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Abstract: An elementary and self-contained argument for the complete determination of maximal plane curves
of degree 3 over F4 will be given, which complements Hirschfeld-Storme-Thas-Voloch’s theorem on
a characterization of Hermitian curves in P2. This complementary part should be understood as
the classification of Sziklai’s example of maximal plane curves of degree q − 1 over Fq. Although
two maximal plane curves of degree 3 over F4 up to projective equivalence over F4 appear, they are
birationally equivalent over F4 each other.

2020 MSC: 14G15, 14H50, 14G05, 11G20, 05B25

Keywords: Plane curve, Finite field, Rational point, Maximal curve

1. Introduction

This paper is concerned with upper bounds for the number of Fq-points of plane curves defined over
Fq. Let C be a plane curve defined by a homogeneous polynomial f ∈ Fq[x0, x1, x2]. The set of Fq-points
C(Fq) of C is {(a0, a1, a2) ∈ P2 | a0, a1, a2 ∈ Fq and f(a0, a1, a2) = 0}. The cardinality of C(Fq) is
denoted by Nq(C), and the degree of C by degC, or simply by d. We are interesting in upper bounds
for Nq(C) with respect to degC.

Aubry-Perret’s generalization [1] of the Hasse-Weil bound implies that for absolutely irreducible
plane curve C of degree d over Fq,

Nq(C) ≤ q + 1 + (d− 1)(d− 2)
√
q. (1)

On the other hand, the Sziklai bound established by a series of papers of Kim and the author [5–7] gives
one under a more mild condition, that is, for C without Fq-linear components,

Nq(C) ≤ (d− 1)q + 1 (2)
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except for the curve over F4 defined by

(x0 + x1 + x2)4 + (x0x1 + x1x2 + x2x0)2 + x0x1x2(x0 + x1 + x2) = 0.

When d < √q + 1, the Aubry-Perret generalization of the Hasse-Weil bound is better than the Sziklai
bound, however when d > √q + 1, the latter is better than the former, and these two bounds meet at
d =
√
q + 1, that is, both (1) and (2) imply

Nq(C) ≤ √q3 + 1 if degC =
√
q + 1, (3)

where q is an even power of a prime number. From now on, when a statement contains √q, we tacitly
understand q to be an even power of a prime number.

More than three decades ago, Hirschfeld, Storme, Thas and Voloch [4] gave a characterization of
Hermitian curves of degree √q+ 1 over Fq, which is a maximal curve in the sense of the bound (3). Here
we understand a Hermitian curve as a plane curve defined by an equation

(x
√
q

0 , x
√
q

1 , x
√
q

2 )A

x0x1
x2

 = 0

for a certain matrix A ∈ GL(3,Fq) satisfying tA = A(
√
q), where tA denotes the transposed matrix of A

and A(
√
q) the matrix taking entry-wise the √q-th power of A. Note that any two Hermitian curves are

projectively equivalent each other over Fq [3, §7.3].

Theorem 1.1 (Hirschfeld-Storme-Thas-Voloch). In P2 over Fq with q 6= 4, a curve over Fq of degree√
q + 1, without Fq-linear components, which contains √q3 + 1 Fq-points, is a Hermitian curve.

For q = 4, they gave an example of a nonsingular plane curve over F4 which had 9 (= 23 + 1)
F4-points, but was not a Hermitian curve. Actually the plane curve defined by

x30 + ωx31 + ω2x32 = 0 (4)

is such an example, where F4 = {0, 1, ω, ω2}.
It would be preferable to give the complete picture of plane curves over Fq of degree

√
q+ 1, without

Fq-linear components, having √q3 + 1 Fq-points.

Theorem 1.2. Let C be a plane curve over Fq without Fq-linear components. If degC =
√
q + 1 and

Nq(C) =
√
q3 + 1, then C is either

(i) a Hermitian curve, or

(ii) a nonsingular curve of degree 3 which is projectively equivalent to the curve (4) over F4.

Proof. Thanks to Theorem 1.1, only the missing case for the determination of maximal curves of degree√
q + 1 is the case of q = 4. In this case, C is a cubic curve, which must be nonsingular (see, Lemma 3.2

in Section 3 below). The number of projective equivalent classes of nonsingular cubic curves over F4 with
9 F4-points is exactly two, which is given by Schoof [9, Example 5.3].

