
ISSN 2148-838Xhttps://doi.org/10.13069/jacodesmath.v11i2.269

J. Algebra Comb. Discrete Appl.
11(2) • 105–125

Received: 26 December 2022
Accepted: 13 May 2023

Journal of Algebra Combinatorics Discrete Structures and Applications

The relation between constants in generic and
degenerate subspaces of free unital associative complex
algebra∗

Research Article

Milena Sošić

Abstract: From the study of the constants in the generic and the degenerate weight subspaces of the free unitary
associative complex algebra B, it follows that the constants in the degenerate weight subspaces of
the algebra B can be constructed from the corresponding constants in the generic case by a certain
specialization procedure. Here we consider that each constant in each generic weight subspace of the
algebra B can be expressed by certain iterated q -commutators.
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1. Introduction

In this paper we first consider the multiparametric quon algebra B and its q -differential structure.
Following the works [6, 9], we recall an explicit formula for computing constants in the generic subspaces
of the algebra B. Our motivation is to explain that the constants in any degenerate subspace of the
algebra B can be computed from suitable constants in the corresponding generic subspace. Therefore, we
consider here a free unitary associative complex algebra B = C 〈ei1 , . . . , eiN 〉 (generated by N generators,
each of degree one), equipped with q -differential structure by q -differential operators ∂i : B → B, i ∈ N ,
where N = {i1, i2, . . . , iN} is a fixed subset of nonnegative integers. The q -differential operators ∂i are
recursively defined by

∂i(ejx) = δijx+ qijej∂i(x) (1)

for each x ∈ B, i, j ∈ N with ∂i(1) = 0 and ∂i(ej) = δij , where δij denotes a standard Kronecker delta
and the qij are complex numbers. According to the formula (1), each passage of ∂i through ei (from the
left) is characterized by an additional factor qij .

∗ This work was supported by the University of Rijeka under project number uniri-prirod-18-9.
Milena Sošić; University of Rijeka, Faculty of Mathematics, Rijeka, Croatia (email: msosic@uniri.hr).

105

https://orcid.org/0000-0002-0085-2073


M. Sošić / J. Algebra Comb. Discrete Appl. 11(2) (2024) 105–125

Example 1.1. The actions of the operators ∂i, i = 1, 2, 3, . . . on the monomial e131212 = e1e3e1e2e1e2
are given by

∂1(e131212) = e31212 + q11q13 e13212 + q211q13q12 e13122

∂2(e131212) = q221q23 e13112 + q321q23q22 e13121

∂3(e131212) = q31 e11212

∂i(e131212) = 0 for all i ≥ 4.

Therefore, ∂i is a kind of generalized i -th partial derivative. In particular, if all qij are equal to one,
then ∂i coincides with an ordinary i -th partial derivative, e.g. ∂i(eni ) = n · en−1i . We recall that the free
unitary associative complex algebra B is naturally ordered by total degree and, more generally, can be
viewed as multi-degree. The algebra B has a direct sum decomposition into the generic subspace Bgen

spanned by all multilinear monomials and the degenerate subspace Bdeg spanned by all monomials which
are nonlinear in at least one variable, which can be written as B = Bgen ⊕ Bdeg with Bgen =

⊕
Q a set

BQ,

Bdeg =
⊕

Q a multiset (not set)

BQ. Thus we distinguish generic and degenerate subspaces of the algebra B.

We consider here that Q = {kn1
1 , . . . , k

np
p } denotes the multiset of cardinality n = n1 + · · ·+ np, where

ki 6= kj for each 1 ≤ i < j ≤ p and there exists at least one nj such that nj 6= 1. Note that nj is considered
as the repetition frequency of the element kj in the multiset Q. In particular, if all nj are equal to one,
then Q is a set of cardinality n and we write it in the form Q = {l1, . . . , ln}, where li 6= lj for each
1 ≤ i < j ≤ n. We call the weight subspace BQ generic if Q is a set, otherwise degenerate. An arbitrary
weighted subspace BQ corresponding to a multiset Q of cardinality n is given by

BQ = spanC

{
ej1...jn = ej1 · · · ejn | j1 . . . jn ∈ Q̂

}
, (2)

where Q̂ denotes the set of all unique permutations of the multiset Q. Thus, dimBQ = |Q̂|, where |Q̂|
denotes the cardinality of the set Q̂. In other words, the dimension of a weighted subspace BQ is equal
to the cardinality of the set of all permutations of the multiset Q.

2. The constants in the algebra B

Of special interest in the algebra B are the elements, called constants, which are annihilated by all
q -differential operators ∂i, i ∈ N . We consider here linearly independent constants which we call basic
constants. A nonzero basic constant is called a nontrivial basic constant. The space of all constants in
the algebra B is denoted by C = {C ∈ B | ∂i(C) = 0, i ∈ N}. Note that all q -differential operators ∂i,
i ∈ N can be considered as operators of degree −1, so we introduce an operator ∂ : B → B, of degree
zero, by the formula ∂ =

∑
i∈N ei∂i, where ei : B → B are considered as operators on B, see [6]. Then we

obtain that ∂C = 0 if and only if ∂iC = 0 for all i ∈ N . This implies that C = ker ∂, where ker ∂ denotes
the kernel of the operator ∂. The operator ∂ preserves the direct sum decomposition of the algebra B.
Considering that ∂Q : BQ → BQ denotes the restriction of the operator ∂ to the subspace BQ, it follows
that ∂Qx = ∂x for any x ∈ BQ. Moreover, CQ = ker ∂Q, where CQ denotes the space of all constants
belonging to the subspace BQ. The space C also inherits the direct sum decomposition into subspaces
CQ, therefore the problem of determining the space of all constants in the algebra B turns on determining
the finite-dimensional spaces CQ for all Q (multisets and sets) over N of cardinality n ≥ 2. Note that
CQ = {0} for |Q| = 1. The decisive role in the computation of the constants in the algebra B is played by
the action of ∂i on the monomial ej = ej1...jn in the monomial basis BQ = {ej | j ∈ Q̂} of the subspace
BQ, given by an explicit formula:

∂i(ej) =
∑

1≤k≤n, jk=i

qij1 · · · qijk−1
ej1...ĵk...jn (3)
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for each j ∈ Q̂ with j = j1 . . . jn, where we have applied (1). Here ĵk denotes the omission of the
corresponding index jk, see Example 1.1. The number of terms in the sum (3) is equal to the number of
occurrences of the generator ei in the monomial ej . In particular, an important special case is ∂i(eni ) =
[n]qii e

n−1
i , where

[n]q =

n−1∑
k=0

qk = 1 + q + · · ·+ qn−1 (4)

is an q analogue of a natural number n. On the other hand, it follows from (3) that the action of the
operator ∂Q on the monomial ej in the monomial basis BQ of BQ is given by

∂Q(ej) =
∑

1≤m≤n

qjmj1 · · · qjmjm−1
ejmj1...ĵm...jn , for each j ∈ Q̂. (5)

Example 2.1. Considering the monomial e131212 from Example 1.1, we obtain by applying (5) that the
action of the operator ∂Q on this monomial is given by

∂Q(e131212) = e131212 + q11q13 e113212 + q211q13q12 e113122

+ q221q23 e213112 + q321q23q22 e213121 + q31 e311212.

The problem of determining the space CQ of all constants belonging to the subspace BQ amounts
to determining the kernel of the operator ∂Q for any multiset (i.e., set) Q of cardinality n. So we first
introduce the simpler operators

Tm,1 ej = qjmj1 · · · qjmjm−1
ejmj1j2...ĵm...jn (6)

for each j ∈ Q̂, 1 ≤ m ≤ n acting on BQ, where T1,1 = id (i.e., in general Tm,m = id), and then we rewrite

the operator ∂Q (c.f. (5)) in terms of the operators (6) as follows ∂Q =

n∑
m=1

Tm,1. Then we get

∂Q = DQ,n · C−1Q,n (7)

with

CQ,n = (id− Tn,1) · · · (id− T2,1) =
←∏

2≤m≤n

(id− Tm,1) , (8)

DQ,n =
(
id− T 2

1 Tn,2
)
· · ·
(
id− T 2

1 T2,2
)
=

←∏
2≤m≤n

(
id− T 2

1 Tm,2
)

(9)

(c.f. [9]), where the action of the operators Tm,1, 2 ≤ m ≤ n on BQ is given by (6) and the action of the
operators T 2

1 Tm,2, 2 ≤ m ≤ n on BQ is given by

T 2
1 Tm,2 ej = σj1jmqjmj2 · · · qjmjm−1ej1jmj2...ĵm...jn (10)

with σij := qijqji. Here we use the notation T 2
1 Tm,2 := T 2

2,1 Tm,2. Note that (7) is a special case of the
braid factorization from [1, Proposition 4.7] (c.f. with [5]).

Remark 2.2. Let us denote by BQ the matrix of the operator ∂Q, by CQ,n, DQ,n the corresponding
matrices of the operators CQ,n, DQ,n, and also by Tm,1, T2

1 Tm,2, 2 ≤ m ≤ n the corresponding matrices
of the operators Tm,1, T 2

1 Tm,2 with respect to the monomial basis BQ of a subspace BQ (considered with
Johnson-Trotter order on permutations, see [10]), where we denote by I the unit matrix corresponding
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to the operator T1,1 = id (i.e., Tm,m = id). Then the rows and columns of all introduced matrices are
indexed by the elements of the monomial basis of BQ. Thus, these matrices are square matrices whose
order is equal to dimBQ = |Q̂|. Now (7) can be rewritten in matrix notation as BQ = DQ,n · (CQ,n)

−1,
which implies

detBQ =
detDQ,n

detCQ,n
. (11)

Example 2.3. We briefly explain the above matrices for a weighted subspace BQ corresponding first to
a set Q = {l1, l2, l3} and then to a multiset Q′ = {k21, k2}, see also Example 3.1.

