hadamard matrices and Hadamard matrices. Therefore, we
give some properties of Butson Hadamard matrices and classify them by using an equivalence relation
called a monomial equivalence.

In this paper, we give some properties of Butson Hadamard matrices and give equivalence classes
of Butson Hadamard matrices of order 4. We also prove that if H is a Butson Hadamard matrix of
order 4, then H has entries of 2kth complex root of unity. Furthermore, the result of this paper is based
on a parameterization of BH(4, 2k) and this implies to the upper and lower bound of the number of
equivalence classes of BH(4, 2k).

2. Preliminaries

In this section, we will introduce some previous and preliminary results for preparation into the main
results. Throughout this paper, we write −1 as − for simplification.

Definition 2.1. A Hadamard matrix of order n is a square matrix H with entries in {±1} that
satisfies

HHT = nIn,

where HT denotes the transpose of H and In is the identity matrix of order n. We denote the set of all
Hadamard matrices of order n by H(n).

Example 2.2. These are some examples of Hadamard matrices of order n = 1, 2, 4.

[
1
]
,

[
1 1
1 −

]
,

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

 .
It is well known that if H ∈ H(n), then we can easily obtain another H ′ ∈ H(n) by the following

steps: swapping rows or columns of H, multiplying a row or column of H with −1, transposing H, or by
using finitely many compositions of the steps.

Now, suppose H is a Hadamard matrix. Then, we can obtain another Hadamard matrix H ′ from H
with entries in the first column and the first row are all ones by using the finitely steps from operations
above, and the matrix H ′ is called a normalized Hadamard matrix. Some notes related to the
normalized Hadamard matrices can be found in [4]. Generally, we say a matrix is normalized if the
first column and the first row of the matrix are all ones. Note that a normalized Hadamard matrix is not
necessarily unique.

Currently, the unknown smallest orders of a Hadamard matrix is 668. In 2005, a Hadamard matrix
of order 428, which was the unknown smallest order, was discovered by Kharaghani and Tayfeh-Rezaie
[5] by using some classes of complementary sequences. The properties of complementary sequences can
be found in [6, 9]. There are many known methods to construct Hadamard matrices, and we refer the
reader to see [2, 4, 9–11, 13, 15] for further information.
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A Butson Hadamard matrix was introduced by Butson in 1962 as a generalization of Hadamard
matrix [1]. A complex number z is called a kth root of unity, if zk = 1.

Definition 2.3. A Butson Hadamard matrix of order n over the kth root of unity is a square matrix
H with entries are kth root of unity and satisfies

HH∗ = nIn,

where H∗ denotes the conjugate transpose of H.

Denote Tk as the set of all kth root of unity and T as all complex numbers in the unit circle, that is
T = {z ∈ C, |z| = 1}.

Example 2.4. The Fourier matrix of order n,

Fn =


1 1 1 · · · 1
1 α α2 αn−1

1 α2 α4 α2(n−1)

...
...

1 αn−1 α2(n−1) · · · α(n−1)2


where α is an nth root of unity, is a BH(n, n) matrix.

Note that H(n) = BH(n, 2), since in this case, H∗ = HT for every H ∈ BH(n, 2). Similar to
Hadamard matrices, if we have a matrix H ∈ BH(n, k), we can obtain another matrix H ′ ∈ BH(n, k) by
swapping rows or columns of H, multiplying a row or column of H with any kth root of unity, transposing
H, or conjugate transposing H. We note that it is also possible to obtain a normalized Butson Hadamard
matrix from a given Butson Hadamard matrix H by using some steps of the operations above.

3. Main results

We begin to find the method to classify Butson Hadamard matrices of order 4 by using the monomial
equivalence. In this section, we will give the definition and properties of the monomial equivalence. As
our main results, the upper and the lower bound of the number of equivalence classes in BH(4, 2k) will
be presented.

Denote the set of square matrices of order n with entries in Tk as Tnk .

Definition 3.1. A monomial matrix of order n is a square matrix of order n with exactly one nonzero
entry in each row and each column. Denote the set of all monomial matrices of order n with nonzero
entries in Tk as S(n, k).

Definition 3.2. Let M1,M2 ∈ Tnk . We write M1 ∼ M2 if there exist Sr, Sc ∈ S(n, k) such that
M2 = SrM1Sc.

It is obvious that the relation ∼ defined above is an equivalence relation, and the equivalence is
usually known as monomial equivalence. More on monomial equivalence can be seen on [8] and [16].

