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Abstract: From the study of the constants in the generic and the degenerate weight subspaces of the free unitary
associative complex algebra B, it follows that the constants in the degenerate weight subspaces of
the algebra B can be constructed from the corresponding constants in the generic case by a certain
specialization procedure. Here we consider that each constant in each generic weight subspace of the
algebra B can be expressed by certain iterated g-commutators.
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1. Introduction

In this paper we first consider the multiparametric quon algebra B and its g-differential structure.
Following the works [6, 9], we recall an explicit formula for computing constants in the generic subspaces
of the algebra B. Our motivation is to explain that the constants in any degenerate subspace of the
algebra BB can be computed from suitable constants in the corresponding generic subspace. Therefore, we
consider here a free unitary associative complex algebra B = C (e;,, ..., e;,) (generated by N generators,
each of degree one), equipped with g-differential structure by g-differential operators 9;: B — B, i € N,
where N = {i1,49,...,in} is a fixed subset of nonnegative integers. The g-differential operators 9; are
recursively defined by

81'(61'1‘) = (Sijl‘ + qijejai(x) (1)

for each z € B, i,j € N with 9;(1) = 0 and 9;(e;) = d;;, where J;; denotes a standard Kronecker delta
and the ¢;; are complex numbers. According to the formula (1), each passage of J; through e; (from the
left) is characterized by an additional factor g;;.
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Example 1.1. The actions of the operators 0;, i =1,2,3,... on the monomial e131212 = e1ezeieseresn
are given by

( ) = e31212 + q11¢13 €13212 + ¢31913G12 €13122
Oz(e131212) = S1Q23 €13112 + (131(123%2 €13121

( )

( )

q
= q31 €11212
0 foralli>4.

Therefore, 0; is a kind of generalized i-th partial derivative. In particular, if all ¢;; are equal to one,
then 9; coincides with an ordinary i-th partial derivative, e.g. 9;(e') = n - e~ '. We recall that the free
unitary associative complex algebra B is naturally ordered by total degree and, more generally, can be
viewed as multi-degree. The algebra B has a direct sum decomposition into the generic subspace B#"
spanned by all multilinear monomials and the degenerate subspace B4°8 spanned by all monomials which
are nonlinear in at least one variable, which can be written as B = B8® @ 598 with B&" = @ Bg,

Q a set
Bdee = @ Bg. Thus we distinguish generic and degenerate subspaces of the algebra B.
Q a multiset (not set)

We consider here that @ = {k}'!,...,k,"} denotes the multiset of cardinality n = ny + --- + n,, where
k; # k;j for each 1 <1 < j < p and there exists at least one n; such that n; # 1. Note that n; is considered
as the repetition frequency of the element k; in the multiset Q. In particular, if all n; are equal to one,
then @ is a set of cardinality n and we write it in the form @ = {l1,...,l,}, where [; # [; for each
1 <7< j <n. We call the weight subspace By generic if Q) is a set, otherwise degenerate. An arbitrary
weighted subspace Bg corresponding to a multiset @) of cardinality n is given by

Bg = spanc {ejl...jn =e€j, €, | J1..-Jn € Q} ; (2)

where @ denotes the set of all unique permutations of the multiset (). Thus, dimBg = @L where |C§|

denotes the cardinality of the set @ In other words, the dimension of a weighted subspace Bg is equal
to the cardinality of the set of all permutations of the multiset Q.

2. The constants in the algebra B

Of special interest in the algebra B are the elements, called constants, which are annihilated by all
g-differential operators 9;, i € N. We consider here linearly independent constants which we call basic
constants. A nonzero basic constant is called a nontrivial basic constant. The space of all constants in
the algebra B is denoted by C = {C € B| 9;(C) =0, i € N'}. Note that all g-differential operators 9;,
i € N can be considered as operators of degree —1, so we introduce an operator 9: B — B, of degree
zero, by the formula 9 =, , €;0;, where e;: B — B are considered as operators on B, see [6]. Then we
obtain that 9C = 0 if and only if 3;C = 0 for all i € A/. This implies that C = ker 9, where ker 9 denotes
the kernel of the operator d. The operator 0 preserves the direct sum decomposition of the algebra B.
Considering that 99: By — Bg denotes the restriction of the operator 9 to the subspace Bg, it follows
that 9%z = Oz for any z € Bg. Moreover, Cg = ker 0%, where Cq denotes the space of all constants
belonging to the subspace Bg. The space C also inherits the direct sum decomposition into subspaces
Cg, therefore the problem of determining the space of all constants in the algebra B turns on determining
the finite-dimensional spaces Cq for all @ (multisets and sets) over AN of cardinality n > 2. Note that
Co = {0} for |Q| = 1. The decisive role in the computation of the constants in the algebra B is played by

the action of 9; on the monomial e; = e;,..j, in the monomial basis B = {e; | j € @} of the subspace
B, given by an explicit formula: B

diej) = Y Qi Dijur €y o i (3)

C 1<k<n,jr=i
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for each j € @ with j = ji...jn, where we have applied (1). Here j/;; denotes the omission of the
corresponding index ji, see Example 1.1. The number of terms in the sum (3) is equal to the number of

occurrences of the generator e; in the monomial e;. In particular, an important special case is 0;(e}}) =

], el !, where

n—1
ly = ¢ =1+a++q (4)
k=0

is an ¢ analogue of a natural number n. On the other hand, it follows from (3) that the action of the
operator ¢ on the monomial e; in the monomial basis Bg of By is given by

aQ(el) = Z Qjmgr " q‘jmjm—lejmjlu_]i\n,”jn’ for each l € Q (5)

1<m<n

Example 2.1. Considering the monomial e131212 from Example 1.1, we obtain by applying (5) that the
action of the operator % on this monomial is given by

2
3Q(6131212) = €131212 + ¢11913 €113212 + 411913912 €113122

2 3
+ 421923 €213112 + 51923922 €213121 + 431 €311212-

The problem of determining the space Cg of all constants belonging to the subspace By amounts
to determining the kernel of the operator 99 for any multiset (i.e., set) @ of cardinality n. So we first
introduce the simpler operators

T € = Dmir " Dimdm—1%,,51do.. Tomeriin (6)
for each j € @, 1 < m < n acting on By, where T1 1 = id (i.e., in general T}, ,, = id), and then we rewrite

the operator 9% (c.f. (5)) in terms of the operators (6) as follows 99 = Z Ton.1- Then we get

m=1
99 =Dqn-Coh, (7)
with
.
Com=(id—Tnn) - (id=Tyn) = [ (id—Tn), (8)
2<m<n
.
Dom=(id=TPTpo) - (id—T{ Too) = [[ (id—T7Tm2) (9)
2<m<n

(c.f. [9]), where the action of the operators Ty, 1, 2 < m < n on B is given by (6) and the action of the
operators 1% Tpy 2, 2 < m < n on Bg is given by

2 —_— . . . . DRI . . —
T Tin2€5 = 01 Qimgz " Dmdm-1€4 40 doe i in (10)

with o5 := ¢ijq;i. Here we use the notation T¢ T, 2 := T35 Tpn,2. Note that (7) is a special case of the
braid factorization from [1, Proposition 4.7] (c.f. with [5]).

Remark 2.2. Let us denote by By the matriz of the operator 0%, by Co.n, Dg.n the corresponding
matrices of the operators Cq n, Dg.n, and also by Ty,1, T3 Ty, 2 < m < n the corresponding matrices
of the operators Ty, 1, Tf Ty 2 with respect to the monomial basis Bg of a subspace Bg (considered with
Johnson-Trotter order on permutations, see [10]), where we denote by I the unit matriz corresponding



M. Sosié / J. Algebra Comb. Discrete Appl. 11(2) (2024) 105-125

to the operator Ty 1 =id (i.e., Ty m =id). Then the rows and columns of all introduced matrices are
indezed by the elements of the monomial basis of Bg. Thus, these matrices are square matrices whose

order is equal to dim Bg = |Q|. Now (7) can be rewritten in matriz notation as By =Do. - (Con) ',

which implies

Example 2.3. We briefly explain the above matrices for a weighted subspace Bg corresponding first to

det BQ =

det DQ,”
det CQ,n ’

a set Q = {l1,l2,13} and then to a multiset Q' = {k3,ko}, see also Example 3.1.