1. Let Q = {l1, l2, l3} be a set of cardinality 3. Then the monomial basis of a subspace BQ is given
by BQ = {ej1j2j3 , ej1j3j2 , ej3j1j2 , ej3j2j1 , ej2j3j1 , ej2j1j3}. Here the matrix BQ of the operator ∂Q
is given by BQ = T3,1 + T2,1 + I, where the matrix Tm,1, 1 ≤ m ≤ 3 corresponds to the op-
erator Tm,1 with I = T1,1, see (6). Applying (8) and (9), we get CQ,3 = (I−T3,1) · (I−T2,1),
DQ,3 =

(
I−T2

1 T3,2

)
·
(
I−T2

1

)
, where T2,2 = I. Thus, using (6) and (10), we obtain

BQ =

ej1j2j3
ej1j3j2
ej3j1j2
ej3j2j1
ej2j3j1
ej2j1j3


1 0 0 0 qj1j2qj1j3 qj1j2
0 1 qj1j3 qj1j2qj1j3 0 0

qj3j1qj3j2 qj3j1 1 0 0 0
0 0 0 1 qj3j2 qj3j1qj3j2
0 0 qj2j1qj2j3 qj2j3 1 0

qj2j1 qj2j1qj2j3 0 0 0 1



I−T3,1 =

ej1j2j3
ej1j3j2
ej3j1j2
ej3j2j1
ej2j3j1
ej2j1j3


1 0 0 0 −qj1j2qj1j3 0
0 1 0 −qj1j2qj1j3 0 0

−qj3j1qj3j2 0 1 0 0 0
0 0 0 1 0 −qj3j1qj3j2
0 0 −qj2j1qj2j3 0 1 0
0 −qj2j1qj2j3 0 0 0 1



I−T2,1 =

ej1j2j3
ej1j3j2
ej3j1j2
ej3j2j1
ej2j3j1
ej2j1j3


1 0 0 0 0 −qj1j2
0 1 −qj1j3 0 0 0
0 −qj3j1 1 0 0 0
0 0 0 1 −qj3j2 0
0 0 0 −qj2j3 1 0

−qj2j1 0 0 0 0 1



I−T2
1 T3,2 =

ej1j2j3
ej1j3j2
ej3j1j2
ej3j2j1
ej2j3j1
ej2j1j3


1 −σj1j2qj2j3 0 0 0 0

−σj1j3qj3j2 1 0 0 0 0
0 0 1 −σj1j3qj1j2 0 0
0 0 −σj2j3qj2j1 1 0 0
0 0 0 0 1 −σj2j3qj3j1
0 0 0 0 −σj1j2qj1j3 1



I−T2
1 =

ej1j2j3
ej1j3j2
ej3j1j2
ej3j2j1
ej2j3j1
ej2j1j3


1− σj1j2 0 0 0 0 0

0 1− σj1j3 0 0 0 0
0 0 1− σj1j3 0 0 0
0 0 0 1− σj2j3 0 0
0 0 0 0 1− σj2j3 0
0 0 0 0 0 1− σj1j2


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where det (I−T3,1) = (1− σj1j2j3)
2, det (I−T2,1) = (1− σj1j2) · (1− σj1j3) · (1− σj2j3),

det
(
I−T2

1 T3,2

)
= (1− σj1j2j3)

3, det
(
I−T2

1

)
= (1− σj1j2)

2 · (1− σj1j3)
2 · (1− σj2j3)

2 from which

we obtain by applying (11) detBQ =
detDQ,3

detCQ,3
=

det(I−T2
1 T3,2)·det(I−T2

1)
det(I−T2,1)·det(I−T3,1)

, i.e.,

detBQ = (1− σj1j2) · (1− σj1j3) · (1− σj2j3) · (1− σj1j2j3) .

Consider the given set Q = {l1, l2, l3} of cardinality 3 and all its subsets T1 = {l1, l2}, T2 = {l1, l3}
and T3 = {l2, l3} of cardinality 2, we conclude that detBQ can be written as

detBQ = (1− σl1l2) · (1− σl1l3) · (1− σl2l3) · (1− σl1l2l3) (12)

or in the shorter form detBQ = (1− σT1
) · (1− σT2

) · (1− σT3
) · (1− σQ), i.e., in the following

form detBQ =
∏

T⊆Q
2≤|T |≤3

(1− σT ), see (15). Note that here all (|T | − 2)! · (3− |T |)! are equal to

one for each 2 ≤ |T | ≤ 3.

2. Let Q′ = {k21, k2} be a multiset of cardinality 3. Then, similarly as above, the monomial basis of
a subspace BQ′ is given by BQ′ = {ei1i1i2 , ei1i2i1 , ei2i1i1} and the matrix BQ′ of the operator ∂Q

′
is

given by BQ′ = T3,1 +T2,1 + I, hence CQ′,3 = (I−T3,1) · (I−T2,1) and DQ′,3 =
(
I−T2

1 T3,2

)
·(

I−T2
1

)
. By the use of (6), (10) we then obtain

BQ′ =
ei1i1i2
ei1i2i1
ei2i1i1

 1 + qi1i1 qi1i1qi1i2 0
0 1 qi1i2 (1 + qi1i1)

q2i2i1 qi2i1 1


I−T3,1 =

ei1i1i2
ei1i2i1
ei2i1i1

 1 −qi1i1qi1i2 0
0 1 −qi1i1qi1i2

−q2i2i1 0 1


I−T2,1 =

ei1i1i2
ei1i2i1
ei2i1i1

 1− qi1i1 0 0
0 1 −qi1i2
0 −qi2i1 1


I−T2

1 T3,2 =
ei1i1i2
ei1i2i1
ei2i1i1

 1 −q2i1i1qi1i2 0
−σi1i2qi2i1 1 0

0 0 1− σi1i2qi1i1


I−T2

1 =
ei1i1i2
ei1i2i1
ei2i1i1

 1− q2i1i1 0 0
0 1− σi1i2 0
0 0 1− σi1i2


see also Example 3.1. Note that σij = qijqji implies σi1i1 = q2i1i1 . Now it is easy to verify
that det (I−T3,1) = 1 − q2i1i1σ

2
i1i2

, det (I−T2,1) = (1− qi1i1) · (1− σi1i2), det
(
I−T2

1 T3,2

)
=(

1− q2i1i1σ
2
i1i2

)
· (1− qi1i1σi1i2), det

(
I−T2

1

)
=
(
1− q2i1i1

)
· (1− σi1i2)

2 from which we obtain by

applying (11) detBQ′ =
detDQ′,3
detCQ′,3

=
(1−q2i1i1σ

2
i1i2

)·(1−qi1i1σi1i2)·(1−qi1i1)·(1+qi1i1)·(1−σi1i2)
2

(1−qi1i1)·(1−σi1i2)·(1−q2i1i1σ
2
i1i2

)
, i.e.,

detBQ′ = (1 + qi1i1) · (1− σi1i2) · (1− qi1i1σi1i2) .

If we now consider the given multiset Q′ = {k21, k2} of cardinality 3 and also its two subsets
T ′1 = {k21} and T ′2 = {k1, k2} of cardinality 2, we obtain

detBQ′ = (1 + qk1k1) · (1− σk1k2) · (1− qk1k1σk1k2) (13)

which can be written in the following shorter form detBQ′ = βT ′1 · βT ′2 · βQ′ , where βT ′1 = 1+ qk1k1 ,
βT ′2 = 1− σk1k2 , βQ′ = 1− qk1k1σk1k2 .
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In general, the entries of the matrix BQ (Q is a multiset) are polynomials in qij ’s, therefore its
determinant is also a polynomial in qij ’s. Considering the factorizations (8) and (9) of the operators
CQ,n and DQ,n and the given matrix notation, we obtain that, the polynomial detBQ (c.f. (11)) can be
factorized by the factors βT for each T ⊆ Q, |T | ≥ 2, where each βT has the corresponding polynomial
form. Thus, from the identity detBQ = 0 it follows that βT vanishes for at least one T ⊆ Q. Of particular
interest are the actual values of parameters qij (called singular values or singular parameters) for which
at least one βT = 0 holds. We say that parameters qij are singular if detBQ = 0, otherwise they are
regular (called parameters in general position). Thus, if the parameters qij are regular, then there are
no constants in BQ. In other words, there are constants in BQ, i.e., the space CQ is nonzero only for
singular parameters, c.f. [2]. We distinguish two types of singular parameters: Q-cocycle condition and
(Q;T )-cocycle condition for the fixed T ⊂ Q given in [6], but we consider here only theQ-cocycle condition

cQ = {βQ = 0, βT 6= 0 for all T ⊂ Q}, (14)

because it is the only one that plays a key role in the calculation of the constants. It is shown that the
constants under the (Q;T )-cocycle condition can be obtained from the corresponding constants under
the Q-cocycle condition by a special specialization procedure. From this we conclude that the space CQ
is nonzero only for the singular parameters qij for which detBQ vanishes, and that all constants in BQ
can be obtained from those under the Q-cocycle condition. The Q-cocycle condition (14) is sometimes
written in the form βQ = 0.

In particular, if Q = {l1, . . . , ln} is a set (the generic case) of cardinality n, then the entries of the
matrix BQ are monomials in qij ’s, therefore its determinant (11) is given by an explicit expression in
terms of the product of the binomial factors 1− σT for each T ⊆ Q, as follows

detBQ =
∏
T⊆Q

2≤|T |≤n

(1− σT )(|T |−2)!·(n−|T |)! , (15)

where |T | indicates the cardinality of T , see [6, 9]. If |T | = k for every 2 ≤ k ≤ n, then there are(
n
k

)
= n!

k!·(n−k)! terms of binomial factors 1− σT , where each term 1− σT corresponds to the corresponding
subset T ⊆ Q, |T | = k with

σT =
∏

{a,b}⊆T

σab =
∏

a6=b∈T

qab. (16)

We consider here the above identity σab = qabqba. Then, in the generic case, the Q-cocycle condition (14)
has the form

cQ = {1− σQ = 0, 1− σT 6= 0 for all T ⊂ Q}. (17)

Thus, in the generic weighted subspace BQ ⊆ B there are constants if the Q-cocycle condition (17) is
satisfied.