The equivalence classes of Butson Hadamard matrices of order 1, 2, and 3 are trivial as there is
just one equivalence class. Therefore, we proceed to the order 4. In this case, we see that it has one
parameterization equivalence class.

Now, before we proceed to the main results, we prove the following lemma. Note that there is a
more general result due to Lam and Leung [7], but the proof used here is elementary.
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Lemma 3.3. Let x, y, z, t ∈ T. Then the solutions of

x+ y + z + t = 0 (1)

are all x, y, z, t such that {x, y, z, t} = {p,−p, q,−q}, for some p, q ∈ T. Furthermore, if x, y, z, t ∈ Tl,
then Eq. 1 have solutions if and only if l is even.

Proof. Let x, y, z, t ∈ T. We will prove that x + y + z + t = 0 only have {x, y, z, t} = {p, q,−p,−q}
as solution for some p, q ∈ T. Observe that x + y = −(z + t). So |x + y| = |z + t|. Let θxy be the angle
between x and y, and θzt be the angle between z and t. Then,

√
|x|2 + |y|2 + 2|x||y| cos θxy =

√
|z|2 + |t|2 + 2|z||t| cos θzt√

2 + 2 cos θxy =
√

2 + 2 cos θzt

cos θxy = cos θzt.

As a result, θxy = ±θzt. Notice that

0 = x+ y + z + t = x+ x(eiθxy ) + z + z(eiθzt) = x(1 + eiθxy ) + z(1 + eiθzt).

Consider the following cases:

• If θxy = θzt, then 0 = x(1 + eiθxy ) + z(1 + eiθxy ) = (x+ z)(1 + eiθxy ), and hence we get x = −z or
eiθxy = −1.

• If θxy = −θzt, write z = teiθtz = te−iθzt = teiθxy . This implies

0 = x(1 + eiθxy ) + (teiθxy )(1 + e−iθxy ) = x(1 + eiθxy ) + t(1 + eiθxy ),

and therefore, we have x = −t or eiθxy = −1.

The solutions are of the formc x, y, z, t such that {x, y, z, t} = {p, q,−p,−q} for p, q ∈ T.
Now, assume that x, y, z, t ∈ Tl ⊆ T. We cannot just have the solution of Eq. 1 is {p, q,−p,−q}, for

some p, q ∈ Tl as −p and −q are not guaranteed to be in Tl.
We will prove the last statement in the lemma. If l is even, then −1 ∈ Tl, and therefore −p =

(−1)(p) ∈ Tl. The same argument applies to show that −q ∈ Tl. As a result, the solution of Eq. 1 is
{p, q,−p,−q}, for some p, q ∈ Tq.

On the other hand, assume that p, q ∈ Tl and {p, q,−p,−q} is a solution of Eq. 1. Then −p ∈
{x, y, z, t} ⊆ Tl. Note that −1 = (−p)(p) ∈ Tl, so we can conclude that l is even.

Corollary 3.4. If H ∈ BH(4, l), then l is even.

Proof. It is sufficient to show the statement holds for any normalized Butson Hadamard matrices. Let
H be normalized and the first two rows of H be[

1 1 1 1
1 h22 h23 h24

]
.

Then by orthogonality of those two rows,

1 + h22 + h23 + h24 = 0.

Since 1, h22, h23, h24 ∈ Tl, we conclude that l must be even by lemma 3.3.
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Theorem 3.5. Let H ∈ BH(4, 2k), Then H is equivalent to

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s


for some s ∈ T2k.

Proof. Let H be a normalized Butson Hadamard matrix of order 4. Then

H =

1 1 1 1
1 h22 h23 h24
1 h32 h33 h34
1 h42 h43 h44


with hij ∈ T2k for some k ∈ N. Observe that column 2, 3, and 4 are orthogonal to column 1, so

1 +

4∑
i=2

hij = 0 for all j ∈ {2, 3, 4}.

Using the same approach for the rows, we get

1 +

4∑
i=2

hji = 0 for all j ∈ {2, 3, 4}.

Notice that the second column needs to be orthogonal to the first column. By considering permutations
of row 2, 3, and 4, we obtain

H =

1 1 1 1
1 −1 h23 h24
1 s h33 h34
1 −s h43 h44


for an s ∈ T2k.

If s = ±1, we obtain a Hadamard matrix of order 4. It can be easily seen that H ∈ H(4) is equivalent
to

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s


for s = ±1.