1. Let Q = {l1,l2,13} be a set of cardinality 3. Then the monomial basis of a subspace Bg is given

by Bo = {ej1j2j376j1j3j27ej3j1j2aejsjzjw6j2j3j17ej2j1j3}' Here the matriz Bq of the operator a9
Ty + I, where the matriz Ty, 1, 1 <m <3 corresponds to the op-
erator Ty, 1 with I =T 1, see (6). Applying (8) and (9), we get Cgs= (I —Ts1) - (I—Ta1),

is given by Bg =

T3 +

Dgs= (I-T3Ts,)  (I—-T%), where Too = 1. Thus, using (6) and (10), we obtain

€j1j2Js
€j1j3j2
B =
733271
€jajag1
€j2j173

€j1j273
€j1jsj2
I— T3’1 _ 2]3]1]2
J3J271
€jajsi
€213

€j1j27s
€j1j3j2
I— r:[1271 _ Z]3]1]2
733271
25351
€j2j1Js3

€j1j243

€41 jsj2

I-T{Tyy= o0
J3J2J1

€j2j3j1

€j2j1j3

I-T2=

1 0 0 0 4515295153 djij2
0 1 dj1j3 4515295153 0 0
Ujsjr Gsjz s 1 0 0
0 0 1 Qjs3352 4535195352
0 0 4525195253 Q5253 1 0
45251 Q525195253 0 1
1 0 0 0 45152951 js 0
0 1 0 451524951 js 0 0
9535195352 0 1 0 0 0
0 0 0 1 0 35195352
0 0 4525195253 0 1
0 4535195253 0 0 1
1 0 0 0 0 —qj, 4y
0 L =gy 0 0 0
0 —g; L1 0 0 0
0 0 1 g 0
0 0 0 —4jsj3 1 0
~Qjoji 0 0 0 0 1
1 —Oj1j23j2js 0 0 0 0
051535352 0 0 0 0
0 0 1 051535152 0 0
0 0 ~ 03425395251 1 0 0
0 0 0 0 1
0 0 0 0 — 03415295153 1
€j1j233 1- Oj1j2 0 0 0 0 0
€j1j3j2 0 1- Oj1js 0 0 0 0
€j3j1ja 0 0 1- Oj1j3 0 0 0
€jsj2i1 0 0 0 1- Ojzjs 0 0
€jajsin 0 0 0 0 ~ Tjajs 0
€jaj1js 0 0 0 0 0 1- Oj1j2

—0jajs 931
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2
where det (I—Ts1) = (1—Uglj2j3) ; det(I-Tay) = 2(1—%3‘2) '2(1—Uj1j3) '2(1—0j2j3);
det (I*T% T372) = (1 70’j1j2j3) ) det (I*T%) = (1 70’j1j2) (1 *O'jlj3) (1 7O'j2j3) from whzch

. . det D det(I-TF T3,2)-det(I-T3
we obtain by applying (11) detBg = dztcg’; = de(t(I—ll‘g,lg)?d)et(I—(Tm;)’ i.e.,

det Bo = (1—0j,5,) - (1 = 05,55) - (1 = 0jaj) - (1 = 05505 -

Consider the given set Q = {l1,12,13} of cardinality 3 and all its subsets Ty = {ly,l2}, To = {11,153}
and T3 = {l2,13} of cardinality 2, we conclude that det Bg can be written as

det BQ = (1 - Jlllz) : (]- - Jllls) : (]- - lels) : (1 - 0111213) (12)

or in the shorter form detBg =(1—opn) - (1—orn,) - (1 —orn,) - (1 —0g), i.e., in the following

form detBg =[] rcq (1 —or), see (15). Note that here all (|T| —2)!- (3 — |T|)! are equal to
2<|T|<3

one for each 2 < |T| < 3.

. Let Q' = {k},ko} be a multiset of cardinality 3. Then, similarly as above, the monomial basis of
a subspace Bg: is given by Bor = {€iyi1iy, €irigiy» Cininiy } and the matriz Bos of the operator o9 is
given by BQ/ = T3,1 + T211 + I, hence CQ/’g = (I — T371) . (I — Tg’l) and DQl,g = (I — T% Tg)g) .
(I—T%). By the use of (6), (10) we then obtain

Civivis | 1+ Givir Qivia Qivio 0
BQ’ = Ciyigiy 20 1 Qiyiy (]- + qi1i1)
Ciziviy | igiy Qisiy 1
Civivis | 1 —GiiyGivia 0
I-Ts31= €, 02 1 ~Qiyi1Qivis
Cigiviy [ gy 0 1
€iviis | 1— @iy 0 0
I - T2,1 - eilizil 0 1 _qiliz
6i2’i1i1 L 0 _qigil 1
5 €i1i1in [ 1 _q1‘21i1Qi1i2 0
I- Tl T3,2 = Ciyigiy —Oi1iaQiziy 1 0
Cigiviy | 0 0 L= 0402804
9 €i1i1in [ 1- q121i1 0 0
I- T1 = €i1i0i1 0 1-— Tiiis 0
eiQilil L 0 0 ]‘ - Gi1i2
see also Example 3.1. Note that o;; = qijq;; implies 04,4, = qu. Now it is easy to verify
that det I —Ts1) = 1 —¢2, 02, , det T—Ta1) = (1 —qiy4y) - (1= 04y4,), det (T—T3T3,) =

(1—q?;,02.) (1= i1y 0iyiy), det (T—T3) = (1—q2,,) - (1 — 04,4,)° from which we obtain by
det DQ/,S

1112
. . - (1_q1'211'10'$11'2)'(1_Qi1i1O'iliQ)'(l_Qilil)'(1+Qi1i1)'(1_0i112)2
applying (11) det Bg = 4 Cors (1=iy11)-(1=0ir05)-(1-a2,;, 0% ,.)

, 1€,

det BQ' = (1 + qhh) ’ (1 - Ui1i2> ! (1 - qi1i10i1i2) :

If we now consider the given multiset Q' = {k? ko} of cardinality 3 and also its two subsets
T) = {k?} and Ty = {k1,k2} of cardinality 2, we obtain

det BQ’ = (1 + qklkl) : (1 - Uklkz) : (1 - qklklokle) (13)

which can be written in the following shorter form det Bqg: = Bry - Bry - Bor, where Bry =1+ gk, 5
Bry =1 = Okikas B =1 = Qhyky Ohiyks -
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In general, the entries of the matrix By (@ is a multiset) are polynomials in ¢;;’s, therefore its
determinant is also a polynomial in g;;’s. Considering the factorizations (8) and (9) of the operators
Cgn and Dg 5, and the given matrix notation, we obtain that, the polynomial det Bg (c.f. (11)) can be
factorized by the factors Sz for each T C @Q, |T| > 2, where each Sr has the corresponding polynomial
form. Thus, from the identity det Bg = 0 it follows that B¢ vanishes for at least one 7' C Q. Of particular
interest are the actual values of parameters g;; (called singular values or singular parameters) for which
at least one By = 0 holds. We say that parameters g;; are singular if det Bg = 0, otherwise they are
regular (called parameters in general position). Thus, if the parameters ¢;; are regular, then there are
no constants in Bg. In other words, there are constants in Bg, i.e., the space Cg is nonzero only for
singular parameters, c.f. [2]. We distinguish two types of singular parameters: @Q-cocycle condition and
(Q; T)-cocycle condition for the fixed T C @ given in [6], but we consider here only the Q-cocycle condition

cQq={Bo=0, Br#0 forall T C Q}, (14)

because it is the only one that plays a key role in the calculation of the constants. It is shown that the
constants under the (Q;T)-cocycle condition can be obtained from the corresponding constants under
the Q-cocycle condition by a special specialization procedure. From this we conclude that the space Cq
is nonzero only for the singular parameters ¢;; for which det By vanishes, and that all constants in Bg
can be obtained from those under the @Q-cocycle condition. The Q-cocycle condition (14) is sometimes
written in the form Sg = 0.

In particular, if @ = {l1,...,1,} is a set (the generic case) of cardinality n, then the entries of the
matrix By are monomials in g;;’s, therefore its determinant (11) is given by an explicit expression in
terms of the product of the binomial factors 1 — o for each T' C @, as follows

det Bg = H (1— UT)(\T\%)!-(nf\T\)I ’ (1)
TCQ
2<|T|<n
where \T| 1ndlcates the cardinality of T, see [6, 9]. If |T| =k for every 2 <k <mn, then there are
(k) m terms of binomial factors 1 — o7, where each term 1 — o corresponds to the corresponding

subset T' C Q, |T| = k with

H Oab = H qab- (16)

{a,b}CT a#beT

We consider here the above identity 045 = gapqsa. Then, in the generic case, the Q-cocycle condition (14)
has the form

cog={1—-0g=0, 1—0op#0 forall T C Q}. (17)

Thus, in the generic weighted subspace By C B there are constants if the Q-cocycle condition (17) is
satisfied.

Example 2.4. Considering the obtained matriz Bg, Q = {l1,l2,l3} and its determinant from Ezam-
ple 2.5, it follows, that the corresponding Q-cocycle condition (17) is given by 1 — 0,151, = 0, see (12). It
goes without saying that 1 — oy, #0, 1 —oy,1, #0, 1 — 01,1, # 0. Similarly, with respect to the matriz
By, Q' = {k?,ka} and its determinant from Example 2.3, the corresponding Q'-cocycle condition (14)
is given by 1 — Qi k, Ok ko, = 0, see (13), where 1 + gk, #0 and 1 — ok, # 0.