The second case (ii) in the above theorem should be understood the case of q = 4 among Sziklai
curves [11] of degree q− 1 that achieve the Sziklai bound (2). Here a Sziklai curve means one over Fq, of
degree q − 1 defined by the following type of equation:

αxq−10 + βxq−11 + γxq−12 = 0 with αβγ 6= 0 and α+ β + γ = 0. (5)
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The curve (5) will be denoted by C(α,β,γ), which is obviously nonsingular, in particular has no linear
component. Since xq−1 = 1 for any x ∈ F∗q and α+ β + γ = 0,

C(α,β,γ)(Fq) ⊃ P2(Fq) \ (∪2i=0{xi = 0}). (6)

Here {xi = 0} denotes the line defined by xi = 0. Furthermore, since degC(α,β,γ) = q − 1,

Nq(C(α,β,γ)) ≤ (q − 2)q + 1 = (q − 1)2

by the Szikali bound. Therefore equality must hold in (6), that is,

C(α,β,γ)(Fq) = P2(Fq) \ ({x0 = 0} ∪ {x1 = 0} ∪ {x2 = 0}). (7)

Note that C(α,β,γ) makes sense under the condition q > 2.

Theorem 1.3. The number νq of projective equivalence classes over Fq in the family of curves

{C(α,β,γ) | α, β, γ ∈ F∗q , α+ β + γ = 0}

is as follows:

(I) Suppose that the characteristic of Fq is neither 2 nor 3.

(I-i) If q ≡ 2 mod 3, then νq = q+1
6 .

(I-ii) If q ≡ 1 mod 3, then νq = q+5
6 .

(II) Suppose that q is a power of 3. Then νq = q+3
6 .

(III) Suppose that q is a power of 2.

(III-i) If q = 22s+1, that is, q ≡ 2 mod 3, then νq = q−2
6 .

(III-ii) If q = 22s, that is, q ≡ 1 mod 3, then νq = q+2
6 .

In this theorem, we don’t assume q > 2 explicitly, however the assertion (III-i) says the family of
curves in question is empty if q = 2.

Remark 1.4. Since (I-i) ⇔ q ≡ 5 mod 6, (I-ii) ⇔ q ≡ 1 mod 6, (II) ⇔ q ≡ 3 mod 6, (III-i) ⇔ q ≡
2 mod 6, and (III-ii)⇔ q ≡ 4 mod 6, we can state Theorem 1.3 more simply that

if q 6≡ 2 mod 6, then νq = d q6e; and if q ≡ 2 mod 6, then νq = d q6e − 1, where d q6e denotes
the least integer greater than (or equal to) q

6 .

The construction of this article is as follows:

In Section 2, we will give the proof of Theorem 1.3 together with the characterization of Sziklai
curves of degree q − 1.

In Section 3, we will give a self-contained proof of Theorem 1.2 for the case q = 4 without using the
result of Schoff.

In Section 4, we will make explicitly an F4-isomorphism between the function field of the Hermitian
curve over F4 defined by x30 + x31 + x32 = 0 and that of the curve (4).
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2. Sziklai’s example of maximal curves of degree q − 1

The purpose of this section is to prove Theorem 1.3. Let Sq = {C(α,β,γ) | α, β, γ ∈ F∗q , α+β+γ = 0}.
The first step of the proof is to give a characterization of the member of Sq.

Proposition 2.1. Let C be a possibly reducible plane curve over Fq of degree q− 1. Then C ∈ Sq if and
only if

C(Fq) = P2(Fq) \

(
2⋃
i=0

{xi = 0}

)
. (8)

The “only if" part has already observed in Introduction. Now we prove the “if" part.

Lemma 2.2. In A2 with coordinates x, y over Fq, the ideal I in Fq[x, y] of the set {(a, b) ∈ F2
q | ab 6= 0}

is (xq−1 − 1, yq−1 − 1).

In particular, if f(x, y) ∈ I is of degree at most q − 1, then f(x, y) = α(xq−1 − 1) + β(yq−1 − 1) for
some α, β ∈ Fq.

Proof. Let J denote the ideal (xq−1 − 1, yq−1 − 1) of Fq[x, y]. Obviously J ⊆ I. For f(x, y) ∈ I, there
are polynomials gi(x) ∈ Fq[x] (0 ≤ i ≤ q − 2) of degree ≤ q − 2 so that

f(x, y) ≡
q−2∑
i=0

gi(x)yi mod J.