Example 2.4. Considering the obtained matrix BQ, Q = {l1, l2, l3} and its determinant from Exam-
ple 2.3, it follows, that the corresponding Q-cocycle condition (17) is given by 1− σl1l2l3 = 0, see (12). It
goes without saying that 1− σl1l2 6= 0, 1− σl1l3 6= 0, 1− σl2l3 6= 0. Similarly, with respect to the matrix
BQ′ , Q′ = {k21, k2} and its determinant from Example 2.3, the corresponding Q′-cocycle condition (14)
is given by 1− qk1k1σk1k2 = 0, see (13), where 1 + qk1k1 6= 0 and 1− σk1k2 6= 0.

Recall now that any weighted subspace BQ corresponding to a multiset (or set) Q of cardinality n
is given by (2), and observe, that if the Q-cocycle condition is satisfied, then, there are constants in the
subspace BQ and there are no constants in the subspaces BT for any proper subset T ⊂ Q. This is directly
related to the fact that the operator (id− T 2

1 Tn,2) is not invertible, but all the operators (id− T 2
1 Tm,2)

for m = 2, . . . , n − 1 are invertible, so the identity (7) under the Q-cocycle condition can be written in
the following form by using (9)

∂Q · CQ,n ·
∏

2≤m≤n−1

(
id− T 2

1 Tm,2
)−1

=
(
id− T 2

1 Tn,2
)
.
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Therefore, for each Z ∈ B we get

∂Q · CQ,n ·
∏

2≤m≤n−1

(
id− T 2

1 Tm,2
)−1 · Z =

(
id− T 2

1 Tn,2
)
· Z (18)

where we can establish a relationship ker
(
id− T 2

1 Tn,2
)
⊂ BQ to ker ∂Q. We recall that ker ∂Q = CQ,

where CQ is the space of all constants in BQ. Then for any Uj ∈ ker
(
id− T 2

1 Tn,2
)
the right-hand side of

(18) is zero, so the corresponding vector

X = CQ,n ·
∏

2≤m≤n−1

(
id− T 2

1 Tm,2
)−1 · Uj (19)

belongs to ker ∂Q. Then X is a constant in BQ, see [9, Proposition 2]. Thus, the vectors in the kernel
of the operator (id− T 2

1 Tn,2) have a crucial importance in determining the constants in BQ. So the
problem of computing the constants in BQ boils down to the following two questions: first, how to write
the vectors spanning the kernel ker

(
id− T 2

1 Tn,2
)
, and second, how to find a basis?

For the generic case, the above questions are solved in [9], where it is shown that under the Q-cocycle
condition (17) all vectors Uj ∈ ker

(
id− T 2

1 Tn,2
)
, j ∈ Q̂ are given by

Uj =
(
id− T 2

1 Tn,2
)−1 · (1− σQ) ej . (20)

Let us now denote by Qa b, 1 ≤ a, b ≤ n a diagonal operator on BQ (c.f. (2)) defined by

Qa b ej = qjajb ej (21)

j = j1j2 . . . jn ∈ Q̂. Then we denote a diagonal operator Q{a,b} = Qa b ·Qb a, 1 ≤ a, b ≤ n on BQ, which,
by applying (21) and the previously defined identity σjajb = qjajbqjbja , is given by

Q{a,b} ej = σjajb ej . (22)

Note that Qa b ·Qc d = Qc d ·Qa b. Similarly, we denote by Q{1,2,...,k} =
∏

{a,b}⊆{1,2,...,k}

Q{a,b} diagonal

operator on BQ for each 2 ≤ k ≤ n given by

Q{1,2,...,k} ej =
∏

{a,b}⊆{1,2,...,k}

σjajb ej . (23)

where we have used (22). We note that the right-hand side of (23) is connected with the identity (16),
therefore we denote by

Q{1,2,...,k} ej1j2...jn = σj1j2...jk ej1j2...jn , (24)

where σj1j2...jk is equal to the right-hand side of (23).
Then, for the set Q of cardinality n we get (1− σQ) ej1...jn =

(
id−Q{1,2,...,n}

)
ej1...jn , so (20) we can

write as Uj =
(
id− T 2

1 Tn,2
)−1 · (id−Q{1,2,...,n}) ej , from which it follows that the vector Xj ∈ ker ∂Q

(c.f. (19)) is given by

Xj = CQ,n · (DQ,n)
−1 ·

(
id−Q{1,2,...,n}

)
ej (25)

for each j ∈ Q̂, where we used (9). Thus, with the expression (25), the formula for computing the constants
in BQ is given when the Q-cocycle condition is satisfied, but here an additional problem of determining
the inverse of the operator DQ,n arises. This problem is solved in [9], where first, assuming that σT 6= 1

holds for all T ⊆ Q, the inverse of the operator DQ,n ej on BQ is found in the form (DQ,n)
−1

ej =
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(
(Qn)−1 · EQ,n

)
ej and then it is shown that the constants Xj in BQ under the Q-cocycle condition are

expressed by

Xj =
(
CQ,n · (Qn−1)−1 · EQ,n

)
ej (26)

j ∈ Q̂, see Theorem 1 and Theorem 2 of [9], where an operator CQ,n on BQ is given by (8), a diagonal
operator Qn on BQ is given by

Qn ej =
(
id−Q{1,2}

)
·
(
id−Q{1,2,3}

)
· · ·
(
id−Q{1,2,...,n}

)
ej (27)

and similarly Qn−1 ej =
(
id−Q{1,2}

)
·
(
id−Q{1,2,3}

)
· · ·
(
id−Q{1,2,...,n−1}

)
ej , which can be written by

applying (24) in the following form

Qn−1 ej1j2...jn = (1− σj1j2) · (1− σj1j2j3) · · ·
(
1− σj1j2...jn−1

)
ej1j2...jn (28)

j = j1j2 . . . jn ∈ Q̂, see also (23). Moreover, we write here the operator EQ,n on BQ in the following form

EQ,n ej1j2...jn

=
∑

g∈S1×Sn−1

 ∏
i∈Des(g−1)

σjg−1(1)jg−1(2)...jg−1(i)

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)

 ejg−1(1)jg−1(2)...jg−1(n)
(29)

where

I(g−1) = {(a, b) | 1 ≤ a < b ≤ n, g−1(a) > g−1(b)}

denotes the set of all inversions (a, b) of the permutation g−1 ∈ S1 × Sn−1 and

Des(g−1) = {1 ≤ i ≤ n− 1 | g−1(i) > g−1(i+ 1)}

denotes the descent set of the permutation g−1 ∈ S1 × Sn−1, see also [4].

It is obvious that g−1 ∈ S1 × Sn−1 is the inverse of the permutation g ∈ S1 × Sn−1.

Remark 2.5. We note that an operator EQ,n given by (29) is equal to the operator EQ,n from Theorem 1
of [9], which we repeat here

EQ,n =
∑

g∈S1×Sn−1

Wn(g) · g (30)

where Wn(g) =
∏

i∈Des(g−1)

Q{1,2,...,i}. Moreover, by applying (24), a diagonal operator Wn(g) can be writ-

ten in the following form Wn(g) ej1j2...jn =
∏

i∈Des(g−1)

σj1j2...ji ej1j2...jn . We emphasize that there is a

misprint in (30) (which is written in Theorem 1 and Theorem 3 of [9]), because on the right-hand side of
(30) G should be written instead of g. In fact, we denote by G = % (g∗) a (twisted regular) representation
on the subspace BQ of an element g∗ ∈ A(Sn) from a twisted group algebra A(Sn) of the symmetric group
Sn, given by g∗ =

∏
(a,b)∈I(g−1)

Xa b g, see [8, Definition 2.1] where I(g−1) denotes the set of inversions of

g−1 ∈ Sn. Then we obtain that

Gej1j2...jn = % (g∗) ej1j2...jn =
∏

(a,b)∈I(g−1)

qjg−1(a)jg−1(b)
ejg−1(1)jg−1(2)...jg−1(n)

. (31)
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We note that the right-hand side of (31) can be written as∏
(b′,a′)∈I(g)

qja′ jb′ ejg−1(1)jg−1(2)...jg−1(n)
=

∏
(a′,b′)∈I(g)

qjb′ ja′ ejg−1(1)jg−1(2)...jg−1(n)
,

see [7, Lemma 4.6], but we will not use this notation here because (31) is more convenient with the re-
maining notation of the operator EQ,n from (29). Briefly, if (a, b) ∈ I(g−1) then it holds that a < b
and g−1(a) > g−1(b). Let denote by a′ = g−1(a) and b′ = g−1(b), from which follows g(a′) = a and
g(b′) = b. Then a < b and g−1(a) > g−1(b) implies g(a′) < g(b′) and a′ > b′. We thus obtain b′ < a′

and g(b′) > g(a′), from which follows (b′, a′) ∈ I(g).

Note that if k = k1 . . . kn ∈ Q̂ and j = j1 . . . jn ∈ Q̂ are in the relation with kp = jg−1(p) for all
1 ≤ p ≤ n, then the monomial ek = ek1k2...kn in the monomial basis of BQ is given by

ek = ejg−1(1)jg−1(2)...jg−1(n)
,

so that (29) can be written in the following shorter form

EQ,n ej =
∑

g∈S1×Sn−1

 ∏
i∈Des(g−1)

σjg−1(1)jg−1(2)...jg−1(i)

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)

 ek.