Recall now that any weighted subspace Bg corresponding to a multiset (or set) @ of cardinality n
is given by (2), and observe, that if the Q-cocycle condition is satisfied, then, there are constants in the
subspace Bg and there are no constants in the subspaces By for any proper subset 7' C ). This is directly
related to the fact that the operator (id — T7 T}, 2) is not invertible, but all the operators (id — T T}, 2)
for m = 2,...,n — 1 are invertible, so the identity (7) under the @Q-cocycle condition can be written in
the following form by using (9)

02 Com- [ (id—TPTw2)" = (id—TETnz).

2<m<n-—1
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Therefore, for each Z € B we get

9% Con- [[ (id—T2Tws)™"

2<m<n-—1

Z=(id=T{Th2) - Z (18)

where we can establish a relationship ker (id — T¢ T, 2) C Bg to ker 99. We recall that ker 99 = Cq,
where C¢ is the space of all constants in Bg. Then for any U; € ker (id — TZ T, 2) the right-hand side of
(18) is zero, so the corresponding vector

X=Con- [[ @d-T2Tw2)"' U, (19)

2<m<n-—1

belongs to ker 9. Then X is a constant in Bg, see [9, Proposition 2|. Thus, the vectors in the kernel
of the operator (id —T¢ T, ) have a crucial importance in determining the constants in Bg. So the
problem of computing the constants in Bg boils down to the following two questions: first, how to write
the vectors spanning the kernel ker (id — T% T}, 2), and second, how to find a basis?

For the generic case, the above questions are solved in [9], where it is shown that under the Q-cocycle
condition (17) all vectors U; € ker (id—TET,2), j € Q are given by

Uj=(id =T Tn2) ' - (1—00) ¢ (20)
Let us now denote by Qqp, 1 < a,b < n a diagonal operator on Bg (c.f. (2)) defined by
Qabej = .5, €5 (21)

J=J1j2---jn € @ Then we denote a diagonal operator Q43 = Qab - Qva, 1 < a,b < n on Bg, which,
by applying (21) and the previously defined identity o;,;, = . j,Zjvja» 1S given by

Q{ab} €5 = Tjajs €5- (22)

Note that Qup - Qca = Qca - Qap. Similarly, we denote by Q12 k) = H Q{apy diagonal
{a,b}C{1,2,....k}
operator on Bg for each 2 < k < n given by

Qi2..k) € = 1T Ojajs € (23)
{a,b}C{L,2,....k}

where we have used (22). We note that the right-hand side of (23) is connected with the identity (16),
therefore we denote by

Q1.2 .k} €jujaein = Tjrja..in Cirja-ins (24)

where 0, 4,.. ;. is equal to the right-hand side of (23).

Then, for the set @ of cardinality n we get (1—0q)ej,..j, = (id — Q1,2 n}) €jy...jn» 50 (20) we can
write as Uj = (id —T? ng)_l . (id — Q{l,gw’n}) ej, from which it follows that the vector X; € ker 0%
(c.f. (19)) is given by

Xl = CQ,n : (DQ,n)_l : (id - Q{l,z,...,n}) € (25)

for each j € @, where we used (9). Thus, with the expression (25), the formula for computing the constants
in Bg is given when the Q-cocycle condition is satisfied, but here an additional problem of determining
the inverse of the operator Dg ., arises. This problem is solved in [9], where first, assuming that oy # 1

holds for all ' C (), the inverse of the operator Dg ne; on Bg is found in the form (DQ’n)*1 ej =

111
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112

n) - n | €; an en it is shown tha e constants X, in under the ()-cocycle condition are
0,)"" - Eg.n) e; and then it is shown that th tants X; in By under th le condit
expressed by

X; = (Can(Qu1)™" o) es (26)

JjE Q, see Theorem 1 and Theorem 2 of [9], where an operator Cg ,, on Bg is given by (8), a diagonal
operator Q,, on By is given by

Qnej = (id—Qpuay) - (id— Q) - (id—Qua..ny)ej (27)

and similarly Q,, 1 ej = (id — Q{l,g}) . (id — Q{17273}) e (id — Q{172,_“7n_1}) ej, which can be written by
applying (24) in the following form

Qn1€j1jogn = (1= 04150) (1= ujaga) (1 = Cjrgargus) €jrjanein (28)
J=J1j2- - Jn € @, see also (23). Moreover, we write here the operator Eg ,, on Bg in the following form

EqQ.n€jijs...jn
= Z H Tig=101)dg=1(2)Tg=1(i) H Dy—1(ayig—10) | Clg=1(1)dg=1(2) T g=1(m) (29)
gES1XSn_1 \i€Des(g—1) (a,b)el(g™1)

where

I(g7") ={(a,b) [1<a<b<n, g (a) > g7 (b)}

{
denotes the set of all inversions (a, b) of the permutation g=* € S x S,,_1 and
Des(g™) = {1 <i<n—1]g7'G) > g (i +1)}
denotes the descent set of the permutation g=1 € Sy x S,,_1, see also [4].
It is obvious that g~ € S; x S,,_1 is the inverse of the permutation g € S; x S,_1.

Remark 2.5. We note that an operator Eg ., given by (29) is equal to the operator Eq ., from Theorem 1
of [9], which we repeat here

Egn= Y. Wil9)-g (30)
gES1XSp—1
where W, (g) = H Qq1,2,....iy- Moreover, by applying (24), a diagonal operator Wy(g) can be writ-
i€Des(g—1)
ten in the following form Wy(9) €j,j,.. 5, = H Ojija..js Cirja.in- We emphasize that there is a
i€Des(g—1)

misprint in (30) (which is written in Theorem 1 and Theorem 3 of [9]), because on the right-hand side of

(80) G should be written instead of g. In fact, we denote by G = p(g*) a (twisted regular) representation

on the subspace Bg of an element g* € A(Sy,) from a twisted group algebra A(S,,) of the symmetric group

Sp, given by g* = H Xap g, see [8, Definition 2.1] where I(g~') denotes the set of inversions of
(a,b)€I(g™1)

g ' €8,. Then we obtain that

Gejljz»--jn =0 (g )6]1]2-~]n - H q]g—l(a)Jg—l(b) ejg—l(l)]g—l(z)-~»]g—1<")' (31)
(a,b)€I(g™")
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We note that the right-hand side of (81) can be written as

H Diar gy Cig=101)0g=1(2)Tg=1(n) H Dy dar Cg=101)3g=1(2) 9= 1 (n)
(b',a’)€I(g) (a’,b")€I(g)

see [7, Lemma 4.6], but we will not use this notation here because (81) is more convenient with the re-
maining notation of the operator Eg., from (29). Briefly, if (a,b) € I(g~") then it holds that a <b
and g~1(a) > g71(b). Let denote by o' = g~1(a) and V/ = g=1(b), from which follows g(a') =a and
g(')=b. Then a <b and g~'(a) > g~ (b) implies g(a’) < g(t/) and a’ > V. We thus obtain V' < a
and g(b') > g(a’), from which follows (b',a’) € I(g).

Note that if k=ky...k, € @ and j=j1...Jn € @ are in the relation with ky = jo-1(,) for all
1 <p < n, then the monomial ey, = ey, k,..k, n the monomial basis of By is given by

€k = €iy—101)dg=1(2) Fg—1(n)

so that (29) can be written in the following shorter form

Eqnej = Z H Tjg=101)dg=1(2) g1 (3) H Ty—1(ayig—100) | k-

g€S1XSp—1 \i€Des(g—1) (a,b)el(g™1)

Recall also that ¢;; are complex numbers, so it is easy to see that it follows from the right-hand
side of the formula (29) that Eg,, is a diagonal operator. Using the fact that the product of diagonal

operators is commutative, we get (Do) " = (Qn) " - Egn- = Eg.n - (Qn) " and then with (27) we get
(Dgn)~t- (id — Q{Lg)m’n}) =FEgn- (Qn)_1 . (id — Q{ng}n}) =FEgn- (Qn_l)_l, therefore from (25)
follows (26).

Remark 2.6. In the generic case there are n! (nontrivial) vectors X; € ker 99 (c.f. (26)), but they

are not linearly independent for each j € @ In other words, they do not form a basis of ker 0%,

— —
see [9]. If we now use the abbreviations V := H (td—Tpm1) and W = H (id —T? Tm,g),
2<m<n—1 2<m<n—1

then the operators Cq n and Dg ., given by (8) and (9), can be written as Cqr = (id —Tp1) -V and
Do = (id — T2 T, 2) - W, therefore we can rewrite (19) as

X=(d=T,.) V-W .U (32)

where W is invertible under the Q-cocycle condition. Then X € ker 09 if U; € ker (id —T? Tn’g), so it
turns out that B

dim (ker(id — T Ty, 2)) =n-(n—2)!  and  dim (ker(id — T, 1)) = (n — 1)\

Moreover, we obtain from (32) that dim(ker 99) = dim(ker(id — T2 T, 2)) — dim(ker(id — T}, 1)) = (n—2)!,
which leads to an alternative result of Fronsdal and Galindo [3, Theorem 4.1.2] that the space of constants
in the generic case has dimension (n — 2)!.