Assume s 6= ±1. Because row 3 is orthogonal to row 1, and by considering permutations of row 3
and 4, we obtain

H =

1 1 1 1
1 −1 h23 h24
1 s −1 −s
1 −s h43 h44


19
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for some s ∈ T2k. As row 4 is orthogonal to row 1, we have {h43, h44} = {−1, s}.
If h43 = s, then

H =

1 1 1 1
1 −1 −s s
1 s −1 −s
1 −s s −1


As row 2 is orthogonal to row 3, then 0 = 1− s̄+ s− 1 = s− s̄. As a result, s ∈ R, and s = ±1. This is
a contradiction to the assumption of s 6= ±1.

If h43 = −1, then

H =

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s


for some s ∈ T2k. It can be easily checked that HH∗ = 4I4 and every entry of H is an element in T2k.
Thus, the result holds.

3.1. Upper bound of the number of equivalence classes in BH(4, 2k)

We begin with a particular case of BH(4, 6), which may be easier to understand. By Theorem 3.5,
every matrix H in BH(4, 6) is equivalent to

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s


with s ∈ T6 = {±1,±γ,±γ2}, which γ takes the value of e2πi/3. Notice that for s = −t, we have

1 1 1 1
1 −1 1 −1
1 t −1 −t
1 −t −1 t

 and

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s

 =

1 1 1 1
1 −1 1 −1
1 −t −1 t
1 t −1 −t

 (2)

are equivalent (note that swapping the third and fourth row of the former matrix can give you the latter).
Hence, there are at most three classes of equivalence classes in BH(4, 6) matrix, namely

H0 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , H1 =

1 1 1 1
1 −1 1 −1
1 γ −1 −γ
1 −γ −1 γ

 , H2 =

1 1 1 1
1 −1 1 −1
1 γ2 −1 −γ2
1 −γ2 −1 γ2

 . (3)

Notice that 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

H1

1 0 0 0
0 γ2 0 0
0 0 −1 0
0 0 0 −γ2

 = H2,
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and therefore we can see that H1 and H2 are actually equivalent, so there are at most two equivalence
classes in BH(4, 6), which can be represented by H0 and H1. Thus we have the following lemma.

Lemma 3.6. There are at most 2 equivalence classes in BH(4, 6).

Now, we will use a similar approach to determine the upper bound of the number of equivalence
classes in BH(4, 2k). Throughout this section, we write ωj2k = e2πij/2k to be a 2kth root of unity and let

Hj,2k =

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s

 ,
where s = ωj2k. Also, we define Xj,2k to be the set of all 2× 2 submatrices of Hj,2k.

We present some illustration for better understanding by using graphs. The graphs are drawn at a
complex plane, with the circle as the unit circle. There are 2k points on the circle (which are 2kth root
of unity), with each value t corresponds to the matrix1 1 1 1

1 −1 1 −1
1 t −1 −t
1 −t −1 t

 .
If some of those matrices are equivalent, we would simply mark the corresponding point on the unit circle
with the same number.

By using a similar analogy on the last part (Eq. 2), we can see for s = −t, with t ∈ T2k,

1 1 1 1
1 −1 1 −1
1 t −1 −t
1 −t −1 t

 and

1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s


are equivalent. In other words, Hj,2k ∼ Hj+k,2k. As the negation of a 2kth root of unity is also a 2kth

root of unity, we have at most k equivalence classes on BH(4, 2k). We give the illustrations for two values
of 2k = 8 and 2k = 10 shown in Fig. 1.

The label of points shows that the corresponding normalized matrices for t = 1 and t = −1 are
equivalent (those two points are both labeled by the same number). For other points in the graph, the
same analogy applies. Based on the observation, we can see that there are at most four and five equivalence
classes in BH(4, 8) and BH(4, 10), respectively. As there are some Hj,2k matrix that are equivalent with
each other, we can just consider the Butson Hadamard matrices Hj,2k with ωj2k ∈ {eiθ | −π/2 < θ ≤ π/2}
(that corresponds to the points in the right of real axis in the graph, including the complex number i, if
i is also in T2k).