For each a ∈ F∗q , the equation
∑q−2
i=0 gi(a)yi = 0 has to have q−1 (= |F∗q |) solutions because

∑q−2
i=0 gi(x)yi ∈

I. Hence gi(a) = 0 for any i. Since deg gi ≤ q − 2, gi must be the zero polynomial. Hence f(x, y) ≡
0 mod J .

Proof of Proposition 2.1. Choose a homogeneous equation f(x0, x1, x2) = 0 of degree q − 1 over Fq
for a given curve C with the property (8). From Lemma 2.2, there are elements α, β ∈ Fq such that
f(x0

x2
, x1

x2
, 1) = α((x0

x2
)q−1 − 1) + β((x1

x2
)q−1 − 1). Therefore f(x0, x1, x2) = xq−12 f(x0

x2
, x1

x2
, 1) = α(xq−10 −

xq−12 ) + β(xq−11 − xq−12 ). Since C(Fq) ∩ {x2 = 0} is empty, f(a, b, 0) 6= 0 for any (a, b) ∈ F2
q \ {(0, 0)}. In

particular, α = f(1, 0, 0) 6= 0, β = f(0, 1, 0) 6= 0 and α+ β = f(1, 1, 0) 6= 0. Hence C ∈ Sq.

Now we want to classify Sq up to projective equivalence over Fq.

Definition 2.3. Let C be a possibly reducible curve in P2 over Fq, and δ a nonnegative integer. An
Fq-line l is said to be a δ-line with respect to C if |l ∩ C(Fq)| = δ.

Lemma 2.4. Let C ∈ Sq, and δ a nonnegative integer such that a δ-line with respect to C actually
exists. Then δ is either 0 or q − 2 or q − 1, and the number of δ-lines are as in Table 1.

Table 1. δ-lines w.r.t. C ∈ Sq

δ the number of δ-lines
0 3

q − 2 (q − 1)2

q − 1 3(q − 1)

Proof. Note that q > 2 because Sq is not empty. Since P2(Fq) = C(Fq) t (∪2i=0{xi = 0}) (where the
symbol t indicates disjoint union) and q > 2, the possible values of δ are 0, q − 2 and q − 1. Obviously
the number of 0-lines is 3. A (q − 1)-line is not a 0-line, and passes through one of intersection points of
two 0-lines. Other lines are (q − 2)-lines.
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We need an elementary fact on the finite group action, so called “Burnside’s lemma" [10, Corollary
7.2.9].

Lemma 2.5. Let G be a finite group which acts on a finite set X. For g ∈ G, Fix g denotes the set of
fixed points of g on X. Then the number ν of orbits of G on X is given by

ν =
1

|G|
∑
g∈G
|Fix g|.

Proof of Theorem 1.3. The first claim is that if two members C(α,β,γ), C(α′,β′,γ′) ∈ Sq are projectively
equivalent over Fq, then the point (α′, β′, γ′) ∈ P2(Fq) is a permutation of the point (α, β, γ) ∈ P2(Fq),
that is, there is a nonzero element λ ∈ F∗q such that the triple (λα′, λβ′, λγ′) is a permutation of the triple
(α, β, γ).

Actually, let Σ be a projective transformation so that ΣC(α,β,γ) = C(α′,β′,γ′). Note that Σ induces
an automorphism of the homogeneous coordinate ring Fq[x0, x1, x2], which is denoted by Σ∗. The set of
0-lines with respect to each of curves in Sq is {{x0 = 0}, {x1 = 0}, {x2 = 0}} by Lemma 2.4. Hence Σ
induces a permutation of those three lines. Hence Σ∗(xi) = uixσ(i) for some ui ∈ F∗q , and (σ(0), σ(1), σ(2))
is a permitation of (0, 1, 2). Hence

Σ∗(αxq−10 + βxq−11 + γxq−12 ) = αxq−1σ(0) + βxq−1σ(1) + γxq−1σ(2)

because uq−1i = 1.

So we need to classfy Sq/F∗q by the action of S3 as permutations on coefficients.