We can now conclude that if Q = {l;,1ls,...,1,} is a set of cardinality n > 2, then under the Q-cocycle
condition the number of vectors X; € ker 09 given by (26) can be reduced to (n — 2)! by

-1
Xl1l2j3~-jn = (CQJL : (Qﬂ—l) : EQJL) Clylzjs...5n (33)

for all js...j, € P, where P = Q\{l1,ls} = {l3,...,1,} is a set of cardinality n — 2 obtained from the

set ( by omitting the first two elements l; and I of Q. Then |]3| = (n —2)!. Thus, the indices of X
on the left-hand side of the formula (33) have the form that the first two indices Iy, € @ are fixed and

113



M. Sosié / J. Algebra Comb. Discrete Appl. 11(2) (2024) 105-125

114

the remaining n — 2 indices I3, ...,l, € Q vary. Here we should note that the application of (29) leads
us to the conclusion that the right-hand side of the formula (33) consists of (n — 1)! terms in which the
indices of the monomial e;,;,,.. ;, are such that its first index /; is fixed and the remaining n — 1 indices
lajs ... jn vary. Moreover, we first introduce certain iterated g-commutators Yj, .. jp» Which are recursively
expressed by

)/jl = €1 le---jp = [Yj1~~jp—1’ejp]qujl...qujp71 y (34)
where [V, g, i€, ) g g = Yinedoo1€y = @ Gipy-1€5, Vi gy and we then obtain
Yjija.in = CQin €jrja...in (35)
jij2 ... Jn € @, see [9, Proposition 4]. On the other hand, we obtain with (28) that
. 1
(anl) €j1ja.fn = €j1j2...Jn> (36)

(1= 04142) - (1= jugngs) - (L= Ojrjn )

where o, ;,..5, is given by (23) for each 2 <p <n —1. Let R = {lz,...,1,} C @ be a set of cardinality
n — 1, n > 2, which we obtain from the set @ = {l1,l2,...,1,} by omitting the first element [; of @, then

a monomial e;,;,j,.;, on the right-hand side of (33) can take the form e;, ,j,.j,, where jojs...Jj, € R.
Using (29), (35) and (36), we thus rewrite the right-hand side of (33) into the form

H DGy—1(aydg—10) H Tlijg—1(2)+dg=1(i)
Z (a,b)€I(g~1) i€Des(g~1)

geES1XSh_1 (1 - o-lljgfl(Q)) : (1 - o-lljgfl(g)jgflw)) T (1 - Ulljg,1(2>...jg,1(n71)

) .Ylljg‘lﬂ)“'jg—lm)’ (37)

where we used that the multiplication in the numerator of (37) is commutative, since all values are
complex numbers. Thus, if g = id, then g~! = id, so the sets I(id) and Des(id) are equal to an empty
set, resulting in both products in the numerator of the fraction of (37) being equal to one. From the fact
that g € S1 x S,_1 fixes the first index /3 in @, it follows that (37) consists of (n — 1)! terms in which the
first index is fixed and the remaining n — 1 indices vary. Thus, under the @-cocycle condition 1 —og =0
(c.f. (17)), each vector X; € ker 99 in (33) takes the form (37). This gives rise to the following theorem.

Theorem 2.7. Let the generic weight subspace Bg C B correspond to a set Q@ = {l1,ls,...,l,} of car-
dinality n > 2 and P = {ls,...,l,}. If 1 —og =0, then the space Cq of all constants belonging to the
subspace Bg consists of (n — 2)! nontrivial basic constants which can be expressed in the form

Clilzjs...jin = (38)

H Tig—1(ayig—100) H Tlijg—1(2)+dg=1(s)

(a,b)€I(g™1) i€Des(g—1)

gES1XSp—1 (1 - Ulljg—l(z)) ’ (1 - Ulljg—1(2)jg—1(3)> T (1 - O-lljg—l(g)-ujg—l(n_l))

TR R

for every js...jn € ﬁ, where g € S1 X S,_1 fizes the first index.

Note that Theorem 2.7 gives the same result as [9, Theorem 3], where G should be written instead
of g, see Remark 2.5. The nontrivial basic constants are described in more detail here using the formula
(38), which is explained in the following examples, where we write the Q-cocycle condition (17) in the
form 1 —o0g =0.

Example 2.8. Let Q = {l1,l2} and 1 — oy,;, = 0. Then it follows from n = |Q| = 2 that (n—2)! =0l =1
such that under the Q-cocycle condition 1 — gy,;, = 0 the space Cq of all constants belonging to the sub-
space Bg consists of a nontrivial basic constant, consists of one term. Note that in the set Q = {lils,l2l1}
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there is only one permutation g = l1ly = id which fizes the first index I € Q, where g~ = l1ly = id and
I(id) = Des(id) = 0. For n =2 the numerator of the fraction of (38) multiplying the corresponding it-
erated g-commutator ml]ﬁ*l(z) =Y, is equal to one. On the other hand, it follows directly that the
denominator of the given fraction is also equal to one, so the corresponding fraction multiplied by Yy, is
equal to one. Thus, under the Q-cocycle condition 1 — oy,1, = 0 there is only one nontrivial basic constant

Cl1l2 = }/lll27

where Y1, = [611,612]%11 = Clhly — Qa1 Claly -

Example 2.9. Let Q = {l1,l2,13} be the set of cardinality 3 and let 1 — 0y,1,1, = 0. Then the space Cq
of all constants belonging to the subspace Bg consists of a nontrivial basic constant Cj, 1,1, consisting of
two terms as follows

OO 'Ullj.q;l@) (39)

. Yi i
RGP ) 1—on; Werl@lg513)
95~ (2)

1 4
Y,

Chisiy =

1= T,
Note that the set @ consists of six permutations, of which only the following two permutations
g1 = lilols = id and g9 = l1l3ls are elements of S1 X So. Now it is easy to see that 91_1 =g1 =1id, so
that 1(id) = Des(id) = 0. So, by applying Jomt(2) = lo and Jomi(3) = I3, the first term of the sum of the
formula (39) is given by

1 1

v , - -

1), —1,5y] -1

1_Ul1j 1 91 (2797 " (3) 1—0’lll2
g1 (2)

On the other hand, it follows that g5 ' = go = lilsla, so I(g; ) = {(2,3)}, Des(g5') = {2}. Then, by
applying jg;1(2) =3 and jg;l(g) = ly, the second term of the sum of the formula (39) is given by
4q;

, p—
ooyt g1 _ Qisly " Olyls

TG 1T 1,
1—o0y; g5 " (2)795 7 (3) 1—o0
113951@) lils

. }/115312'

Thus, under the Q-cocycle condition 1 — 0y,1,1, = 0, the space Cq consists of a nontrivial basic constant

1 Qi35 0141
31200113
Cl1l2l3 = ’ Y2112l3 +

.Y, 40

1—0’1113

where Y iyiq = [Yi1i2’ei3]q1,3i1qi3i2 = €iyigiz — Qigiy Ciginig — igis QiginCiginig T Qigis Qigiy QigisCiginis -

Example 2.10. Let Q = {l1,12,13,14} be the set of cardinality 4 and let 1 — 01,1511, = 0. Then the space
Cqg consists of two nontrivial basic constants Cy 1,151, and Ci,141,, each consisting of sixz terms. Note
that the set @ consists of 24 permutations, of which only the next siz permutations g3 = l1lsl3ly = id,
go = l1l2l4l3, gs = l1l3l2l4, g4 = l1l3l4l2, gs = l1l4l2l3, gde = l1l4l3l2 are elements Of Sl X 53. Then we ob-
tain g7t = lilalsly = id, I(id) = Des(id) = 0, g5 ' = lilalals, I(g5") = {(3,4)}, Des(g3') = {3}, 95" =
lilglaly, I(g:;l) ={(2,3)}, Des(ggl) = {2}, 921 = lLilylals, 1(921) ={(2,3),(2,4)}, Des(gil) = {2},
ggl = hlslals, I(ggl> = {(274),(3,4>}, Des(ggl) = {3}', g = lilalsla, I(ggl) = {<2’3)’(2>4)’(3a4)}:
Des(gg ') = {2,3}, from which we deduce, that under the Q-cocycle condition 1 — oy,1,1,1, = 0, the space
Cq consists of the following nontrivial basic constants



