Journal of Algebra Combinatorics Discrete Structures and Applications

On maximal plane curves of degree 3 over \mathbb{F}_4 , and Sziklai's example of degree q-1 over \mathbb{F}_q

Research Article

Received: 21 January 2023

Accepted: 14 June 2023

Masaaki Homma

Abstract: An elementary and self-contained argument for the complete determination of maximal plane curves of degree 3 over \mathbb{F}_4 will be given, which complements Hirschfeld-Storme-Thas-Voloch's theorem on a characterization of Hermitian curves in \mathbb{P}^2 . This complementary part should be understood as the classification of Sziklai's example of maximal plane curves of degree q-1 over \mathbb{F}_q . Although two maximal plane curves of degree 3 over \mathbb{F}_4 up to projective equivalence over \mathbb{F}_4 appear, they are birationally equivalent over \mathbb{F}_4 each other.

2020 MSC: 14G15, 14H50, 14G05, 11G20, 05B25

Keywords: Plane curve, Finite field, Rational point, Maximal curve

1. Introduction

This paper is concerned with upper bounds for the number of \mathbb{F}_q -points of plane curves defined over \mathbb{F}_q . Let C be a plane curve defined by a homogeneous polynomial $f \in \mathbb{F}_q[x_0, x_1, x_2]$. The set of \mathbb{F}_q -points $C(\mathbb{F}_q)$ of C is $\{(a_0, a_1, a_2) \in \mathbb{F}^2 \mid a_0, a_1, a_2 \in \mathbb{F}_q \text{ and } f(a_0, a_1, a_2) = 0\}$. The cardinality of $C(\mathbb{F}_q)$ is denoted by $N_q(C)$, and the degree of C by deg C, or simply by d. We are interesting in upper bounds for $N_q(C)$ with respect to deg C.

Aubry-Perret's generalization [1] of the Hasse-Weil bound implies that for absolutely irreducible plane curve C of degree d over \mathbb{F}_q ,

$$N_q(C) \le q + 1 + (d - 1)(d - 2)\sqrt{q}.$$
 (1)

On the other hand, the Sziklai bound established by a series of papers of Kim and the author [5–7] gives one under a more mild condition, that is, for C without \mathbb{F}_q -linear components,

$$N_q(C) \le (d-1)q + 1 \tag{2}$$

Masaaki Homma; Department of Mathematics, Faculty of Science, Kanaqawa University, Yokohama 221-8686, Japan (email: homma@kanagawa-u.ac.jp).

except for the curve over \mathbb{F}_4 defined by

$$(x_0 + x_1 + x_2)^4 + (x_0x_1 + x_1x_2 + x_2x_0)^2 + x_0x_1x_2(x_0 + x_1 + x_2) = 0.$$

When $d < \sqrt{q} + 1$, the Aubry-Perret generalization of the Hasse-Weil bound is better than the Sziklai bound, however when $d > \sqrt{q} + 1$, the latter is better than the former, and these two bounds meet at $d = \sqrt{q} + 1$, that is, both (1) and (2) imply

$$N_q(C) \le \sqrt{q}^3 + 1 \text{ if } \deg C = \sqrt{q} + 1, \tag{3}$$

where q is an even power of a prime number. From now on, when a statement contains \sqrt{q} , we tacitly understand q to be an even power of a prime number.

More than three decades ago, Hirschfeld, Storme, Thas and Voloch [4] gave a characterization of Hermitian curves of degree $\sqrt{q} + 1$ over \mathbb{F}_q , which is a maximal curve in the sense of the bound (3). Here we understand a Hermitian curve as a plane curve defined by an equation

$$(x_0^{\sqrt{q}}, x_1^{\sqrt{q}}, x_2^{\sqrt{q}}) A \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = 0$$

for a certain matrix $A \in GL(3, \mathbb{F}_q)$ satisfying ${}^tA = A^{(\sqrt{q})}$, where tA denotes the transposed matrix of A and $A^{(\sqrt{q})}$ the matrix taking entry-wise the \sqrt{q} -th power of A. Note that any two Hermitian curves are projectively equivalent each other over \mathbb{F}_q [3, §7.3].