Recall also that qij are complex numbers, so it is easy to see that it follows from the right-hand
side of the formula (29) that EQ,n is a diagonal operator. Using the fact that the product of diagonal
operators is commutative, we get (DQ,n)

−1
= (Qn)−1 · EQ,n· = EQ,n · (Qn)−1 and then with (27) we get

(DQ,n)
−1 ·

(
id−Q{1,2,...,n}

)
= EQ,n · (Qn)−1 ·

(
id−Q{1,2,...,n}

)
= EQ,n · (Qn−1)−1, therefore from (25)

follows (26).

Remark 2.6. In the generic case there are n! (nontrivial) vectors Xj ∈ ker ∂Q (c.f. (26)), but they
are not linearly independent for each j ∈ Q̂. In other words, they do not form a basis of ker ∂Q,

see [9]. If we now use the abbreviations V :=

←∏
2≤m≤n−1

(id− Tm,1) and W :=

←∏
2≤m≤n−1

(
id− T 2

1 Tm,2
)
,

then the operators CQ,n and DQ,n, given by (8) and (9), can be written as CQ,n = (id− Tn,1) · V and
DQ,n =

(
id− T 2

1 Tn,2
)
·W , therefore we can rewrite (19) as

X = (id− Tn,1) · V ·W−1 · Uj (32)

where W is invertible under the Q-cocycle condition. Then X ∈ ker ∂Q if Uj ∈ ker
(
id− T 2

1 Tn,2
)
, so it

turns out that

dim (ker(id− T 2
1 Tn,2)) = n · (n− 2)! and dim (ker(id− Tn,1)) = (n− 1)!.

Moreover, we obtain from (32) that dim(ker ∂Q) = dim(ker(id−T 2
1 Tn,2))−dim(ker(id−Tn,1)) = (n−2)!,

which leads to an alternative result of Frønsdal and Galindo [3, Theorem 4.1.2] that the space of constants
in the generic case has dimension (n− 2)!.

We can now conclude that if Q = {l1, l2, . . . , ln} is a set of cardinality n ≥ 2, then under the Q-cocycle
condition the number of vectors Xj ∈ ker ∂Q given by (26) can be reduced to (n− 2)! by

Xl1l2j3...jn =
(
CQ,n · (Qn−1)−1 · EQ,n

)
el1l2j3...jn (33)

for all j3 . . . jn ∈ P̂ , where P = Q\{l1, l2} = {l3, . . . , ln} is a set of cardinality n− 2 obtained from the
set Q by omitting the first two elements l1 and l2 of Q. Then |P̂ | = (n− 2)!. Thus, the indices of X
on the left-hand side of the formula (33) have the form that the first two indices l1, l2 ∈ Q are fixed and
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the remaining n− 2 indices l3, . . . , ln ∈ Q vary. Here we should note that the application of (29) leads
us to the conclusion that the right-hand side of the formula (33) consists of (n− 1)! terms in which the
indices of the monomial el1l2j3...jn are such that its first index l1 is fixed and the remaining n− 1 indices
l2j3 . . . jn vary. Moreover, we first introduce certain iterated q -commutators Yj1...jp , which are recursively
expressed by

Yj1 = ej1 , Yj1...jp =
[
Yj1...jp−1

, ejp
]
qjpj1 ···qjpjp−1

, (34)

where
[
Yj1...jp−1

, ejp
]
qjpj1 ···qjpjp−1

= Yj1...jp−1
ejp − qjpj1 · · · qjpjp−1

ejpYj1...jp−1
, and we then obtain

Yj1j2...jn = CQ,n ej1j2...jn (35)

j1j2 . . . jn ∈ Q̂, see [9, Proposition 4]. On the other hand, we obtain with (28) that

(Qn−1)−1 ej1j2...jn =
1

(1− σj1j2) · (1− σj1j2j3) · · ·
(
1− σj1j2...jn−1

) ej1j2...jn , (36)

where σj1j2...jp is given by (23) for each 2 ≤ p ≤ n− 1. Let R = {l2, . . . , ln} ⊂ Q be a set of cardinality
n− 1, n ≥ 2, which we obtain from the set Q = {l1, l2, . . . , ln} by omitting the first element l1 of Q, then
a monomial el1l2j3...jn on the right-hand side of (33) can take the form el1j2j3...jn , where j2j3 . . . jn ∈ R̂.
Using (29), (35) and (36), we thus rewrite the right-hand side of (33) into the form

∑
g∈S1×Sn−1

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)

∏
i∈Des(g−1)

σl1jg−1(2)...jg−1(i)(
1− σl1jg−1(2)

)
·
(
1− σl1jg−1(2)jg−1(3)

)
· · ·
(
1− σl1jg−1(2)...jg−1(n−1)

) · Yl1jg−1(2)...jg−1(n)
, (37)

where we used that the multiplication in the numerator of (37) is commutative, since all values are
complex numbers. Thus, if g = id, then g−1 = id, so the sets I(id) and Des(id) are equal to an empty
set, resulting in both products in the numerator of the fraction of (37) being equal to one. From the fact
that g ∈ S1 × Sn−1 fixes the first index l1 in Q, it follows that (37) consists of (n− 1)! terms in which the
first index is fixed and the remaining n− 1 indices vary. Thus, under the Q-cocycle condition 1− σQ = 0
(c.f. (17)), each vector Xj ∈ ker ∂Q in (33) takes the form (37). This gives rise to the following theorem.

Theorem 2.7. Let the generic weight subspace BQ ⊆ B correspond to a set Q = {l1, l2, . . . , ln} of car-
dinality n ≥ 2 and P = {l3, . . . , ln}. If 1− σQ = 0, then the space CQ of all constants belonging to the
subspace BQ consists of (n− 2)! nontrivial basic constants which can be expressed in the form

Cl1l2j3...jn = (38)

=
∑

g∈S1×Sn−1

∏
(a,b)∈I(g−1)

qjg−1(a)jg−1(b)
·

∏
i∈Des(g−1)

σl1jg−1(2)...jg−1(i)(
1− σl1jg−1(2)

)
·
(
1− σl1jg−1(2)jg−1(3)

)
· · ·
(
1− σl1jg−1(2)...jg−1(n−1)

) · Yl1jg−1(2)...jg−1(n)

for every j3 . . . jn ∈ P̂ , where g ∈ S1 × Sn−1 fixes the first index.

Note that Theorem 2.7 gives the same result as [9, Theorem 3], where G should be written instead
of g, see Remark 2.5. The nontrivial basic constants are described in more detail here using the formula
(38), which is explained in the following examples, where we write the Q-cocycle condition (17) in the
form 1− σQ = 0.

Example 2.8. Let Q = {l1, l2} and 1− σl1l2 = 0. Then it follows from n = |Q| = 2 that (n−2)! = 0! = 1
such that under the Q-cocycle condition 1− σl1l2 = 0 the space CQ of all constants belonging to the sub-
space BQ consists of a nontrivial basic constant, consists of one term. Note that in the set Q̂ = {l1l2, l2l1}
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there is only one permutation g = l1l2 = id which fixes the first index l1 ∈ Q, where g−1 = l1l2 = id and
I(id) = Des(id) = ∅. For n = 2 the numerator of the fraction of (38) multiplying the corresponding it-
erated q-commutator Yl1jg−1(2)

= Yl1l2 is equal to one. On the other hand, it follows directly that the
denominator of the given fraction is also equal to one, so the corresponding fraction multiplied by Yl1l2 is
equal to one. Thus, under the Q-cocycle condition 1− σl1l2 = 0 there is only one nontrivial basic constant

Cl1l2 = Yl1l2 ,

where Y l1l2 = [el1 , el2 ]ql2l1
= el1l2 − ql2l1el2l1 .

Example 2.9. Let Q = {l1, l2, l3} be the set of cardinality 3 and let 1− σl1l2l3 = 0. Then the space CQ
of all constants belonging to the subspace BQ consists of a nontrivial basic constant Cl1l2l3 consisting of
two terms as follows

Cl1l2l3 =
1

1− σl1jg−1
1 (2)

· Yl1jg−1
1 (2)

j
g
−1
1 (3)

+
qj
g
−1
2 (2)

j
g
−1
2 (3)

· σl1jg−1
2 (2)

1− σl1jg−1
2 (2)

· Yl1jg−1
2 (2)

j
g
−1
2 (3)

. (39)

Note that the set Q̂ consists of six permutations, of which only the following two permutations
g1 = l1l2l3 = id and g2 = l1l3l2 are elements of S1 × S2. Now it is easy to see that g−11 = g1 = id, so
that I(id) = Des(id) = ∅. So, by applying jg−1

1 (2) = l2 and jg−1
1 (3) = l3, the first term of the sum of the

formula (39) is given by

1

1− σl1jg−1
1 (2)

· Yl1jg−1
1 (2)

j
g
−1
1 (3)

=
1

1− σl1l2
· Yl1l2l3 .

On the other hand, it follows that g−12 = g2 = l1l3l2, so I(g−12 ) = {(2, 3)}, Des(g−12 ) = {2}. Then, by
applying jg−1

2 (2) = l3 and jg−1
2 (3) = l2, the second term of the sum of the formula (39) is given by

qj
g
−1
2 (2)

j
g
−1
2 (3)

· σl1jg−1
2 (2)

1− σl1jg−1
2 (2)

· Yl1jg−1
2 (2)

j
g
−1
2 (3)

=
ql3l2 · σl1l3
1− σl1l3

· Yl1l3l2 .