M. Sosié / J. Algebra Comb. Discrete Appl. 11(2) (2024) 105-125

1 QlalsOl11s1
Clilalgly, = Y0040, + NS Y1114
10263t4 162t3t4 16204103
(1 - Ulllz)(l - Ulll2l3) (1 - Olll2)(1 - 011l254)
q13l20l113 ql4lgql4lgalll4
+ (1 —01,0,)(1 — 0141515) Yatatats + (1= o1,0,)(1 = 0131514) Vititals
13 1623 1t4 16244
qQi3159141501,1314 Qi3loQ14159141301114, 0141314
1 1 ' le1lsl4lz + 1 1 ' }/21141312
(1 = 01315) (1 = 0141514 (1= 01,0,)(1 = o1,151,)
1 Q1314011151
Clilalyls = Y00, + N DINAN
16264103 10206403 16263t4
(1 - 01112)(1 - Ul11214) (1 - 01112)(1 - Ulllzls)
ql4l20l1l4 QZngngl40'l1l3
+ 1 1 Y., + 1 1 Y5000,
(1 = o1,0,)(1 = o13151,) (1 = 0115) (1 = 0y1515)

i3l 914150141514

Qi315915149141501113011 1314
Y14 41
(1_011l4)(1_011l3l4) 1l3lalo ( )

4
(1 - 01113)(1 - 0115314)

Y41, +

The expressions of the nontrivial basic constants in By, ,1,1,1; can be found in [9, Example 4], where
we have used the abbreviations x* := ﬁ, xt = 1= In this case, there are six nontrivial basic constants,
each consisting of 24 terms in lexicographic order.

In agreement with the notation introduced earlier, the problem of finding the explicit formula describ-
ing the constants in the generic subspaces of the algebra B is solved by the formula (38) of Theorem 2.7,
in which under the Q-cocycle condition (17) the constants in Bg are expressed by certain iterated gq-
commutators. In doing so, we have shown that vectors play a crucial role in the kernel of the operator
(id — TE T, ). Similarly, we can compute constants in the degenerate subspaces of the algebra B. How-
ever, the problem of finding the explicit formula describing the constants in the degenerate subspaces of
the algebra B is not so easy to solve, because for each multiset () the polynomial det By has a different
factorization with the factors B, T' C @, so it is much more difficult to express the corresponding de-
terminant (11) of the matrix Bg by an explicit formula for each multiset ). Thus, the factor 8¢g in the
Q-cocycle condition (14) takes a different form depending on the given multiset ). In accordance with
the above procedure, we briefly describe below the corresponding determinant (11) of the matrix B, the
@-cocycle condition (14), and nontrivial basic constant in the degenerate subspace Bg corresponding to
the multiset @, which first takes the form @ = {k"} and then Q = {k}~!, k2}, see also [6], where the basic
constants are also given under the (Q; T")-cocycle condition for the fixed T' C @), which is not considered
here.

1. Let @ = {k™} be a multiset of cardinality n > 2. Then in this case we obtain that the determinant
(11) is given by det Bg = [n]g,, (see (4)), so that the Q-cocycle condition (14) has the form c¢g =
{[n]gs. = 0}, which we can rewrite into the form

L+ qre +apg + - +app - =0. (42)

If the Q-cocycle condition (42) is satisfied, then the space Cg = {Cn } of all constants belonging to
the degenerate subspace B¢ consists of a nontrivial basic constant of the following form

Ckn = €kn. (43)

2. Let Q = {k""', k2} be a multiset of cardinality n > 3. Then the determinant (11) is given by

n—2

det Bjn-1yp, = [n— l]qklkll . H (1= aj e, Okiiks)
i=0

(c.f. (13) for m = 3), where [n — l]qklkl
with the form given in (4) for all 2<p <n—1. Then the Q-cocycle condition

! denotes the factorial, i.e., the product of all polyno-

mials [p] .
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(14) has the form cg = {1 - qzlﬁoklb =0, 1= ¢} 1, Okky 70, [p]qklk_1 # 0} forall0 <i<n-—3,
2 < p <n—1, which we rewrite in the form

1= g2 Ok, = 0. (44)

If the @-cocycle condition (44) is satisfied, then the space Cg = {Ck?flkz} of all constants belonging
to the degenerate subspace By consists of a nontrivial basic constant of the form

Ck);"_le - Yk:zk?—l7 (45)

where Ykzk?_l denotes an iterated g-commutator, see (34). For more details, see [6, Degenerate
cases| and [2, Appendix. Examples].

3. The relation of the constants in degenerate subspaces B¢ of
the algebra B to the corresponding constants in the generic case

Considering that it is much more difficult to formulate an explicit formula describing the constants in
the degenerate subspaces Bg of the multiparametric algebra B, the following questions naturally arise for
arbitrary multiset Q: is it possible to determine the corresponding Q-cocycle condition (14) from (17)
and is it then possible to determine constants in degenerate subspaces of the algebra B using the formula

(38)?

Following the works of [2, 5] and also [6], we first consider that any multiset of cardinality n can be
viewed as the set of the same cardinality n in which some of its elements are repeated. Suppose, then, that
Q=A{l,....l,} = {k{”, RN I k;”} is a multiset of cardinality n = ny+---+nyp, where k; # k; for
each 1 < i < j < p and there is at least one n,, such that n,, # 1. We recall that n,, is considered as the
repetition frequency of the element k,, in the multiset ). Then we define the submultiset Qk,, ,1 < m < p,
by removing one copy of k;, from the multiset @, i.e., Qk,, = Q\{km} = {kfl“, oy k= k;;fp}. In
agreement with the introduced notation @ for the set of all unique permutations of the multiset (), we
denote by @km the set of all unique permutations of the multiset @), . Then we define the functions

a: Q — C\{0} and by, : Qx,, — C\{0}, L<m < pby
a(J1--Jn) = Qujr = Ljn1> i dn €Q, (46)

o~

bkm(jl...km...jn):qkm%~a(kmj1...l;,\n...jn) i Fm g € Q.. (47)

which are called commutation factors (c.f. [2]). We note here that we define by, only for distinct elements
kp, of the multiset @), hence we write 1 < m < p. In other words, by k)" we mean that the element k,,
of @ is repeated n,, times, so for all k] we get only one multiset (), and also one function by, . Thus,
in (47), one k,, of k'™ is deleted (it does not matter which k,, of k7). Note that we can write (47) as
follows

o~

bk, (jl ok -jn) = Okpju Qs " Gk " L1 (48)

where we have used (46) and the identity o;; = ¢;;q;;- We emphasize, the factors a (ji...Jm) and
bj, (J2-..Jm) occur in the expressions gj,. j, = @jjm_1 80d Oj i Givjo * imim_ . Of the action of the
simpler operators Ty, 1 and T¢Ty,2, 2 <m < n on Bg, given by (6) and (10). Similar to [6], in the
following we will briefly discuss the (¢, 1)-orbit and the (¢3¢, 2)-orbit (2 < m < n) on By generated by
ej forall j = ji ... jn € Q with the motivation to explain their connection with the Q-cocyclic conditions
(14) and (17) in the degenerate and generic cases. Note that the term used here for the (¢%¢,, o)-orbit
on Bg is equal to the term (t3 ;t;2)-orbit on Bg in [6] for the same orbit on By when m =i, where
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2t = t%ﬁltmg. It should be noted that among the orbits we distinguish the long and the short singu-
lar orbits, which we call by the common name singular orbits.
Let us denote by Bgljz”'j’”)jm“”'j" = spanc {et,"n i [0<a<m-— 1} the (tm,1)-orbit on By gen-

erated by e;, where

Ctim1vd = Chty (1) Tty ()

for each j=j1...jn € @ (c.f. [5]); t1,m denotes the inverse of ¢, 1. These orbits are in one-to-one
correspondence with cyclic t,, 1-equivalence classes (jijo ... Jm)Jjm+1---Jn Of sequences j € @, see [6].

Here we considered that (1) = {id,tm1,(tm1)%, .., (tm1)™ '} is the cyclic subgroup of the sym-
metric group S, generated by the cycle t,,1 = (12...m) € S,. Then for each 1 <m <n we ob-

tain that T, 1 (eti‘n,l'i> = Cayotig 0 <a<m-=1, where co = a(j1...9m), ¢1 = a(Gm ---Jm-1);

2 =a(Jm-1--Jm=2)s-+) Cm—2a =0a(j3...72), ¢m—-1 = a(j2...j1), see (46). Therefore, we obtain that
T B(jlj2-~~j7n)jm+1~--jn
m,1 Q

is a cyclic operator such that

det (1= T B #9m3) = 1= [ ean

0<a<m—1

Here we denote by T, 1 the corresponding matrix of the operator 7, ; in the monomial basis of the
subspace Bg and I is the unit matrix corresponding to the operator 711 = id. A (t,1)-orbit on B,
|Q| = n is thus singular if

1- J[ ca=0 (49)

0<a<m-—1

and it is long singular if m = n, where (49) reduces to the form

1- ] @ =0 (50)

1<a#b<n

where the product runs over all n - (n — 1) pairs l,l; of elements from the given multiset Q). The identity
(49) represents the Q-cocycle condition (14). On the other hand, the identity (50) represents the corre-
sponding Q-cocycle condition (17) in the generic case (@ is a set of cardinality n), since in these cases all
orbits are long.