Observe the map

ρ : Sq/F∗q 3 C(α,β,γ) → (α : β) ∈ P1(Fq),

which is well-defined and

Im ρ = P1(Fq) \ {(0, 1), (1, 0), (1,−1)}.

Obviously, ρ gives a one to one correspondence, so S3 acts on Im ρ also. Table 2 shows the S3-action on
Im ρ explicitly.

Table 2. S3-action on Im ρ

S3 Sq/F∗
q Im ρ

(1) (α, β, γ) 7→ (α, β, γ) (α : β) 7→ (α : β)
(1, 2) (α, β, γ) 7→ (β, α, γ) (α : β) 7→ (β : α)
(2, 3) (α, β, γ) 7→ (α, γ, β) (α : β) 7→ (α : −(α+ β))
(1, 3) (α, β, γ) 7→ (γ, β, α) (α : β) 7→ (−(α+ β) : β)
(1, 2, 3) (α, β, γ) 7→ (γ, α, β) (α : β) 7→ (−(α+ β) : α)
(1, 3, 2) (α, β, γ) 7→ (β, γ, α) (α : β) 7→ (β : −(α+ β))

Now we compute the number of fixed points on Im ρ by each σ ∈ S3.

• Fixed points of the identity (1) are all the q − 2 points of Im ρ.

• (α : β) ∈ Fix(1, 2) ⇔ (α : β) = (β : α) ⇔ α2 − β2 = 0. If the characteristic of Fq 6= 2, then
Fix(1, 2) = {(1 : 1)} because (1 : −1) 6∈ Im ρ. If q is a power of 2, then Fix(1, 2) is empty.

• (α : β) ∈ Fix(2, 3) ⇔ (α : β) = (α : −(α + β)) ⇔ α = −2β because α 6= 0 . If the characteristic of
Fq 6= 2, then Fix(2, 3) = {(−2 : 1)}. If q is a power of 2, then Fix(2, 3) is empty.

• (α : β) ∈ Fix(1, 3) ⇔ (α : β) = (−(α + β) : β) ⇔ β = −2α because β 6= 0 . If the characteristic of
Fq 6= 2, then Fix(1, 3) = {(1 : −2)}. If q is a power of 2, then Fix(1, 3) is empty.
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• (α : β) ∈ Fix(1, 2, 3) ⇔ (α : β) = (−(α + β) : α) ⇔ α2 + αβ + β2 = 0 ⇔ (α : β) = (η :
1) with η2 + η + 1 = 0 and η ∈ Fq.

• (α : β) ∈ Fix(1, 3, 2) ⇔ (α : β) = (β : −(α + β)) ⇔ α2 + αβ + β2 = 0 ⇔ (α : β) = (η :
1) with η2 + η + 1 = 0 and η ∈ Fq.

For the last two cases, since a cubic root of 1 other than 1 exists in Fq if and only if q ≡ 1 mod 3, and
only the cubic root of 1 is 1 if q is a power of 3,

|Fix(1, 2, 3)| = |Fix(1, 3, 2)| =


2 if q ≡ 1 mod 3

1 if q is a power of 3

0 else.

The number of fixed points can be summarized as in Table 3.

Table 3. Number of fixed points

q mod 6 |Fix(1)| |Fix(12)| |Fix(13)| |Fix(23)| |Fix(123)| |Fix(132)| 6νq
5 q − 2 1 1 1 0 0 q + 1
1 q − 2 1 1 1 2 2 q + 5
3 q − 2 1 1 1 1 1 q + 3
2 q − 2 0 0 0 0 0 q − 2
4 q − 2 0 0 0 2 2 q + 2

Since νq = 1
6

∑
σ∈S3

|Fixσ| by Lemma 2.5, we are able to know νq explicitly as in the last column
of Table 3.

At the end of this section, we raise a question: are there non-Sziklai curves over Fq of degree q − 1
that attain the Sziklai bound (2)?

Added in the revision: Recently, Walteir de Paula Ferreira and Pietro Speziali showed the answer
of the above question is negative if q ≥ 5 [2].

3. Maximal curves of degree 3 over F4

The purpose of this section is to give an elementary and self-contained proof of the following theorem.

Theorem 3.1. Let C be a plane curve of degree 3 over F4 without F4-linear components. If N4(C) = 9,
then C is either

(i) Hermitian, or

(ii) projectively equivalent to the curve

x30 + ωx31 + ω2x32 = 0,

where F4 = {0, 1, ω, ω2}.