Thus, under the Q-cocycle condition 1− σl1l2l3 = 0, the space CQ consists of a nontrivial basic constant

Cl1l2l3 =
1

1− σl1l2
· Yl1l2l3 +

ql3l2σl1l3
1− σl1l3

· Yl1l3l2 , (40)

where Y i1i2i3 = [Y i1i2 , ei3 ]qi3i1qi3i2
= ei1i2i3 − qi2i1ei2i1i3 − qi3i1qi3i2ei3i1i2 + qi2i1qi3i1qi3i2ei3i2i1 .

Example 2.10. Let Q = {l1, l2, l3, l4} be the set of cardinality 4 and let 1− σl1l2l3l4 = 0. Then the space
CQ consists of two nontrivial basic constants Cl1l2l3l4 and Cl1l2l4l3 , each consisting of six terms. Note
that the set Q̂ consists of 24 permutations, of which only the next six permutations g1 = l1l2l3l4 = id,
g2 = l1l2l4l3, g3 = l1l3l2l4, g4 = l1l3l4l2, g5 = l1l4l2l3, g6 = l1l4l3l2 are elements of S1 × S3. Then we ob-
tain g−11 = l1l2l3l4 = id, I(id) = Des(id) = ∅, g−12 = l1l2l4l3, I(g−12 ) = {(3, 4)}, Des(g−12 ) = {3}, g−13 =
l1l3l2l4, I(g−13 ) = {(2, 3)}, Des(g−13 ) = {2}, g−14 = l1l4l2l3, I(g−14 ) = {(2, 3), (2, 4)}, Des(g−14 ) = {2},
g−15 = l1l3l4l2, I(g−15 ) = {(2, 4), (3, 4)}, Des(g−15 ) = {3}, g6 = l1l4l3l2, I(g−16 ) = {(2, 3), (2, 4), (3, 4)},
Des(g−16 ) = {2, 3}, from which we deduce, that under the Q-cocycle condition 1− σl1l2l3l4 = 0, the space
CQ consists of the following nontrivial basic constants
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Cl1l2l3l4 =
1

(1− σl1l2)(1− σl1l2l3)
· Yl1l2l3l4 +

ql4l3σl1l2l4
(1− σl1l2)(1− σl1l2l4)

· Yl1l2l4l3

+
ql3l2σl1l3

(1− σl1l3)(1− σl1l2l3)
· Yl1l3l2l4 +

ql4l2ql4l3σl1l4
(1− σl1l4)(1− σl1l2l4)

· Yl1l4l2l3

+
ql3l2ql4l2σl1l3l4

(1− σl1l3)(1− σl1l3l4)
· Yl1l3l4l2 +

ql3l2ql4l2ql4l3σl1l4σl1l3l4
(1− σl1l4)(1− σl1l3l4)

· Yl1l4l3l2

Cl1l2l4l3 =
1

(1− σl1l2)(1− σl1l2l4)
· Yl1l2l4l3 +

ql3l4σl1l2l3
(1− σl1l2)(1− σl1l2l3)

· Yl1l2l3l4

+
ql4l2σl1l4

(1− σl1l4)(1− σl1l2l4)
· Yl1l4l2l3 +

ql3l2ql3l4σl1l3
(1− σl1l3)(1− σl1l2l3)

· Yl1l3l2l4

+
ql3l2ql4l2σl1l3l4

(1− σl1l4)(1− σl1l3l4)
· Yl1l4l3l2 +

ql3l2ql3l4ql4l2σl1l3σl1l3l4
(1− σl1l3)(1− σl1l3l4)

· Yl1l3l4l2 (41)

The expressions of the nontrivial basic constants in Bl1l2l3l4l5 can be found in [9, Example 4], where
we have used the abbreviations x∗ := 1

1−x , x
+ := x

1−x . In this case, there are six nontrivial basic constants,
each consisting of 24 terms in lexicographic order.

In agreement with the notation introduced earlier, the problem of finding the explicit formula describ-
ing the constants in the generic subspaces of the algebra B is solved by the formula (38) of Theorem 2.7,
in which under the Q-cocycle condition (17) the constants in BQ are expressed by certain iterated q -
commutators. In doing so, we have shown that vectors play a crucial role in the kernel of the operator
(id− T 2

1 Tn,2). Similarly, we can compute constants in the degenerate subspaces of the algebra B. How-
ever, the problem of finding the explicit formula describing the constants in the degenerate subspaces of
the algebra B is not so easy to solve, because for each multiset Q the polynomial detBQ has a different
factorization with the factors βT , T ⊆ Q, so it is much more difficult to express the corresponding de-
terminant (11) of the matrix BQ by an explicit formula for each multiset Q. Thus, the factor βQ in the
Q-cocycle condition (14) takes a different form depending on the given multiset Q. In accordance with
the above procedure, we briefly describe below the corresponding determinant (11) of the matrix BQ, the
Q-cocycle condition (14), and nontrivial basic constant in the degenerate subspace BQ corresponding to
the multiset Q, which first takes the form Q = {kn} and then Q = {kn−11 , k2}, see also [6], where the basic
constants are also given under the (Q;T )-cocycle condition for the fixed T ⊂ Q, which is not considered
here.

1. Let Q = {kn} be a multiset of cardinality n ≥ 2. Then in this case we obtain that the determinant
(11) is given by detBQ = [n]qkk (see (4)), so that the Q-cocycle condition (14) has the form cQ =
{[n]qkk = 0}, which we can rewrite into the form

1 + qkk + q2kk + · · ·+ qn−1kk = 0. (42)

If the Q-cocycle condition (42) is satisfied, then the space CQ = {Ckn} of all constants belonging to
the degenerate subspace BQ consists of a nontrivial basic constant of the following form

Ckn = ekn . (43)

2. Let Q = {kn−11 , k2} be a multiset of cardinality n ≥ 3. Then the determinant (11) is given by

detBkn−1
1 k2

= [n− 1]qk1k1
! ·
n−2∏
i=0

(
1− qik1k1σk1k2

)
(c.f. (13) for n = 3), where [n− 1]qk1k1

! denotes the factorial, i.e., the product of all polyno-
mials [p]qk1k1

with the form given in (4) for all 2 ≤ p ≤ n− 1. Then the Q-cocycle condition
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(14) has the form cQ =
{
1− qn−2k1k1

σk1k2 = 0, 1− qik1k1σk1k2 6= 0, [p]qk1k1
6= 0
}
for all 0 ≤ i ≤ n− 3,

2 ≤ p ≤ n− 1, which we rewrite in the form

1− qn−2k1k1
σk1k2 = 0. (44)

If the Q-cocycle condition (44) is satisfied, then the space CQ = {Ckn−1
1 k2

} of all constants belonging
to the degenerate subspace BQ consists of a nontrivial basic constant of the form

Ckn−1
1 k2

= Y k2kn−1
1

, (45)

where Y k2kn−1
1

denotes an iterated q -commutator, see (34). For more details, see [6, Degenerate
cases] and [2, Appendix. Examples].

3. The relation of the constants in degenerate subspaces BQ of
the algebra B to the corresponding constants in the generic case

Considering that it is much more difficult to formulate an explicit formula describing the constants in
the degenerate subspaces BQ of the multiparametric algebra B, the following questions naturally arise for
arbitrary multiset Q: is it possible to determine the corresponding Q-cocycle condition (14) from (17)
and is it then possible to determine constants in degenerate subspaces of the algebra B using the formula
(38)?

Following the works of [2, 5] and also [6], we first consider that any multiset of cardinality n can be
viewed as the set of the same cardinality n in which some of its elements are repeated. Suppose, then, that
Q = {l1, . . . , ln} =

{
kn1
1 , . . . , knmm , . . . , k

np
p

}
is a multiset of cardinality n = n1+· · ·+np, where ki 6= kj for

each 1 ≤ i < j ≤ p and there is at least one nm such that nm 6= 1. We recall that nm is considered as the
repetition frequency of the element km in the multisetQ. Then we define the submultisetQkm , 1 ≤ m ≤ p,
by removing one copy of km from the multiset Q, i.e., Qkm = Q\{km} =

{
kn1
1 , . . . , knm−1m , . . . , k

np
p

}
. In

agreement with the introduced notation Q̂ for the set of all unique permutations of the multiset Q, we
denote by Q̂km the set of all unique permutations of the multiset Qkm . Then we define the functions
a : Q̂→ C\{0} and bkm : Q̂km → C\{0}, 1 ≤ m ≤ p by

a (j1 . . . jn) = qjnj1 · · · qjnjn−1
, j1 . . . jn ∈ Q̂, (46)

bkm

(
j1 . . . k̂m . . . jn

)
= qkmjn · a

(
km j1 . . . k̂m . . . jn

)
j1 . . . k̂m . . . jn ∈ Q̂km (47)

which are called commutation factors (c.f. [2]). We note here that we define bkm only for distinct elements
km of the multiset Q, hence we write 1 ≤ m ≤ p. In other words, by knmm we mean that the element km
of Q is repeated nm times, so for all knmm we get only one multiset Qkm and also one function bkm . Thus,
in (47), one km of knmm is deleted (it does not matter which km of knmm ). Note that we can write (47) as
follows

bkm

(
j1 . . . k̂m . . . jn

)
= σkmjnqjnj1 · · · q̂jnkm · · · qjnjn−1

, (48)

where we have used (46) and the identity σij = qijqji. We emphasize, the factors a (j1 . . . jm) and
bj1 (j2 . . . jm) occur in the expressions qjmj1 · · · qjmjm−1

and σj1jmqjmj2 · · · qjmjm−1
of the action of the

simpler operators Tm,1 and T 2
1 Tm,2, 2 ≤ m ≤ n on BQ, given by (6) and (10). Similar to [6], in the

following we will briefly discuss the 〈tm,1〉-orbit and the 〈t21 tm,2〉-orbit (2 ≤ m ≤ n) on BQ generated by
ej for all j = j1 . . . jn ∈ Q̂ with the motivation to explain their connection with the Q-cocyclic conditions
(14) and (17) in the degenerate and generic cases. Note that the term used here for the 〈t21 tm,2〉-orbit
on BQ is equal to the term 〈t22,1ti,2〉-orbit on BQ in [6] for the same orbit on BQ when m = i, where
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t21 tm,2 = t22,1tm,2. It should be noted that among the orbits we distinguish the long and the short singu-
lar orbits, which we call by the common name singular orbits.