Now consider Bél(”j?’”d’”)j""“"'J" = spanc {etf’,hz-j |0<B<m— 2} the (t3t,,2)-orbit on By,
which are in one-to-one correspondence with cyclic t,, o-equivalence classes ji(jz ... Jjm)Jim+1 - --Jn Of
sequences j € @, where (tp2), 2 <m < n is the cyclic subgroup of S; x S,_1 generated by the cycle

tma2 = (23...m) € S; x Sp_1. Then for each 2 < m < n we obtain that T? T2 (etg _j> = dg €5+1 1

m,2°J m,2 J
0<B<m—2 where dy = by, (2w )s di = by, (ijm - +odm-1)s do = by, (Fidm-1--dm-2),
ooy dm—3 = by, (ﬂj4 . .jg), dm—2 = bj, (jAljg .. .jg)7 see (47) and also (48). Then we obtain that
T? Tm’2|15’gé1 (G273---dm)Tm1-n g g cyclic operator such that

det (I o T? Tm72|Bél(]2]3jm)jm+ljn> _ 1 o H dﬁ,
0<B<m—2

where T% T2, 2 < m < n denotes the corresponding matrix of the operator Tf T2 in the monomial
basis of the subspace Bg. Thus, a ({2 t,,, 2)-orbit on B is singular if

1- J[ ds=0 (51)

0<B<m—2
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and it is long singular if (51) reduces to (50). Then we conclude that a (¢, 1)-orbit or a (3 t,, 2)-orbit
on Bg is short singular if the left-hand side of (49) or the left-hand side of (51) is a nontrivial divisor
of the left-hand side of (50). Cousidering the introduced notation of the corresponding matrices of the
given operators with respect to the monomial basis of a subspace B¢ of the algebra B, see Remark 2.2,
we note that under the Q-cocycle condition it is sufficient to consider only the matrices (I — T, 1) and
(I - T3 ng). If these matrices are transformed into block diagonal matrices, then the number of blocks
in a block diagonal matrix is equal to the number of distinct singular orbits on Bg. The difference
between the number of distinct singular (¢3¢, »)-orbits and (t,, 1)-orbits on By is equal to the dimension
of Cg, the space of all constants belonging to the subspace Bg of the algebra B, see [6]. In the generic
case this difference is equal to (n — 2)!, see Remark 2.6. It follows that there is a relation between the
Q-cocycle conditions (14) and (17) in the corresponding degenerate and generic subspaces of the algebra
B, which leads us to conclude that we can also establish a relation between constants in the corresponding
degenerate and generic subspaces of the algebra B.

In the interest of clearer notation and a more sophisticated notation of multiset and set, in what
follows we denote by @’ a multiset and by @ a set, assuming that ) and @’ have the same cardinality.
We recall that any multiset Q’ of cardinality n can be obtained from the set of the same cardinality n by
specializing the elements of the set ) such that some of them are repeated. In this case, with the given

specialization, we can obtain from the set @ of all unique permutations of the set ) the set /Q\’ of all
unique permutations of the multiset () by removing the elements that are repeated, which is explained
in the following example.

Example 3.1. Considering the set Q = {l1,ls,l3} of cardinality 3, we obtain, that the set of all

unique permutations of the set Q is given by Q = {ji1j2]s, 1732, Jaj1J2, jajei1, j2dsi1, j2jris}.  On
the other hand, if we specialize the elements of the set Q such that k1 =11 =1y and ko =13, then
we obtain the multiset Q' = {k?,ko} of cardinality 3. Moreover, if we apply the given specializa-
tion to the elements of the set Q, we obtain the set Q = {14112, 919281, 928191, 420141, 114201, i1i10},
from which we get @\’ = {iyiyia, i112i1, 924111}, where we used iy = j1 = jo, ia = j3. Thus we can re-
alize the monomial basis Bg: = {€iyiyias Civigirs Cinirvin } Of @ subspace Bg: from the monomial basis
BQ = {€j1jajss €i1jnjns €jsjrjas Cinjains Ejajsirs €iajnjs t OF @ subspace Bg. Considering the obtained matri-
ces Bg and Bg/ from Example 2.3, we note that with the given specialization ki =11 = la, ky =3 the
matriz Bo: is reduced from the matriz Bg. At the same time, we note that some elements of the matriz
Bg: are polynomials obtained by adding the corresponding elements (monomials) of the matriz Bg to the
same reduced elements of the monomial basis. In particular, it is easy to see that from

B €jijajs = (Ts1 4+ T21 + 1) €j1jajs = QajaBssa sz + Biagr €jagris + €iijass
by the given specialization k1 = 11 = lo, ko = I3, which is equivalent to i1 = j1 = ja, io = j3, we obtain
Bgr €iivio = (T31 4+ To1 + 1) €iyiyin = Giniy Qigiy Cinirin + Qiniy Civivio + €ivivia
= qi22i1 €igiriy T (1 + qil’il) Ciyiqia-
Then it follows from (12), given the specialization, that
det Bor = (1 —okk,) - (1 = Okyk) (1= Ohyea) - (1 — Oy )
2 2 2 2
= (1 - qklkl) ' (1 - Uklk2) ' (1 - qklklaklkg)
2
= (1 - q}ﬂ/ﬂ) . (1 + qklkl) . (1 - Uklkz) : (1 - qklklaklkZ) : (1 + Qk1k1ak1k2)

is a multiple of det Bg: from (13). In other words, det Bg: from (13) is a nontrivial divisor of det By,
which we have obtained here by the given specialization. We emphasize that 0;; = q;jq;; tmplies op k, =
q,%lkl, and from (24) and (23) it follows Ok, kyky = Okyky TkikoChiky = qilklailb.

Similar to Example 3.1, we can obtain the (’-cocycle conditions in degenerate cases from an ap-
propriate "generic" @-cocycle condition by using a certain specialization procedure in which it turns out
that the Q’-cocycle condition is a nontrivial divisor of the corresponding @Q’-cocycle condition obtained by
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the certain specialization. In this way, any constant in degenerate subspaces Bg of the multiparametric
algebra B can be constructed from those in the generic case by a certain specialization procedure, which
we will discuss in more detail below. Therefore, by applying a certain specialization procedure, we explain
the determination of the corresponding Q’-cycle condition (14) from the @-cycle condition (17) and then
the determination of constants in degenerate subspaces B¢ of B using the formula (38), where starting
from the set @ = {l,...,l,} of cardinality n by certain specializations of its elements, first a multiset
Q' = {k™} and then a multiset Q" = {k}', k2} of the same cardinality is obtained.

3.1. Multiset Q' = {k"}, n > 2

Proposition 3.2. Let Q' = {k™} be a multiset of cardinality n > 2. The nontrivial basic constant (43)
in the degenerate subspace Bg: and also the Q)'-cocycle condition (42) can be constructed from the generic
case by a certain specialization procedure.

Proof. Let Q@ ={l1,...,l,} be a set of cardinality n > 2. Then the Q-cocycle condition is given by
(17) and the nontrivial basic constants by (38). Specializing the elements of the set @ such that all I;
are equal to k, one can consider the set @ = {ly,...,l,} as a multiset Q' = {k™} in which the element
k € N is repeated n times. In this case, the corresponding @Q-cocycle condition (17), given by 1 —og =0
and 1 — op # 0 for all T' C @, here has the form 1 —ogn =0, 1 — 04 # 0 for all 2 <4 < n — 1, or shorter
1 — opn = 0. Moreover, by applying (24) and (23), we obtain ogm = (q,%k)(gz) = (qr)™ (1) = q,’ﬁ’}f‘m
for all 2 < m < n, from which it follows that

_ I
1_%"—1_‘1” n*(l—%k)'(1+Qkk+qg§k+"'+qi§knl)
:(1_qkk>'(1+qkk+"'+qz@§1)'(1+q/?k+q/32+ g z)n),

which we can write in the following form
1— 0o = (1= qrr) - [P)guy - 1+Zq . (52)

Then 1 — oj» = 0 if and only if 1 — gxp, = 0 or [n]g,, = 0or 143777 2 gl =0, 50t is easy to see that the
left-hand side of (42) is a nontrivial divisor of (52), see also (4). So in the following we will show that the
@’-cocycle condition 1 — on = 0 can be reduced to [n],,, =0 with 1 — g, # 0and 1 + Z;L fqikn #0. In
particular, for n = 2 see Remark 3.3 below. On the other hand, if all [; € @) are equal to k, then all (n—2)!