With some further calculations, that is

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

Hj,2k


1 0 0 0

0 ω−j2k 0 0
0 0 −1 0

0 0 0 −ω−j2k

 = H−j,2k,

we can see that Hj,2k is equivalent with H−j,2k. In other words, two Butson Hadamard matrices that
correspond to t and t are equivalent. In the graph, it would be shown as in Fig. 2 (for two values of
2k = 8 and 2k = 10).
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Figure 1. Inequivalent Butson Hadamard matrices on BH(4, 8) and BH(4, 10) on unit circle
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Figure 2. Inequivalent Butson Hadamard matrices on BH(4, 8) and BH(4, 10) after further analysis

There is a difference depending on the parity of k (for even k, the imaginary number i is a 2kth root
of unity, while for odd k, i is not a 2kth root of unity). Here is some explanations:

• for odd k, there exist k− 1 points that are not on the real and imaginary axis. Furthermore, those
k−1 points have their conjugates in the set too. Thus, there are at most k− k−1

2 = k+1
2 equivalence

classes in BH(4, 2k).

• for even k, there exist k− 2 points that are not on the real and imaginary axis. Furthermore, those
k − 2 points have their conjugates in the set too. As a result, there are at most k − k−2

2 = k+2
2

equivalence classes in BH(4, 2k).

Therefore, we have the following theorem.

Theorem 3.7. Let p2k be the upper bound of the number of equivalence classes on BH(4, 2k). Then
p2k = k+1

2 for odd k, and p2k = k+2
2 for even k.
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3.2. Lower bound of the number of equivalence classes in BH(4, 2k)

After determining the upper bound of the number of equivalence classes in BH(4, 2k), which is p2k
(in Theorem 3.7), we proceed to prove that there are at least p2k matrices that are not pairwise equivalent
in BH(4, 2k). First, we will present the proof for a certain case of BH(4, 6). Before we proceed to the
next part, we will introduce an important lemma that contributes to the next part.

Lemma 3.8. Let G = [gij ] , H = [hij ] ∈ BH(n, 2k) and G ∼ H. Then for every 2 × 2 submatrix of G,
there exists a 2× 2 submatrix of H such that those two submatrix are equivalent.

Proof. Let G,H ∈ BH(4, 2k) and G = SrHSc = PrDrHDcPc with Dr = diag{ri}, Dc = diag{ci},
and Pr, Pc are permutation matrix corresponding to σ and τ−1 permutation respectively. Consider that
the entries of G can be written as

gij = rσ(i)hσ(i)τ(j)cτ(j)

By choosing any 2× 2 submatrix of G, we obtain[
gab gab′
ga′b ga′b′

]
=

[
rσ(a)hσ(a)τ(b)cτ(b) rσ(a)hσ(a)τ(b′)cτ(b′)
rσ(a′)hσ(a′)τ(b)cτ(b) rσ(a′)hσ(a′)τ(b′)cτ(b′)

]
=

[
rσ(a) 0

0 rσ(a′)

] [
hσ(a)τ(b) hσ(a)τ(b′)
hσ(a′)τ(b) hσ(a′)τ(b′)

] [
cτ(b) 0

0 cτ(b′)

]
.

Observe that [
hσ(a)τ(b) hσ(a)τ(b′)
hσ(a′)τ(b) hσ(a′)τ(b′)

]
is a 2× 2 submatrix of H and rσ(a), rσ(a′), cτ(b), cτ(b′) ∈ T2k. As a result,[

gab gab′
ga′b ga′b′

]
and

[
hσ(a)τ(b) hσ(a)τ(b′)
hσ(a′)τ(b) hσ(a′)τ(b′)

]
are equivalent.

In the last section, we have proven that there are at most two equivalence classes in BH(4, 6). In
this part, we will prove that H0 6∼ H1 where H0 and H1 are written in Eq. 3, and prove that there are
at least two equivalence classes in BH(4, 6).

Proposition 3.9. The matrices H0 and H1 are not equivalent.

Proof. Consider the submatrices of H0. There are two equivalence classes, which are represented by[
1 1
1 1

]
and

[
1 1
1 −

]
.

Let G be a normalized BH(4, 6) matrix that is equivalent to H0. As G is normalized, we can write

G =

1 1 1 1
1 ∗ ∗ ∗
1 ∗ ∗ ∗
1 ∗ ∗ ∗

 .
Observe the submatrices of G that includes the entry on (1, 1) position, that is[

1 1
1 ∗

]
.

Because G ∼ H0, then by lemma 3.8, there are two cases to be considered:
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1. If [
1 1
1 ∗

]
∼
[
1 1
1 −

]
,

then ∗ = −1 since Butson Hadamard matrix are only equivalent to another Butson Hadamard
matrix.

2. If [
1 1
1 ∗

]
∼
[
1 1
1 1

]
,

then there exist permutation matrices Pr, Pc and diagonal matrices Dr = diag{ri}, Dc = diag{ci}
with ri, ci ∈ T6 for i ∈ {1, 2}, such that[

1 1
1 ∗

]
= DrPr

[
1 1
1 1

]
PcDc =

[
r1 0
0 r2

] [
1 1
1 1

] [
c1 0
0 c2

]
=

[
r1c1 r1c2
r2c1 r2c2

]
.