Let us denote by B (j1j2...jm)jm+1...jn
Q := spanC

{
etαm,1·j | 0 ≤ α ≤ m− 1

}
the 〈tm,1〉-orbit on BQ gen-

erated by ej , where

etm,1·j = ejt1,m(1)...jt1,m(n)

for each j = j1 . . . jn ∈ Q̂ (c.f. [5]); t1,m denotes the inverse of tm,1. These orbits are in one-to-one
correspondence with cyclic tm,1-equivalence classes (j1j2 . . . jm)jm+1 . . . jn of sequences j ∈ Q̂, see [6].
Here we considered that 〈tm,1〉 = {id, tm,1, (tm,1)2, . . . , (tm,1)m−1} is the cyclic subgroup of the sym-
metric group Sn generated by the cycle tm,1 = (1 2 ...m) ∈ Sn. Then for each 1 ≤ m ≤ n we ob-
tain that Tm,1

(
etαm,1·j

)
= cα etα+1

m,1 ·j
, 0 ≤ α ≤ m − 1, where c0 = a (j1 . . . jm), c1 = a (jm . . . jm−1),

c2 = a (jm−1 . . . jm−2) , . . . , cm−2 = a (j3 . . . j2), cm−1 = a (j2 . . . j1), see (46). Therefore, we obtain that
Tm,1|B (j1j2...jm)jm+1...jn

Q is a cyclic operator such that

det
(
I−Tm,1|B (j1j2...jm)jm+1...jn

Q

)
= 1−

∏
0≤α≤m−1

cα.

Here we denote by Tm,1 the corresponding matrix of the operator Tm,1 in the monomial basis of the
subspace BQ and I is the unit matrix corresponding to the operator T1,1 = id. A 〈tm,1〉-orbit on BQ,
|Q| = n is thus singular if

1−
∏

0≤α≤m−1

cα = 0 (49)

and it is long singular if m = n, where (49) reduces to the form

1−
∏

1≤a 6=b≤n

qlalb = 0, (50)

where the product runs over all n · (n− 1) pairs lalb of elements from the given multiset Q. The identity
(49) represents the Q-cocycle condition (14). On the other hand, the identity (50) represents the corre-
sponding Q-cocycle condition (17) in the generic case (Q is a set of cardinality n), since in these cases all
orbits are long.

Now consider B j1(j2j3...jm)jm+1...jn
Q = spanC

{
etβm,2·j

| 0 ≤ β ≤ m− 2
}

the 〈t21 tm,2〉-orbit on BQ,
which are in one-to-one correspondence with cyclic tm,2-equivalence classes j1(j2 . . . jm)jm+1 . . . jn of
sequences j ∈ Q̂, where 〈tm,2〉, 2 ≤ m ≤ n is the cyclic subgroup of S1 × Sn−1 generated by the cycle

tm,2 = (2 3 ...m) ∈ S1 × Sn−1. Then for each 2 ≤ m ≤ n we obtain that T 2
1 Tm,2

(
etβm,2·j

)
= dβ etβ+1

m,2 ·j
,

0 ≤ β ≤ m− 2, where d0 = bj1

(
ĵ1j2 . . . jm

)
, d1 = bj1

(
ĵ1jm . . . jm−1

)
, d2 = bj1

(
ĵ1jm−1 . . . jm−2

)
,

. . . , dm−3 = bj1

(
ĵ1j4 . . . j3

)
, dm−2 = bj1

(
ĵ1j3 . . . j2

)
, see (47) and also (48). Then we obtain that

T 2
1 Tm,2|B

j1(j2j3...jm)jm+1...jn
Q is a cyclic operator such that

det
(
I−T2

1 Tm,2|B j1(j2j3...jm)jm+1...jn
Q

)
= 1−

∏
0≤β≤m−2

dβ ,

where T2
1 Tm,2, 2 ≤ m ≤ n denotes the corresponding matrix of the operator T 2

1 Tm,2 in the monomial
basis of the subspace BQ. Thus, a 〈t21 tm,2〉-orbit on BQ is singular if

1−
∏

0≤β≤m−2

dβ = 0 (51)
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and it is long singular if (51) reduces to (50). Then we conclude that a 〈tm,1〉-orbit or a 〈t21 tm,2〉-orbit
on BQ is short singular if the left-hand side of (49) or the left-hand side of (51) is a nontrivial divisor
of the left-hand side of (50). Considering the introduced notation of the corresponding matrices of the
given operators with respect to the monomial basis of a subspace BQ of the algebra B, see Remark 2.2,
we note that under the Q-cocycle condition it is sufficient to consider only the matrices (I−Tn,1) and(
I−T2

1 Tn,2

)
. If these matrices are transformed into block diagonal matrices, then the number of blocks

in a block diagonal matrix is equal to the number of distinct singular orbits on BQ. The difference
between the number of distinct singular 〈t21 tn,2〉-orbits and 〈tn,1〉-orbits on BQ is equal to the dimension
of CQ, the space of all constants belonging to the subspace BQ of the algebra B, see [6]. In the generic
case this difference is equal to (n− 2)!, see Remark 2.6. It follows that there is a relation between the
Q-cocycle conditions (14) and (17) in the corresponding degenerate and generic subspaces of the algebra
B, which leads us to conclude that we can also establish a relation between constants in the corresponding
degenerate and generic subspaces of the algebra B.

In the interest of clearer notation and a more sophisticated notation of multiset and set, in what
follows we denote by Q′ a multiset and by Q a set, assuming that Q and Q′ have the same cardinality.
We recall that any multiset Q′ of cardinality n can be obtained from the set of the same cardinality n by
specializing the elements of the set Q such that some of them are repeated. In this case, with the given
specialization, we can obtain from the set Q̂ of all unique permutations of the set Q the set Q̂′ of all
unique permutations of the multiset Q′ by removing the elements that are repeated, which is explained
in the following example.

Example 3.1. Considering the set Q = {l1, l2, l3} of cardinality 3, we obtain, that the set of all
unique permutations of the set Q is given by Q̂ = {j1j2j3, j1j3j2, j3j1j2, j3j2j1, j2j3j1, j2j1j3}. On
the other hand, if we specialize the elements of the set Q such that k1 = l1 = l2 and k2 = l3, then
we obtain the multiset Q′ = {k21, k2} of cardinality 3. Moreover, if we apply the given specializa-
tion to the elements of the set Q̂, we obtain the set Q̂′ = {i1i1i2, i1i2i1, i2i1i1, i2i1i1, i1i2i1, i1i1i2},
from which we get Q̂′ = {i1i1i2, i1i2i1, i2i1i1}, where we used i1 = j1 = j2, i2 = j3. Thus we can re-
alize the monomial basis BQ′ = {ei1i1i2 , ei1i2i1 , ei2i1i1} of a subspace BQ′ from the monomial basis
BQ = {ej1j2j3 , ej1j3j2 , ej3j1j2 , ej3j2j1 , ej2j3j1 , ej2j1j3} of a subspace BQ. Considering the obtained matri-
ces BQ and BQ′ from Example 2.3, we note that with the given specialization k1 = l1 = l2, k2 = l3 the
matrix BQ′ is reduced from the matrix BQ. At the same time, we note that some elements of the matrix
BQ′ are polynomials obtained by adding the corresponding elements (monomials) of the matrix BQ to the
same reduced elements of the monomial basis. In particular, it is easy to see that from

BQ ej1j2j3 = (T3,1 +T2,1 + I) ej1j2j3 = qj3j2qj3j2 ej3j1j2 + qj2j1 ej2j1j3 + ej1j2j3

by the given specialization k1 = l1 = l2, k2 = l3, which is equivalent to i1 = j1 = j2, i2 = j3, we obtain

BQ′ ei1i1i2 = (T3,1 +T2,1 + I) ei1i1i2 = qi2i1qi2i1 ei2i1i1 + qi1i1 ei1i1i2 + ei1i1i2

= q2i2i1 ei2i1i1 + (1 + qi1i1) ei1i1i2 .

Then it follows from (12), given the specialization, that

detBQ′ = (1− σk1k1) · (1− σk1k2) · (1− σk1k2) · (1− σk1k1k2)
=
(
1− q2k1k1

)
· (1− σk1k2)

2 ·
(
1− q2k1k1σ

2
k1k2

)
= (1− qk1k1) · (1 + qk1k1) · (1− σk1k2)

2 · (1− qk1k1σk1k2) · (1 + qk1k1σk1k2)

is a multiple of detBQ′ from (13). In other words, detBQ′ from (13) is a nontrivial divisor of detBQ′ ,
which we have obtained here by the given specialization. We emphasize that σij = qijqji implies σk1k1 =
q2k1k1 , and from (24) and (23) it follows σk1k1k2 = σk1k1σk1k2σk1k2 = q2k1k1σ

2
k1k2

.

Similar to Example 3.1, we can obtain the Q′-cocycle conditions in degenerate cases from an ap-
propriate "generic" Q-cocycle condition by using a certain specialization procedure in which it turns out
that the Q′-cocycle condition is a nontrivial divisor of the corresponding Q′-cocycle condition obtained by
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the certain specialization. In this way, any constant in degenerate subspaces BQ of the multiparametric
algebra B can be constructed from those in the generic case by a certain specialization procedure, which
we will discuss in more detail below. Therefore, by applying a certain specialization procedure, we explain
the determination of the corresponding Q′-cycle condition (14) from the Q-cycle condition (17) and then
the determination of constants in degenerate subspaces BQ′ of B using the formula (38), where starting
from the set Q = {l1, . . . , ln} of cardinality n by certain specializations of its elements, first a multiset
Q′ = {kn} and then a multiset Q′ = {kn−11 , k2} of the same cardinality is obtained.