nontrivial basic constants from (38) reduce to a constant Cyn, where all (n—1)! 1terated g-commutators

are equal to the iterated g-commutator Yi» (c.f. (34)) given by Yin = (Hbz_ll (1- qkk)> egn, n > 2, which

by applying the property 1 — ¢, = (1 —qu) - (L+ qer + -+ a5 ) = (1 — qrk) - [S]g,.» can be written as
follows

n—1
Ykn = (H(l — Qkk) . [S]qkk> ELn. (53)

s=1

Here we consider that exr» = e} and that n > 2. We emphasize that (4) implies [1];,, = 1. Moreover,
from (38), considering the given specialization, we obtain that the denominators of all fractions of the

obtained constant C» are equal to the product H;:;(l ORi), SO We express Cyn in terms of a fraction,

whose numerator is equal to the product of the factors (1 + > =1 qkk ) for all 3 <m <n. In other



M. Sosié / J. Algebra Comb. Discrete Appl. 11(2) (2024) 105-125

words, we obtain

m—2

L+ > ay”
j=1

1

(1 — o)

~

m=3

Ckn = . Ykn’ (54)

n

U
N

i

where by applying (52) for n = ¢ and the identity (53) we further obtain

n n—1
11 1+Zq H 1 — qik) - [8]qus
m=3 s=1
Ck" = = S ELn
H(l_Qkk) []Qkk ’ 1+Zqékt
=2 j=1
1+Zq A=) (L —an)  Rlg (1 Z G | (L= k) - [m]g,

- (1= qrk) - [2gun . r;!_:lii Chr
(1= gik) - [Mlges - 1+Zq

from which it follows directly
Crn = (1 — qrr) - (1 o a q(n 2 ) ekn - (55)

Here we have considered that [1],,, =1 and that the sum 1+ ZZ 21‘1%13 is equal to one if i = 2. If we

compare (52) with (55), it is easy to see that 1 — ox» and Ckn consist of the same factors 1 — gx and
L+qh + g+ + qlgz pm First, we exploit the fact that from the )-cocycle condition 1 —og =0
(c.f. (17)) with (52) it follows the @’-cocycle condition, given by 1 — oy» = 0, and then there is a constant
(c.f. (55)) in the degenerate subspace By~ if and only if the Q’-cocycle condition 1 — o= = 0 is satisfied,
then we obtain
Lifl—gu=0o0r1+qh +¢7+ -+ q(n D = 0, then the Q’-cocycle condition is satisfied and
the constant Cgn is zero (i.e., a terlal constant);
2.if 1—qpp #0 and 1+ g + g7 + +q(" D™ 20, then the Q'-cocycle condition is given by

)4, =0 (i, 14 qur + -+ g ' =0, see (52) and (4)) and in this case Cgn is a nontrivial
constant;

3oif 1 —qee #0, 1+q + @7+ + q,iZ 2m # 0 and [n]g,, # 0, then the Q'-cocycle condition is
not satisfied, so there are no constants in Bgn.

From this we can conclude that the obtained Q’-cocycle condition 1 — ogn = 0 (c.f. (52)) can be reduced
to [n]g,, =0, compare with (42). On the other hand, we emphasize that g;;’s are complex numbers,
which means that the constant Cgn» given in (55) is a multiple of egn (c.f. (43)). Thus, under the Q’-
cocycle condition [nlg,, =0, it follows from the constant Cyn that ey~ is a nontrivial basic constant
in the space Cpn of all constants belonging to the degenerate subspace Byn. In this way, we proved
that for the multiset Q' = {k™}, n > 2 the Q’-cocycle condition as well as the nontrivial basic constant
in the degenerate subspace Bg: can be constructed from the generic case by a certain specialization
procedure. O
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Remark 3.3. For n =2 it follows from (52) that the Q'-cocycle condition 1 — o2 =0 is of the form
(1 — grk) - [2ger = 0, that is, (1 —qur)- (14 gri) =0 when we apply (4), and it is a multiple of the
corresponding Q' -cocycle condition 1 + qxr, = 0 from (42) forn = 2. We note here that in this case the sum
14+qp, +---+ q,(;,;_m'" from (52) is equal to one. In addition, both the numerator and the denominator
of the fraction of (54) are equal to one, so the constant in the degenerate subspace Byz under the Q'-
cocycle condition is given by Crz = Yi2 = (1 — qri) ez, which is also consistent with (55), where forn = 2
the sum 1+ q, + -+ + q,(g,z_z)'n equals one. Similar to the above, the Q'-cocycle condition 1 — o2 = 0 is
satisfied if and only if 1 — qix, = 0 or 1 + g, = 0, where the obtained constant Cyz2 is trivial if 1 — qgi = 0

and nontrivial if 1 — qgr # 0 and 1+ g, = 0 and in this case ez is a nontrivial basic constant in Byz.

Example 3.4. Let us take n = 3. Then by applying the following specialization k =1y = lo = I3 we can
consider the set Q = {l1,l2,13} as a multiset Q' = {k®}. Then the Q-cocycle condition 1 — 0y,1,1, =0
reduces to the QQ'-cocycle condition 1 — oys = 0, which has the form

(1 - Qkk) : [3]%k ’ (1 + qzk) =0,

see (52). On the other hand, with the introduced specialization, a nontrivial basic constant in the generic
subspace Bg of the algebra B, given by (40) from Ezample 2.9, reduces to the form

1+g}
Cps = 171676 Yie = (1 —qgi) - (1 +q2k) ers,
— Of2

see (55), where we applied 1 — o2 = (1 — qik) - 2l and Vs = (1 — qui)? - [2]g,.- Considering the
obtained Q'-cocycle condition and the obtained constant Cys, we conclude that a constant Cys is trivial
(zero) in the degenerate subspace Bys if 1 — qer =0 or 1+ ¢3, = 0. On the other hand, if 1 — qxx # 0
and 1+ g3, # 0, but [3]4,, =0, then Cys is a nontrivial constant in Bys. Thus, in this case ejs is a
nontrivial basic constant in Bys, where the Q'-cocycle condition 1 — oys = 0 is reduced to (34, = 0.

Example 3.5. Let us now take n = 4. Then, similarly to Example 3.4, by applying the specialization
k=1 =1y =13 =1y, the set Q = {l1,ls,13,14} corresponds to a multiset Q' = {k*}. Then the Q-cocycle
condition 1 — oy,1,1,1, = 0 reduces to the Q'-cocycle condition

(1 - qkk) : [4]Qkk ) (1 + qgk + qgk) =0

c.f. (52). We note that in the generic case, under the Q-cocycle condition 1 — oy 1,151, = 0, there are
two nontrivial basic constants (see Example 2.10), which reduce to the same constant with the introduced
specialization

(L4 q2) - A+ g + air) A )
= Y = (1— (1
Ot = o) (1 mogy Yot = (L a) - (Ul ) e,

c.f. (55), where we have used 1 —op2 = (1 — qxr,) - [2]ge, and 1 —ops = (1 — i) - [Blgpr - (L +¢35) and also
Yio = (1= qre) - (1 — qrr) - [2)gur - (1 — qrr) - [3lgur.- Then we obtain that Cya is zero (a trivial constant)
in the degenerate subspace By, if 1 — qrr, = 0 or 1 + g, 4¢3, = 0 and that it is a nontrivial constant if
1—qrr #0 and 14 gt + g%y # 0 but [4]4,, = 0. Thus, the Q'-cocycle condition 1 — opa = 0 reduces to
[4]qrr = 0 under which ey is a nontrivial basic constant in Bya.

dkk

3.2. Multiset Q' = {k7' ky}, n >3

Proposition 3.6. Let Q' = {k}' ko} be a multiset of cardinality n > 3. The nontrivial basic constant
(45) in the degenerate subspace B and also the Q'-cocycle condition (44) can be constructed from the
generic case by a certain specialization procedure.