Lemma 3.2. Let C be a plane curve of degree 3 over F4 without F4-linear components, and N4(C) ≥ 7.
Then C is nonsingular.

Proof. Since the degree of C is 3, C is absolutely irreducible. If C had a singular point, then C would
be an image of P1 with exactly one singular point, and hence N4(C) would be at most 6 (= N4(P1) + 1).
Therefore C is nonsingular.
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From now on, we consider a nonsingular plane curve C of degree 3 with N4(C) = 9, and lines over
F4.

Notation 3.3. Let l be a line in P2. The symbol l.C denotes the divisor
∑
P∈l∩C i(l.C;P )P on C, where

i(l.C;P ) is the local intersection multiplicity of l and C at P . Note that though l.C is defined over F4, a
point P in the support of l.C may not be F4-point.

Lemma 3.4. Let l be a 2-line with respect to C, say l ∩ C(F4) = {P1, P2}. Then l.C = 2P1 + P2 or
P1 + 2P2.

Proof. Since degC = 3, there is a closed point Q of C such that l.C = P1 + P2 + Q. Applying the
Frobenius map F4 over F4 to both side of the above equality, we know P1 + P2 +Q = P1 + P2 + F4(Q),
which implies that the point Q is also F4-point. Therefore Q must concide with either P1 or P2 because
l is a 2-line.

Lemma 3.5. Let l0 be a 1-line with respect to C, say l0 ∩ C(F4) = {P}. Then l0.C = 3P .

Proof. Consider all the F4-lines passing through the point P , say l0, l1, . . . , l4. Counting N4(C) by
using the disjoint union

C(Fq) = {P} t
(
t4i=1(li ∩ C(F4) \ {P})

)
,

we know that |li ∩ C(F4) \ {P}| is 2, that is, the remaining four lines l1, . . . l4 to be 3-lines with respect
to C. So each of them meets with C transversally because degC = 3. Therefore l0 is the tangent line
to C at P . Hence there is a closed point Q ∈ C such that l0.C = 2P + Q. Apply F4 to this divisor, Q
should be F4-points. Since l0 is a 1-line, Q = P .

Definition 3.6. Since C is nonsingular, for any closed point P ∈ C, the tangent line to C at P exists,
which is a unique line l such that i(l.C;P ) ≥ 2. This line is denoted by TP (C). A point P with
i(TP (C).C;P ) = 3 is called a flex or an inflection point. It is obvious that if P is an F4-points, then
TP (C) is an F4-line.

Corollary 3.7. Let P ∈ C(F4).

(i) If i(TP (C).C;P ) = 3, then TP (C) is a 1-line, and conversely, if an F4-line l passing through P is a
1-line, then l = TP (C) and i(TP (C).C;P ) = 3.

(ii) If i(TP (C).C;P ) = 2, then TP (C) is a 2-line, and conversely, if an F4-line l passing through P1, P2 ∈
C(F4) is a 2-line, then l coincides with either TP1(C) or TP2(C).

Proof. (i) The first part is obvious because degC = 3, and the second part is a consequence of
Lemma 3.5.

(ii) This is also a consequence of Lemma 3.5: since TP (C) is not a 1-line, it should be a 2-line, and
the second part is just in Lemma 3.4

Notation 3.8. For each nonnegative integer δ ≤ 3, Lδ denotes the set of δ-lines with respect to C, and
µδ denotes the cardinality of the set Lδ.

The next lemma is essential for the proof of Theorem 3.1.

Lemma 3.9. The possibilities of quadruple (µ0, µ1, µ2, µ3) are either

(i) µ0 = 0, µ1 = 9, µ2 = 0, µ3 = 12; or

(ii) µ0 = 3, µ1 = 0, µ2 = 9, µ3 = 9.
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Proof. Step 1. Let us consider the correspondence

I := {(l, P ) ∈ P̆2(F4)× C(F4) | l 3 P}

with projections p1 : I → P̆2(F4) and p2 : I → C(F4), where P̆2(F4) is the projective space of the
F4-lines. Since |p−12 (P )| = 5 for all P ∈ C(F4) and |C(F4)| = 9, we know |I | = 45.