Theorem 1.1 (Hirschfeld-Storme-Thas-Voloch). In \mathbb{P}^2 over \mathbb{F}_q with $q \neq 4$, a curve over \mathbb{F}_q of degree $\sqrt{q} + 1$, without \mathbb{F}_q -linear components, which contains $\sqrt{q}^3 + 1$ \mathbb{F}_q -points, is a Hermitian curve.

For q=4, they gave an example of a nonsingular plane curve over \mathbb{F}_4 which had $9 (=2^3+1)$ \mathbb{F}_4 -points, but was not a Hermitian curve. Actually the plane curve defined by

$$x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0 \tag{4}$$

is such an example, where $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}.$

It would be preferable to give the complete picture of plane curves over \mathbb{F}_q of degree $\sqrt{q}+1$, without \mathbb{F}_q -linear components, having \sqrt{q}^3+1 \mathbb{F}_q -points.

Theorem 1.2. Let C be a plane curve over \mathbb{F}_q without \mathbb{F}_q -linear components. If $\deg C = \sqrt{q} + 1$ and $N_q(C) = \sqrt{q}^3 + 1$, then C is either

- (i) a Hermitian curve, or
- (ii) a nonsingular curve of degree 3 which is projectively equivalent to the curve (4) over \mathbb{F}_4 .

Proof. Thanks to Theorem 1.1, only the missing case for the determination of maximal curves of degree $\sqrt{q} + 1$ is the case of q = 4. In this case, C is a cubic curve, which must be nonsingular (see, Lemma 3.2 in Section 3 below). The number of projective equivalent classes of nonsingular cubic curves over \mathbb{F}_4 with 9 \mathbb{F}_4 -points is exactly two, which is given by Schoof [9, Example 5.3].

The second case (ii) in the above theorem should be understood the case of q=4 among Sziklai curves [11] of degree q-1 that achieve the Sziklai bound (2). Here a Sziklai curve means one over \mathbb{F}_q , of degree q-1 defined by the following type of equation:

$$\alpha x_0^{q-1} + \beta x_1^{q-1} + \gamma x_2^{q-1} = 0 \text{ with } \alpha \beta \gamma \neq 0 \text{ and } \alpha + \beta + \gamma = 0.$$
 (5)

The curve (5) will be denoted by $C_{(\alpha,\beta,\gamma)}$, which is obviously nonsingular, in particular has no linear component. Since $x^{q-1}=1$ for any $x\in\mathbb{F}_q^*$ and $\alpha+\beta+\gamma=0$,

$$C_{(\alpha,\beta,\gamma)}(\mathbb{F}_q) \supset \mathbb{P}^2(\mathbb{F}_q) \setminus (\bigcup_{i=0}^2 \{x_i = 0\}).$$
 (6)

Here $\{x_i = 0\}$ denotes the line defined by $x_i = 0$. Furthermore, since $\deg C_{(\alpha,\beta,\gamma)} = q - 1$,

$$N_q(C_{(\alpha,\beta,\gamma)}) \le (q-2)q + 1 = (q-1)^2$$

by the Szikali bound. Therefore equality must hold in (6), that is,

$$C_{(\alpha,\beta,\gamma)}(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus (\{x_0 = 0\} \cup \{x_1 = 0\} \cup \{x_2 = 0\}). \tag{7}$$

Note that $C_{(\alpha,\beta,\gamma)}$ makes sense under the condition q > 2.