Proof. Let Q={l1,...,l,} be a set of cardinality n > 3. By specializing the elements of the set @
such that one element is equal to ko and all remaining n — 1 elements are equal to k;, we obtain from
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the set Q = {l1,...,1,} the multiset Q' = {k7™ ' ko}, ky # ko, in which the element k; € A is repeated
n — 1 times. The corresponding Q-cocycle condition 1 —og =0, 1 — o7 # 0, for all T C @Q here has the
form 1 — Tty = 0,1 —=okmp, #0,1 —0pi #0foralll <m <n —2,2<i<n-— 1, where of particular
interest is the factor 1 — Opn—tp, = 0, which we usually call the Q'-cocycle condition. So, if we consider

(n—1)-(n—2) _n—1 __ 1 n—1

-2
1 - Uk;L71k2 = 1 - qklkl Uk?lk?Q - - (qglklakle)
-2 -2 -2 -2
= (=i onkks) - (L qi Ok + -+ (G Ok k)" )

for n > 3, which we write in the following form

n—2

L= oy, = (1= a0 20mk) - |1+ (@02 one) |- (56)
j=1

If we compare (56) with (44), we can easily see that (56) is a multiple of the left-hand side of (44), which

leads us to conclude that the obtained Q’-cocycle condition 1 — Opn—tp, =0 (c.f. (56)) can be reduced

to 1— qklklakle =0 with 1+ Z (qklklakle) . # 0, see (44). Taking into account the introduced
specialization of the elements of the set @, we obtain that all (n — 2)! nontrivial basic constants (n > 3)
from (38) are reduced to a constant C’k;q,_l k,» Which after further calculations we can write in the form

m
§ le k1 Okt k2

1
ko =
C n—1 - 7$ * N Y ’Vl*l, (57)
ok [n - 1]%11«1 mHI 1- kmk?) Fak

where the denominators of the given fractions on the right-hand side of the formula (57) are nonzero, since
the Q’-cocycle condition implies that 1 — Opn—tpy = 0 but 1 — ogmp, #0 for all 1 <m <n —2 and also

1 —op: #0 for all 2 <i <n— 1. Note that by using (52) from 1 — oyn-1 # 0 it follows [n — 1] #0

If we now apply (56) for each 1 < m < n — 2, we obtain that the given constant C’k?_ll€2 can be written
as

m
E lekl Uk1k2

qn 1 n—2
_ kak1 . H .
Ck;L71k2 — [n — ] 1 Yka;,',l
dk1k;  m=1 j
(1= gl omm) - | 1+ E (47 % Ohiks)
Jj=1
n—2 .
n—2 J
I+ E : (qklklgkﬂw)
n—1 —
Do, j=1
= — . 'Yk R
[n - 1]% k n? .
1k m—1
H (1 o 0k1k2)
m=1
which we further rewrite into the following form
n—2
n—1
Dresker L+ Z qk1k10k1k2
Ckix—lkz == — . Yk:zk:;z_l' (58)
m
Qk k1 H qklklaklk?)
m=0
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We note that it follows from (56), the corresponding Q’-cocycle condition 1 — Opn—ip, = 0 is given by

1- qu_,fl Okike =0 and 1+ Z;:f (q,:”lﬁaklh)j =0 and we also recall that there is a constant in the
degenerate subspace Bklﬁlkz if and only if the Q’-cocycle condition 1 — Opn—tpy = 0 is satisfied. Thus, if
1+ Z;:f (qgl_,fl aklkz)j = 0, then the constant Cpn-1,, (c.f. (58)) is a trivial constant and it is a nontrivial
constant if

n—2

1- qz;;fl Okiko = 0, Z (q;;kal Uklkz)J #0, (59)
=0

which is equal to (44). From this we can conclude that the corresponding @’-cocycle condition 1 —

oyn-1;,, = 0 reduces to (59), under which the space C,n-1, of all constants belonging to the degenerate
1 2 1 2

subspace Bkllflb consists of a constant Ck?—l %, &iven by (58). We recall that ¢;; s are complex numbers,

so the constant given by (58) is a multiple of an iterated g-commutator Y, J—1, see (45). Therefore,

under the @Q’-cocycle condition (59), it follows from (58) that an iterated g-commutator Y., g is a

nontrivial basic constant in space Ckibfl k,- Lhus we have proved that for the multiset Q = {k?_l, kat,

n > 3 the Q’-cocycle condition as well as the nontrivial basic constant in the degenerate subspace B
can be constructed from the generic case by a certain specialization procedure. O

Example 3.7. Let us consider the set Q = {l1,1l2,13} as a multiset Q' = {k?, ko} using the specialization
ki =11 =ls, ko =13. Then the Q-cocycle condition 1 — oy,1,1, = 0 reduces to the Q’-cocycle condition
1 = op2p, = 0, from which follows

(1 - leklaklkz) ’ (1 + qklklakle) =0 (60)

see also Example 3.1. In agreement with the given specialization, a nontrivial basic constant (40) of the
generic By has the form

1 kok1 Ok k
'Yk%k2+ q 2R1 1r2
1—0’,@ 1 -0k,

Crzp, = “Yiikoks

see Example 2.9, where by applying (34) we find that the iterated g-commutators Yk%kw Yiikokey are given
by
Yizr, = (1= Gioky) - (€n2y — Qityky Chiak?)
Yklkal = (1 + Gk ks UklkZ) €kikok:s — Qkak: ekzkf - qk1k1qk1k2ekfk2'

After further calculations we get

2
Qroskey (1 + Qk1k1ak1k2)
Cha,. = ——21 -Y e, 61
Fikz (1 + lekl) : (1 - Jkﬂm) kaky ( )

It is easy to verify that Yy, p2 = €p,p2 — ey by (1 Gy by ) €hykooky + lehqilkzek%h is obtained by applying
(34). Then it follows directly from the obtained Q'-cocycle condition (60) and the obtained constant
Creg, (c-f- (61)) that a constant Cyzy, is zero, if 1+ Gk, 0kk, =0 and is a nontrivial constant if
L+ Gk, Oy # 0, but 1 — Gpyi, Ok, = 0. In this case a constant Cyzy, is a multiple of an iterated
g-commutator Yy, 2. We conclude that the obtained Q' -cocycle condition reduces to 1 — Qg k, Okiky =0
under which an iterated g-commutator Yy, .2 is a nontrivial basic constant in Byzy, .

In the way described, by specializing some elements of a set () and considering it as a corresponding
multiset, we conclude that (14) can be determined from (17) and that under the obtained Q’-cocycle
condition, the constants in the degenerate subspaces of the algebra B can be obtained from the constants
in the corresponding generic subspace of the algebra B by applying the formula (38). Note, however,
that it is therefore more difficult to execute the general formulas for determining the constants in all
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degenerate subspaces of the algebra B, since for each different specialization of some elements of a set @
of cardinality n, different degenerate cases arise from the corresponding generic case. In this way, there
are different multisets @’ of cardinality n associated with different )’-cocycle conditions under which
there are suitable constants.
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uniri-prirod-18-9.

References

[1] G. Duchamp, A. Klyachko, D. Krob, J. Y. Thibon, Noncommutative symmetric functions III: Defor-
mations of Cauchy and convolution algebras, Discrete Math. Theor. Comput. Sci. 1 (1997) 159-216.

[2] C. Frgnsdal, On the classification of g-algebras, Lett. Math. Phys. 53 No.2 (2000) 105-120.

[3] C. Frgnsdal, A. Galindo, The ideals of free differential algebras, J. Algebra 222 (1999) 708-746.

[4] S. Meljanac, A. Perica, D. Svrtan, The energy operator for a model with a multiparametric infinite
statistics, J. Phys. A: Math. Gen. 36(23) (2003) 6337-6349.

[5] S. Meljanac, D. Svrtan, Study of Gram matrices in Fock representation of multiparametric canonical
commutation relations, extended Zagier’s conjecture, hyperplane arrangements and quantum groups,
Math. Commun. 1 (1996) 1-24.

[6] M. Sosi¢, Computing constants in some weight subspaces of free associative complex algebra, Int. J.
Pure Appl. Math., 81(1) (2012) 165-190.

[7] M. Sosi¢, A representation of twisted group algebra of symmetric groups on weight subspaces of free
associative complex algebra, Math. Forum 26 (2014) 23-48.

[8] M. Sosi¢, Some factorizations in the twisted group algebra of symmetric groups, Glas. Mat. Ser. 111
51, 71(1) (2016) 1-15.

[9] M. Sosi¢, Computation of constants in multiparametric quon algebras. A twisted group algebra
approach, Math. Commun. 22(2) (2017) 177-192

[10] D. Stanton, Constructive Combinatorics, UTM, Springer (1986).

ot


https://doi.org/10.46298/dmtcs.231
https://doi.org/10.46298/dmtcs.231
https://doi.org/10.1023/A:1026726700677
https://doi.org/10.1006/jabr.1999.8076
https://doi.org/10.1088/0305-4470/36/23/305
https://doi.org/10.1088/0305-4470/36/23/305
https://mathscinet.ams.org/mathscinet/relay-station?mr=1434336
https://mathscinet.ams.org/mathscinet/relay-station?mr=1434336
https://mathscinet.ams.org/mathscinet/relay-station?mr=1434336
https://mathscinet.ams.org/mathscinet/relay-station?mr=3791349
https://mathscinet.ams.org/mathscinet/relay-station?mr=3791349
https://mathscinet.ams.org/mathscinet/relay-station?mr=3516181
https://mathscinet.ams.org/mathscinet/relay-station?mr=3516181
https://mathscinet.ams.org/mathscinet/relay-station?mr=3687922
https://mathscinet.ams.org/mathscinet/relay-station?mr=3687922
https://doi.org/10.1007/978-1-4612-4968-9

	Introduction
	The constants in the algebra B
	The relation of the constants in degenerate subspaces BQ of the algebra B to the corresponding constants in the generic case
	References