From Corollary 3.7, the tangent line at an Fq-point is a 1-line or 2-line, and vice versa. Since
degC = 3, there are no bi-tangents. Hence

µ1 + µ2 = 9. (9)

Since |p−1(l)| = δ if l is a δ-line,

µ1 + 2µ2 + 3µ3 = |I | = 45. (10)

Additionally, since the total number of Fq-lines is 21,

µ0 + µ1 + µ2 + µ3 = 21. (11)

Step 2. Suppose that µ1 = 0. From (9), (10), (11), we have µ0 = 3, µ2 = µ3 = 9, which is the case
(ii).

Step 3. Suppose that µ1 6= 0. Since (9) and (10), µ1 ≡ 0 mod 3. Hence there are at least three
1-lines, and hence there are at least three inflection F4-points. Choose two inflection F4-points Q1 and
Q2, and consider the line l0 passing through these two points, which is an F4-line. Hence l0 meets C at
another point Q0, which is also an F4-point.

Claim 1. Q0 is also a flex.

We need more notation. The linear equivalence relation of divisors on C will be denoted by ∼, and
a general line section on C by L. Here a general line section means a representative of the divisor cut
out by a line on C, which makes sense up to the relation ∼.
Proof of claim 1. SinceQ0+Q1+Q2 ∼ L and 3Qi ∼ L for i = 1 and 2, we have 3Q0 ∼ 3L−3Q1−3Q2 ∼ L,
which means that Q0 is a flex.

Hence the following property holds.

(†) There are exactly three F4-lines passing through Q0 besides l0 and TQ0
(C), say l1, l2, l3. Each li is

a 3-line.

Actually, since

C(F4) = {Q0, Q1, Q2} t
(
t3i=1(li ∩ C(F4) \ {Q0})

)
and |li ∩ C(F4) \ {Q0}| ≤ 2, each li is a 3-line.

The six points of C(F4) \ {Q0, Q1, Q2} are named {P (j)
i | i = 1, 2, 3; j = 1, 2} so that li ∩ C(F4) =

{Q0, P
(1)
i , P

(2)
i }.

Claim 2.
∑3
i=1(P

(1)
i + P

(2)
i ) ∼ 2L.

Proof of claim 2. Since Q0 + P
(1)
i + P

(2)
i ∼ L and 3Q0 ∼ L, we get L+

∑3
i=1(P

(1)
i + P

(2)
i ) ∼ 3L.

Since a nonsingular plane curve is projectively normal, the divisor
∑3
i=1(P

(1)
i + P

(2)
i ) on C is cut

out by a quadratic curve. Let D be the quadratic curve passing through those six points. Suppose that
D is absolutely irreducible. Then D has exactly five F4-points if it is defined over F4, or at most four
F4-points if it is not defined over F4 because an F4-point of D is a point of D ∩ F4(D); both are absurd.
Therefore D is a union of two lines m,m′. If a line is not defined over F4, then F4(m) = m′ and D has
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only one F4-point: also absured. Hence this split occurs over F4. Since degC = 3, those six points split
into two groups; three of them lie on m and the remaining three lie on m′, and P

(1)
i and P

(2)
i do not

belong the same group. Hence we may assume that P (1)
1 , P

(1)
2 , P

(1)
3 ∈ m and P (2)

1 , P
(2)
2 , P

(2)
3 ∈ m′. Note

that m and m′ do not contain Q0 nor Q1 nor Q2.

Apply the same arguments to Q1 instead of Q0 after (†). Since Q1 does not lie on m nor m′, there is
a permutation (σ(1), σ(2), σ(3)) of (1, 2, 3) such that Q1, P

(1)
i , P

(2)
σ(i) are collinear for i = 1, 2, 3. Similarly,

there is another permutation τ such that Q2, P
(1)
i , P

(2)
τ(i) are collinear for i = 1, 2, 3. Therefore

Q0 + P
(1)
1 + P

(2)
1 ∼ L

Q1 + P
(1)
1 + P

(2)
σ(1) ∼ L

Q2 + P
(1)
1 + P

(2)
τ(1) ∼ L

 (12)

Claim 3. {σ(1), τ(1)} = {2, 3}.