By simple algebraic calculation, we get ∗ = 1.

This concludes that every normalized BH(4, 6) matrix G that is equivalent to H0 is a ±1 matrix. Since
H1 is not a ±1 matrix, then H1 6∼ H0. Thus, the result holds.

This implies that there are at least two equivalence classes in BH(4, 6). Next, we aim to prove that
there are p2k matrices in BH(4, 2k) are pairwise inequivalent. The approach is similar to the proof of
Proposition 3.9, that is, we consider any normalized BH(4, 2k) matrix G that is equivalent to Hj,2k to
eliminate matrix that are not equivalent to Hj,2k.

Firstly, we determine the number of equivalence classes inXj,2k, that is, the set of all 2×2 submatrices
of Hj,2k. Using exhaustive search, there are four equivalence classes in Xj,2k, which is represented by[

1 1
1 1

]
,
[
1 1
1 −1

]
,
[
1 1

1 ωj2k

]
, and

[
1 1

1 −ωj2k

]
.

Note that for ωj2k = ±1, there are two equivalence classes (omitting the last two) and for ωj2k = ±i, there
are three equivalence classes (omitting the last). Consider the submatrices of G that includes the entry
on (1, 1) position, that is [

1 1
1 ∗

]
.

Because G ∼ Hj,2k, there are some cases to consider by lemma 3.8:

1. If [
1 1
1 ∗

]
∼
[
1 1
1 −

]
,

then ∗ = −1.

2. If [
1 1
1 ∗

]
∼
[
1 1
1 1

]
,

then there exist permutation matrices Pr, Pc and diagonal matrices Dr = diag{ri}, Dc = diag{ci}
with ri, ci ∈ T2k, such that[

1 1
1 ∗

]
= DrPr

[
1 1
1 1

]
PcDc =

[
r1 0
0 r2

] [
1 1
1 1

] [
c1 0
0 c2

]
=

[
r1c1 r1c2
r2c1 r2c2

]
.

By simple algebraic calculation, we get ∗ = 1.
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3. If [
1 1
1 ∗

]
∼
[
1 1

1 ωj2k

]
with j ∈ {1, 2, . . . , p2k − 1},

then there exist permutation matrices Pr, Pc and diagonal matrices Dr = diag{ri}, Dc = diag{ci}
with ri, ci ∈ T2k, such that [

1 1
1 ∗

]
= PrDr

[
1 1
1 1

]
DcPc.

Since Pr and Pc are permutation matrices, there exist the inverse of the matrices, which are also
permutation matrices, namely Qr and Qc, respectively. Thus, we have

Qr

[
1 1
1 ∗

]
Qc =

[
r1 0
0 r2

] [
1 1

1 ωj2k

] [
c1 0
0 c2

]
=

[
r1c1 r1c2
r2c1 ωj2kr2c2

]
.

From here, it is sufficient to check four possibilities of permutations using exhaustive search. By
direct computation, there are two possible values for ∗, which is ∗ = ωj2k or ∗ = ω−j2k .

4. If [
1 1
1 ∗

]
∼
[
1 1

1 −ωj2k

]
with j ∈ {1, 2, . . . , p2k − 1},

then by using a similar argument, we get ∗ = −ωj2k or ∗ = −ω−j2k .

As a result, every normalized BH(4, 2k) matrix G = [gpq] that is equivalent to Hj,2k must satisfy

gpq ∈ {±1,±ωj2k,±ω
−j
2k }

for all p, q ∈ {2, 3, 4}. Using this result, we can deduce that

1. H0,2k 6∼ Hj,2k for all j ∈ {1, 2, . . . , p2k − 1} as there is an entry ωj2k of Hj,2k, which is not in the set
{±1}.

2. Hj,2k 6∼ Hl,2k for j, l ∈ {1, 2, . . . , p2k − 1} with l 6= j because there is an entry ωl2k of Hl,2k, which
is not in the set {±1,±ωj2k,±ω

−j
2k }.

Therefore, every two matrices in {H0,2k, · · · , Hp2k−1,2k} are not equivalent. Thus, we proved that there
are at least p2k equivalence classes in BH(4, 2k). We restate this statement in the following theorem.

Theorem 3.10. There are at least p2k equivalence classes in BH(4, 2k).