3.1. Multiset Q′ = {kn}, n ≥ 2

Proposition 3.2. Let Q′ = {kn} be a multiset of cardinality n ≥ 2. The nontrivial basic constant (43)
in the degenerate subspace BQ′ and also the Q′-cocycle condition (42) can be constructed from the generic
case by a certain specialization procedure.

Proof. Let Q = {l1, . . . , ln} be a set of cardinality n ≥ 2. Then the Q-cocycle condition is given by
(17) and the nontrivial basic constants by (38). Specializing the elements of the set Q such that all lj
are equal to k, one can consider the set Q = {l1, . . . , ln} as a multiset Q′ = {kn} in which the element
k ∈ N is repeated n times. In this case, the corresponding Q-cocycle condition (17), given by 1− σQ = 0
and 1− σT 6= 0 for all T ⊂ Q, here has the form 1− σkn = 0, 1− σki 6= 0 for all 2 ≤ i ≤ n− 1, or shorter
1 − σkn = 0. Moreover, by applying (24) and (23), we obtain σkm = (q2kk)

(m2 ) = (qkk)
m·(m−1) = qm

2−m
kk

for all 2 ≤ m ≤ n, from which it follows that

1− σkn = 1− qn
2−n

kk = (1− qkk) ·
(
1 + qkk + q2kk + · · ·+ qn

2−n−1
kk

)
= (1− qkk) · (1 + qkk + · · ·+ qn−1kk ) ·

(
1 + qnkk + q2nkk + · · ·+ q

(n−2)·n
kk

)
,

which we can write in the following form

1− σkn = (1− qkk) · [n]qkk ·

1 +

n−2∑
j=1

qj·nkk

 . (52)

Then 1− σkn = 0 if and only if 1− qkk = 0 or [n]qkk = 0 or 1 +
∑n−2
j=1 q

j·n
kk = 0, so it is easy to see that the

left-hand side of (42) is a nontrivial divisor of (52), see also (4). So in the following we will show that the
Q′-cocycle condition 1− σkn = 0 can be reduced to [n]qkk = 0 with 1− qkk 6= 0 and 1 +

∑n−2
j=1 q

j·n
kk 6= 0. In

particular, for n = 2 see Remark 3.3 below. On the other hand, if all lj ∈ Q are equal to k, then all (n−2)!
nontrivial basic constants from (38) reduce to a constant Ckn , where all (n− 1)! iterated q -commutators
are equal to the iterated q -commutator Ykn (c.f. (34)) given by Ykn =

(∏n−1
s=1 (1− qskk)

)
ekn , n ≥ 2, which

by applying the property 1− qskk = (1− qkk) · (1 + qkk + · · ·+ qs−1kk ) = (1− qkk) · [s]qkk , can be written as
follows

Ykn =

(
n−1∏
s=1

(1− qkk) · [s]qkk

)
ekn . (53)

Here we consider that ekn = enk and that n ≥ 2. We emphasize that (4) implies [1]qkk = 1. Moreover,
from (38), considering the given specialization, we obtain that the denominators of all fractions of the
obtained constant Ckn are equal to the product

∏n−1
i=2 (1− σki), so we express Ckn in terms of a fraction,

whose numerator is equal to the product of the factors
(
1 +

∑m−2
j=1 qj·mkk

)
for all 3 ≤ m ≤ n. In other
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words, we obtain

Ckn =

n∏
m=3

1 +

m−2∑
j=1

qj·mkk


n−1∏
i=2

(1− σki)
· Ykn , (54)

where by applying (52) for n = i and the identity (53) we further obtain

Ckn =

n∏
m=3

1 +

m−2∑
j=1

qj·mkk

 · n−1∏
s=1

(1− qkk) · [s]qkk

n−1∏
i=2

(1− qkk) · [i]qkk ·

1 +

i−2∑
j=1

qj·ikk

 ekn

=



1 +

n−2∑
j=1

qj·nkk

 · (1− qkk) · (1− qkk) · [2]qkk
(1− qkk) · [2]qkk

·
n−1∏
m=3

1 +

m−2∑
j=1

qj·mkk

 · (1− qkk) · [m]qkk

(1− qkk) · [m]qkk ·

1 +

m−2∑
j=1

qj·mkk



 ekn

from which it follows directly

Ckn = (1− qkk) ·
(
1 + qnkk + q2nkk + · · ·+ q

(n−2)·n
kk

)
ekn . (55)

Here we have considered that [1]qkk = 1 and that the sum 1 +
∑i−2
j=1 q

j·i
kk is equal to one if i = 2. If we

compare (52) with (55), it is easy to see that 1− σkn and Ckn consist of the same factors 1− qkk and
1 + qnkk + q2nkk + · · ·+ q

(n−2)·n
kk . First, we exploit the fact that from the Q-cocycle condition 1− σQ = 0

(c.f. (17)) with (52) it follows the Q′-cocycle condition, given by 1− σkn = 0, and then there is a constant
(c.f. (55)) in the degenerate subspace Bkn if and only if the Q′-cocycle condition 1− σkn = 0 is satisfied,
then we obtain

1. if 1− qkk = 0 or 1 + qnkk + q2nkk + · · · + q
(n−2)·n
kk = 0, then the Q′-cocycle condition is satisfied and

the constant Ckn is zero (i.e., a trivial constant);

2. if 1− qkk 6= 0 and 1 + qnkk + q2nkk + · · ·+ q
(n−2)·n
kk 6= 0, then the Q′-cocycle condition is given by

[n]qkk = 0 (i.e., 1 + qkk + · · · + qn−1kk = 0, see (52) and (4)) and in this case Ckn is a nontrivial
constant;

3. if 1− qkk 6= 0, 1 + qnkk + q2nkk + · · ·+ q
(n−2)·n
kk 6= 0 and [n]qkk 6= 0, then the Q′-cocycle condition is

not satisfied, so there are no constants in Bkn .

From this we can conclude that the obtained Q′-cocycle condition 1− σkn = 0 (c.f. (52)) can be reduced
to [n]qkk = 0, compare with (42). On the other hand, we emphasize that qij ’s are complex numbers,
which means that the constant Ckn given in (55) is a multiple of ekn (c.f. (43)). Thus, under the Q′-
cocycle condition [n]qkk = 0, it follows from the constant Ckn that ekn is a nontrivial basic constant
in the space Ckn of all constants belonging to the degenerate subspace Bkn . In this way, we proved
that for the multiset Q′ = {kn}, n ≥ 2 the Q′-cocycle condition as well as the nontrivial basic constant
in the degenerate subspace BQ′ can be constructed from the generic case by a certain specialization
procedure.
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Remark 3.3. For n = 2 it follows from (52) that the Q′-cocycle condition 1− σk2 = 0 is of the form
(1 − qkk) · [2]qkk = 0, that is, (1− qkk) · (1 + qkk) = 0 when we apply (4), and it is a multiple of the
corresponding Q′-cocycle condition 1 + qkk = 0 from (42) for n = 2. We note here that in this case the sum
1 + qnkk + · · ·+ q

(n−2)·n
kk from (52) is equal to one. In addition, both the numerator and the denominator

of the fraction of (54) are equal to one, so the constant in the degenerate subspace Bk2 under the Q′-
cocycle condition is given by Ck2 = Yk2 = (1− qkk) ek2 , which is also consistent with (55), where for n = 2

the sum 1 + qnkk + · · ·+ q
(n−2)·n
kk equals one. Similar to the above, the Q′-cocycle condition 1− σk2 = 0 is

satisfied if and only if 1− qkk = 0 or 1 + qkk = 0, where the obtained constant Ck2 is trivial if 1− qkk = 0
and nontrivial if 1− qkk 6= 0 and 1 + qkk = 0 and in this case ek2 is a nontrivial basic constant in Bk2 .

Example 3.4. Let us take n = 3. Then by applying the following specialization k = l1 = l2 = l3 we can
consider the set Q = {l1, l2, l3} as a multiset Q′ = {k3}. Then the Q-cocycle condition 1− σl1l2l3 = 0
reduces to the Q′-cocycle condition 1− σk3 = 0, which has the form

(1− qkk) · [3]qkk · (1 + q3kk) = 0,

see (52). On the other hand, with the introduced specialization, a nontrivial basic constant in the generic
subspace BQ of the algebra B, given by (40) from Example 2.9, reduces to the form

Ck3 =
1 + q3kk
1− σk2

· Yk3 = (1− qkk) · (1 + q3kk) ek3 ,

see (55), where we applied 1 − σk2 = (1 − qkk) · [2]qkk and Yk3 = (1 − qkk)2 · [2]qkk . Considering the
obtained Q′-cocycle condition and the obtained constant Ck3 , we conclude that a constant Ck3 is trivial
(zero) in the degenerate subspace Bk3 if 1− qkk = 0 or 1 + q3kk = 0. On the other hand, if 1− qkk 6= 0
and 1 + q3kk 6= 0, but [3]qkk = 0, then Ck3 is a nontrivial constant in Bk3 . Thus, in this case ek3 is a
nontrivial basic constant in Bk3 , where the Q′-cocycle condition 1− σk3 = 0 is reduced to [3]qkk = 0.