Proof of claim 3. If not, two of {P (2)
1 , P

(2)
σ(1), P

(2)
τ(1)} coincide. For example, if P (2)

1 = P
(2)
σ(1), then

Q0, P
(1)
1 , P

(2)
1 = P

(2)
σ(1), Q1 are collinear, which is impossible because the line joining Q0 and Q1 is l0.

Other cases can be handled by similar way.

By this claim,

P
(2)
1 + P

(2)
σ(1) + P

(2)
τ(1) ∼ L. (13)

Hence adding all equivalence relations in (12), together with (13) we have 3P
(1)
1 +2L ∼ 3L, which implies

3P
(1)
1 ∼ L. Hence P (1)

1 is a flex. Similarly we have that any P (j)
i is a flex. Hence µ1 = 9. Hence, from

(9), (10) and (11) in Step 1, µ0 = 0, µ2 = 0 and µ3 = 12.

Remark 3.10. In Step 3 of the proof of Lemma 3.9, what we have shown is essentially that if a point
of C(F4) is flex, then so are all points of C(F4). If C(F4) contains a flex, then C is defined over F4 as
an elliptic curve. A sophisticated proof for the above fact may be possible by using the Jacobian variety,
which coincides with the elliptic curve C. For details, see the first part of [8].

Proof of Theorem 3.1. When the case (ii) in Lemma 3.9 occurs, three 0-lines are not concurrent; Actually
if three 0-lines are concurrent, there is an F4-point Q outside C, which these F4-lines pass through. The
remaining two F4-lines pass through Q can’t cover all the points of C(F4).

Hence we may choose coordinates x0, x1, x2 so that those 0-lines are {x0 = 0}, {x1 = 0} and {x2 = 0}.
Since |P2(F4) \ ∪2i=0{xi = 0}| = 9 = |C(F4)|, C ∈ S4 by Proposition 2.1. Furthermore since ν4 = 1 by
Theorem 1.3 (III-ii), and C(1,ω,ω2) ∈ S4, C is projectively equivalent to to the curve

x30 + ωx31 + ω2x32 = 0.

Next we consider the case (i) in Lemma 3.9. In this case C has the following properties:

(1) C is nonsingular of degree 3 defined over F4 with nine F4-points;

(2) for any P ∈ C(F4), i(TP (C).C;P ) = 3;

(3) each point of P2(F4) \ C(F4) lies on three tangent lines.

Here we will confirm the property (3). Among the five F4-lines passing through Q ∈ P2(F4) \ C(F4),
µδ(Q) denotes the number of δ-lines. Since δ is either 1 or 3, µ1(Q)+3µ3(Q) = 9 and µ1(Q)+µ3(Q) = 5.
Hence µ1(Q) = 3.
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Although the proof of [4, Lemma 7] works well under those three assumptions (1), (2), (3) for C, we
give a proof here for readers’ convenience, which works only in our case q = 4.

Let Q0 ∈ P2(F4) \ C(F4). From the property (3), there are exactly two 3-lines, say l1 and l2. Since
li has exactly five F4-points, we can find the fifth F4-point Qi on li other than the three points on C or
Q0. Then the F4-line Q1Q2 is a 3-line. Actually, if the line Q1Q2 is a 1-line, then it tangents to C at
a point, say R. However Q0R also tangents at R by (3), which is impossible. Let’s choose coordinates
x0, x1, x2 so that Q1Q2 is defined by x0 = 0, and li by xi = 0 for i = 1, 2. Then the nine points of C(F4)
is given by

(0, 1, 1) (0, 1, ω) (0, 1, ω2)

(1, 0, 1) (ω, 0, 1) (ω2, 0, 1)

(1, 1, 0) (1, ω, 0) (1, ω2, 0)

So C is defined by

x30 + x31 + x32 + αx0x1x2 = 0 (α ∈ F4).

If α 6= 0, the equation gives a union of three lines, which is absurd.

4. Comparison of two maximal curves of degree 3 over F4

Lastly we compare two maximal curves of degree 3

C : x30 + x31 + x32 = 0

and

D : x30 + ωx31 + ω2x32 = 0

over F4 = F2[ω].

Apparently, C and D are projectively equivalent over F26 , but not over F22 as we have seen. We will
show the function fields F4(C) and F4(D) are isomorphic over F4. This is already guaranteed theoretically
by Rück and Stichtenoth [8]. Here we will give an explicit isomorphism between those two fields.