By combining Theorem 3.7 and Theorem 3.10, we have the following theorem

Theorem 3.11. Let p2k be the number of equivalence classes on BH(4, 2k). Then p2k = k+1
2 for odd k,

and p2k = k+2
2 for even k.

As seen above, we can choose {H0,2k, · · · , Hp2k−1,2k} as the representative of each equivalence class
of BH(4, 2k). In the matrix form, every equivalence class of BH(4, 2k) can be represented by one of the
matrix in the set 


1 1 1 1
1 −1 1 −1
1 eπij/k −1 −eπij/k
1 −eπij/k −1 eπij/k



j=p2k−1

j=0

.

25



P. E. Putri, W. Wu / J. Algebra Comb. Discrete Appl. 11(1) (2024) 15–26

References

[1] A. T. Butson, Generalized Hadamard Matrices, Proc. Amer. Math. Soc. 13(6) (1962) 894–898.
[2] B. Compton, R. Craigen, and W. Launey, Unreal BH(n, 6)’s and Hadamard Matrices, Des. Codes

Cryptogr. (2015).
[3] J. Hadamard, Resolution d’une question relative aux determinants, Bull. Sci. Math. 17 (1893) 240–

246.
[4] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press (2006).
[5] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard Matrix of Order 428, J. Combin. Des. (2005).
[6] C. Koukouvinos, S. Kounias, and J. Seberry, et al., On sequences with zero autocorrelation, Des.

Codes Cryptogr. 4 (1994) 327–340.
[7] T. Y. Lam and K. H. Leung, On vanishing sums for roots of unity, Journal of Algebra 224 (2000)

91–109.
[8] P. H. J. Lampio, P. Ostergard, and F. Szollosi, Orderly Generation of Butson Hadamard Matrices,

Math. Comp. 89 (2020) 313–331.
[9] A. Munemasa, P. E. Putri, A matrix approach to the Yang multiplication theorem, Australas. J.

Combin. 70(2) (2018) 279–287.
[10] R. E. A. C. Paley, On Orthogonal Matrices, J. Math. Phys. 12 (1933) 311–320.
[11] J. J. Sylvester, LX. Thoughts on Inverse Orthogonal Matrices, Simultaneous Sign Successions, and

Tessellated Pavements in Two or More Colours, with Applications to Newton’s Rule, Ornamental
Tile-work, and the Theory of Numbers, London Edinburgh Philos. Mag. J. Sci. 4 (1867) 461–475.

[12] F. Szollosi, Parametrizing complex Hadamard matrices, European J. Combin. 29(5) (2008) 1219–
1234.

[13] R. J. Turyn, Complex Hadamard Matrices, Combinatorial Structures and Their Applications (Proc.
Calgary Int. Conf., Calgary, Alberta, 1969) (1970) 435–437.

[14] J. Wallis, Complex Hadamard Matrices, Linear Multilinear Algebra (1973) 257–272.
[15] J. Williamson, Hadamard’s Determinant Theorem and Sum of Four Squares, Duke Math. J. 11(1)

(1944) 65–81.
[16] P. R. J. Ostergard, Equivalence of Butson-type Hadamard matrices, J. Algebr. Comb. 56 (2022)

271–277.

26

https://www.ams.org/journals/proc/1962-013-06/S0002-9939-1962-0142557-0/S0002-9939-1962-0142557-0.pdf
https://doi.org/10.1007/s10623-015-0045-y
https://doi.org/10.1007/s10623-015-0045-y
https://doi.org/10.1002/jcd.20043
https://doi.org/10.1007/BF01388649
https://doi.org/10.1007/BF01388649
https://doi.org/10.1006/jabr.1999.8089
https://doi.org/10.1006/jabr.1999.8089
https://doi.org/10.1090/mcom/3453
https://doi.org/10.1090/mcom/3453
https://doi.org/10.1002/sapm1933121311
https://doi.org/10.1080/14786446708639914
https://doi.org/10.1080/14786446708639914
https://doi.org/10.1080/14786446708639914
https://doi.org/10.1016/j.ejc.2007.06.009
https://doi.org/10.1016/j.ejc.2007.06.009
https://doi.org/10.1080/03081087308817024
https://doi.org/10.1215/S0012-7094-44-01108-7
https://doi.org/10.1215/S0012-7094-44-01108-7
https://doi.org/10.1007/s10801-021-01109-8
https://doi.org/10.1007/s10801-021-01109-8

	Introduction
	Preliminaries
	Main results
	References