Example 3.5. Let us now take n = 4. Then, similarly to Example 3.4, by applying the specialization
k = l1 = l2 = l3 = l4, the set Q = {l1, l2, l3, l4} corresponds to a multiset Q′ = {k4}. Then the Q-cocycle
condition 1− σl1l2l3l4 = 0 reduces to the Q′-cocycle condition

(1− qkk) · [4]qkk · (1 + q4kk + q8kk) = 0

c.f. (52). We note that in the generic case, under the Q-cocycle condition 1− σl1l2l3l4 = 0, there are
two nontrivial basic constants (see Example 2.10), which reduce to the same constant with the introduced
specialization

Ck4 =
(1 + q3kk) · (1 + q4kk + q8kk)

(1− σk2) · (1− σk3)
· Yk4 = (1− qkk) · (1 + q4kk + q8kk) ek4 ,

c.f. (55), where we have used 1−σk2 = (1− qkk) · [2]qkk and 1−σk3 = (1− qkk) · [3]qkk · (1+ q3kk) and also
Yk4 = (1− qkk) · (1− qkk) · [2]qkk · (1− qkk) · [3]qkk . Then we obtain that Ck4 is zero (a trivial constant)
in the degenerate subspace Bk4 , if 1− qkk = 0 or 1 + q4kk + q8kk = 0 and that it is a nontrivial constant if
1− qkk 6= 0 and 1 + q4kk + q8kk 6= 0 but [4]qkk = 0. Thus, the Q′-cocycle condition 1− σk4 = 0 reduces to
[4]qkk = 0 under which ek4 is a nontrivial basic constant in Bk4 .

3.2. Multiset Q′ = {kn−1
1 , k2}, n ≥ 3

Proposition 3.6. Let Q′ = {kn−11 , k2} be a multiset of cardinality n ≥ 3. The nontrivial basic constant
(45) in the degenerate subspace BQ′ and also the Q′-cocycle condition (44) can be constructed from the
generic case by a certain specialization procedure.

Proof. Let Q = {l1, . . . , ln} be a set of cardinality n ≥ 3. By specializing the elements of the set Q
such that one element is equal to k2 and all remaining n− 1 elements are equal to k1, we obtain from
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the set Q = {l1, . . . , ln} the multiset Q′ = {kn−11 , k2}, k1 6= k2, in which the element k1 ∈ N is repeated
n− 1 times. The corresponding Q-cocycle condition 1− σQ = 0, 1− σT 6= 0, for all T ⊂ Q here has the
form 1− σkn−1

1 k2
= 0, 1− σkm1 k2 6= 0, 1− σki 6= 0 for all 1 ≤ m ≤ n− 2, 2 ≤ i ≤ n− 1, where of particular

interest is the factor 1− σkn−1
1 k2

= 0, which we usually call the Q′-cocycle condition. So, if we consider

1− σkn−1
1 k2

= 1− q(n−1)·(n−2)k1k1
σn−1k1k2

= 1− (qn−2k1k1
σk1k2)

n−1

=
(
1− qn−2k1k1

σk1k2
)
·
(
1 + qn−2k1k1

σk1k2 + · · ·+ (qn−2k1k1
σk1k2)

n−2)
for n ≥ 3, which we write in the following form

1− σkn−1
1 k2

=
(
1− qn−2k1k1

σk1k2
)
·

1 +

n−2∑
j=1

(
qn−2k1k1

σk1k2
)j . (56)

If we compare (56) with (44), we can easily see that (56) is a multiple of the left-hand side of (44), which
leads us to conclude that the obtained Q′-cocycle condition 1− σkn−1

1 k2
= 0 (c.f. (56)) can be reduced

to 1− qn−2k1k1
σk1k2 = 0 with 1 +

∑n−2
j=1

(
qn−2k1k1

σk1k2
)j 6= 0, see (44). Taking into account the introduced

specialization of the elements of the set Q, we obtain that all (n− 2)! nontrivial basic constants (n ≥ 3)
from (38) are reduced to a constant Ckn−1

1 k2
, which after further calculations we can write in the form

Ckn−1
1 k2

= −
qn−1k2k1

[n− 1]qk1k1
·
n−2∏
m=1

1 +

m∑
j=1

(
qmk1k1σk1k2

)j
(
1− σkm1 k2

) · Yk2kn−1
1

, (57)

where the denominators of the given fractions on the right-hand side of the formula (57) are nonzero, since
the Q′-cocycle condition implies that 1− σkn−1

1 k2
= 0 but 1− σkm1 k2 6= 0 for all 1 ≤ m ≤ n− 2 and also

1− σki 6= 0 for all 2 ≤ i ≤ n− 1. Note that by using (52) from 1− σkn−1 6= 0 it follows [n− 1]qk1k1
6= 0.

If we now apply (56) for each 1 ≤ m ≤ n− 2, we obtain that the given constant Ckn−1
1 k2

can be written
as

Ckn−1
1 k2

= −
qn−1k2k1

[n− 1]qk1k1
·
n−2∏
m=1

1 +

m∑
j=1

(
qmk1k1σk1k2

)j
(
1− qm−1k1k1

σk1k2
)
·

1 +

m−1∑
j=1

(
qm−1k1k1

σk1k2
)j · Yk2kn−1

1

= −
qn−1k2k1

[n− 1]qk1k1
·

1 +

n−2∑
j=1

(
qn−2k1k1

σk1k2
)j

n−2∏
m=1

(
1− qm−1k1k1

σk1k2
) · Yk2kn−1

1

which we further rewrite into the following form

Ckn−1
1 k2

= −

qn−1k2k1
·

1 +

n−2∑
j=1

(
qn−2k1k1

σk1k2
)j

[n− 1]qk1k1
·
n−3∏
m=0

(
1− qmk1k1σk1k2

) · Yk2kn−1
1

. (58)
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We note that it follows from (56), the corresponding Q′-cocycle condition 1− σkn−1
1 k2

= 0 is given by

1− qn−2k1k1
σk1k2 = 0 and 1 +

∑n−2
j=1

(
qn−2k1k1

σk1k2
)j

= 0 and we also recall that there is a constant in the
degenerate subspace Bkn−1

1 k2
if and only if the Q′-cocycle condition 1− σkn−1

1 k2
= 0 is satisfied. Thus, if

1 +
∑n−2
j=1

(
qn−2k1k1

σk1k2
)j

= 0, then the constant Ckn−1
1 k2

(c.f. (58)) is a trivial constant and it is a nontrivial
constant if

1− qn−2k1k1
σk1k2 = 0,

n−2∑
j=0

(
qn−2k1k1

σk1k2
)j 6= 0, (59)

which is equal to (44). From this we can conclude that the corresponding Q′-cocycle condition 1 −
σkn−1

1 k2
= 0 reduces to (59), under which the space Ckn−1

1 k2
of all constants belonging to the degenerate

subspace Bkn−1
1 k2

consists of a constant Ckn−1
1 k2

given by (58). We recall that qij ’s are complex numbers,
so the constant given by (58) is a multiple of an iterated q -commutator Yk2kn−1

1
, see (45). Therefore,

under the Q′-cocycle condition (59), it follows from (58) that an iterated q -commutator Yk2kn−1
1

is a
nontrivial basic constant in space Ckn−1

1 k2
. Thus we have proved that for the multiset Q′ = {kn−11 , k2},

n ≥ 3 the Q′-cocycle condition as well as the nontrivial basic constant in the degenerate subspace BQ′
can be constructed from the generic case by a certain specialization procedure.

Example 3.7. Let us consider the set Q = {l1, l2, l3} as a multiset Q′ = {k21, k2} using the specialization
k1 = l1 = l2, k2 = l3. Then the Q-cocycle condition 1− σl1l2l3 = 0 reduces to the Q′-cocycle condition
1− σk21k2 = 0, from which follows

(1− qk1k1σk1k2) · (1 + qk1k1σk1k2) = 0 (60)

see also Example 3.1. In agreement with the given specialization, a nontrivial basic constant (40) of the
generic BQ has the form

Ck21k2 =
1

1− σk21
· Yk21k2 +

qk2k1σk1k2
1− σk1k2

· Yk1k2k1 ,

see Example 2.9, where by applying (34) we find that the iterated q-commutators Yk21k2 , Yk1k2k1 are given
by

Yk21k2 = (1− qk1k1) · (ek21k2 − q
2
k2k1ek2k21 )

Yk1k2k1 = (1 + qk1k1σk1k2) ek1k2k1 − qk2k1ek2k21 − qk1k1qk1k2ek21k2 .

After further calculations we get

Ck21k2 = −
q2k2k1 · (1 + qk1k1σk1k2)

(1 + qk1k1) · (1− σk1k2)
· Yk2k21 . (61)

It is easy to verify that Yk2k21 = ek2k21 − qk1k2(1 + qk1k1) ek1k2k1 + qk1k1q
2
k1k2

ek21k2 is obtained by applying
(34). Then it follows directly from the obtained Q′-cocycle condition (60) and the obtained constant
Ck21k2 (c.f. (61)) that a constant Ck21k2 is zero, if 1 + qk1k1σk1k2 = 0 and is a nontrivial constant if
1 + qk1k1σk1k2 6= 0, but 1− qk1k1σk1k2 = 0. In this case a constant Ck21k2 is a multiple of an iterated
q-commutator Yk2k21 . We conclude that the obtained Q′-cocycle condition reduces to 1− qk1k1σk1k2 = 0
under which an iterated q-commutator Yk2k21 is a nontrivial basic constant in Bk21k2 .

In the way described, by specializing some elements of a set Q and considering it as a corresponding
multiset, we conclude that (14) can be determined from (17) and that under the obtained Q′-cocycle
condition, the constants in the degenerate subspaces of the algebra B can be obtained from the constants
in the corresponding generic subspace of the algebra B by applying the formula (38). Note, however,
that it is therefore more difficult to execute the general formulas for determining the constants in all
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degenerate subspaces of the algebra B, since for each different specialization of some elements of a set Q
of cardinality n, different degenerate cases arise from the corresponding generic case. In this way, there
are different multisets Q′ of cardinality n associated with different Q′-cocycle conditions under which
there are suitable constants.
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