Let x = x0

x2
|C and y = x1

x2
|C. Obviously F4(C) = F4(x, y) with x3 + y3 + 1 = 0.

Theorem 4.1. Three functions

u = 1 +
x

y + 1
+

1

x+ y + 1

v = ω2 x

y + 1
+

1

x+ y + 1
(14)

w = ω
x

y + 1
+

1

x+ y + 1

satisfy

u3 + ωv3 + ω2w3 = 0.

Proof. By straightforward computation, we have

((y + 1)(x+ y + 1)w)3

=(ωx(x+ y + 1) + (y + 1))3

=x3(x+ y + 1)3 + ω2x2(x+ y + 1)2(y + 1) + ωx(x+ y + 1)(y + 1)2 + (y + 1)3,
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((y + 1)(x+ y + 1)v)3

=(ω2x(x+ y + 1) + (y + 1))3

=x3(x+ y + 1)3 + ωx2(x+ y + 1)2(y + 1) + ω2x(x+ y + 1)(y + 1)2 + (y + 1)3,

and

((y + 1)(x+ y + 1)u)3

=((y + 1)(x+ y + 1) + x(x+ y + 1) + (y + 1))3 = g + h,

where

g =(y + 1)3(x+ y + 1)3 + (y + 1)2(x+ y + 1)2(x(x+ y + 1) + (y + 1))

+ (y + 1)(x+ y + 1)(x(x+ y + 1) + (y + 1))2,

h =(x(x+ y + 1) + (y + 1))3

=x3(x+ y + 1)3 + x2(x+ y + 1)2(y + 1) + x(x+ y + 1)(y + 1)2 + (y + 1)3.

Hence

ω2((y + 1)(x+ y + 1)w)3 + ω((y + 1)(x+ y + 1)v)3 + h

=(ω2 + ω + 1)x3(x+ y + 1)3

+ (ω4 + ω2 + 1)x2(x+ y + 1)2(y + 1)

+ (ω3 + ω3 + 1)x(x+ y + 1)(y + 1)2

+ (ω2 + ω + 1)(y + 1)3

=x(x+ y + 1)(y + 1)2.

Therefore

ω2((y + 1)(x+ y + 1)w)3 + ω((y + 1)(x+ y + 1)v)3 + ((y + 1)(x+ y + 1)u)3 (15)

=g + x(x+ y + 1)(y + 1)2

=(y + 1)(x+ y + 1)
{

(y + 1)2(x+ y + 1)2 + x(y + 1)(x+ y + 1)2

+ (y + 1)2(x+ y + 1) + x2(x+ y + 1)2 + (y + 1)2 + x(y + 1)
}
.

Since the sum of last two terms in the braces is (x+ y + 1)(y + 1), (x+ y + 1) divides the polynomial in
the braces. Hence (15) is equal to

(y + 1)3(x+ y + 1)3(ω2w3 + ωv3 + u3) = (y + 1)(x+ y + 1)2f,

where

f = (y + 1)2(x+ y + 1) + x(y + 1)(x+ y + 1) + (y + 1)2 + x2(x+ y + 1) + (y + 1)

Continue the computation a little more:

f = x(y + 1)2 + (y + 1)3 + x2(y + 1) + x(y + 1)2 + (y + 1)2 + x3 + x2(y + 1) + (y + 1)

= (y + 1)3 + (y + 1)2 + (y + 1) + x3

= y3 + x3 + 1 = 0.

As a conclusion, we have u3 + ωv3 + ω2w3 = 0.
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Corollary 4.2. F4(C) ∼= F4(D).

Proof. Trivially F4(C) = F4(x, y) = F4( x
y+1 ,

1
x+y+1 ). On the other hand, by definition of u, v, w (14)

ω2 v

u
+ ω

w

u
= 1− 1

u
.

Hence F4(D) ∼= F4( vu ,
w
u ) = F4(u, v, w). Sinceuv

w

 =

1 1 1
0 ω2 1
0 ω 1

 1
x
y+1
1

x+y+1

 ,

we know F4(u, v, w) = F4( x
y+1 ,

1
x+y+1 ). Summing up, we get F4(D) ∼= F4(C).

Acknowledgment: The author would like to thank the referee for proposing a simple statement of
Theorem 1.3 as in Remark 1.4, and giving information about a recent paper [2].
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