Theorem 1.3. The number ν_q of projective equivalence classes over \mathbb{F}_q in the family of curves

$$\{C_{(\alpha,\beta,\gamma)} \mid \alpha,\beta,\gamma \in \mathbb{F}_q^*, \ \alpha+\beta+\gamma=0\}$$

is as follows:

- (I) Suppose that the characteristic of \mathbb{F}_q is neither 2 nor 3.
 - (I-i) If $q \equiv 2 \mod 3$, then $\nu_q = \frac{q+1}{6}$.
 - (I-ii) If $q \equiv 1 \mod 3$, then $\nu_q = \frac{q+5}{6}$.
- (II) Suppose that q is a power of 3. Then $\nu_q = \frac{q+3}{6}$.
- (III) Suppose that q is a power of 2.
 - (III-i) If $q=2^{2s+1}$, that is, $q\equiv 2 \bmod 3$, then $\nu_q=\frac{q-2}{6}$.
 - (III-ii) If $q = 2^{2s}$, that is, $q \equiv 1 \mod 3$, then $\nu_q = \frac{q+2}{6}$.

In this theorem, we don't assume q > 2 explicitly, however the assertion (III-i) says the family of curves in question is empty if q = 2.

Remark 1.4. Since (I-i) $\Leftrightarrow q \equiv 5 \mod 6$, (I-ii) $\Leftrightarrow q \equiv 1 \mod 6$, (II) $\Leftrightarrow q \equiv 3 \mod 6$, (III-i) $\Leftrightarrow q \equiv 2 \mod 6$, and (III-ii) $\Leftrightarrow q \equiv 4 \mod 6$, we can state Theorem 1.3 more simply that

if $q \not\equiv 2 \mod 6$, then $\nu_q = \lceil \frac{q}{6} \rceil$; and if $q \equiv 2 \mod 6$, then $\nu_q = \lceil \frac{q}{6} \rceil - 1$, where $\lceil \frac{q}{6} \rceil$ denotes the least integer greater than (or equal to) $\frac{q}{6}$.

The construction of this article is as follows:

In Section 2, we will give the proof of Theorem 1.3 together with the characterization of Sziklai curves of degree q-1.

In Section 3, we will give a self-contained proof of Theorem 1.2 for the case q=4 without using the result of Schoff.

In Section 4, we will make explicitly an \mathbb{F}_4 -isomorphism between the function field of the Hermitian curve over \mathbb{F}_4 defined by $x_0^3 + x_1^3 + x_2^3 = 0$ and that of the curve (4).

2. Sziklai's example of maximal curves of degree q-1

The purpose of this section is to prove Theorem 1.3. Let $\mathscr{S}_q = \{C_{(\alpha,\beta,\gamma)} \mid \alpha,\beta,\gamma \in \mathbb{F}_q^*, \ \alpha+\beta+\gamma=0\}$. The first step of the proof is to give a characterization of the member of \mathscr{S}_q .

Proposition 2.1. Let C be a possibly reducible plane curve over \mathbb{F}_q of degree q-1. Then $C \in \mathscr{S}_q$ if and only if

$$C(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus \left(\bigcup_{i=0}^2 \{x_i = 0\} \right). \tag{8}$$

The "only if" part has already observed in Introduction. Now we prove the "if" part.

Lemma 2.2. In \mathbb{A}^2 with coordinates x, y over \mathbb{F}_q , the ideal I in $\mathbb{F}_q[x, y]$ of the set $\{(a, b) \in \mathbb{F}_q^2 \mid ab \neq 0\}$ is $(x^{q-1} - 1, y^{q-1} - 1)$.

In particular, if $f(x,y) \in I$ is of degree at most q-1, then $f(x,y) = \alpha(x^{q-1}-1) + \beta(y^{q-1}-1)$ for some $\alpha, \beta \in \mathbb{F}_q$.

Proof. Let J denote the ideal $(x^{q-1}-1,y^{q-1}-1)$ of $\mathbb{F}_q[x,y]$. Obviously $J\subseteq I$. For $f(x,y)\in I$, there are polynomials $g_i(x)\in\mathbb{F}_q[x]$ $(0\leq i\leq q-2)$ of degree $\leq q-2$ so that

$$f(x,y) \equiv \sum_{i=0}^{q-2} g_i(x)y^i \bmod J.$$

For each $a \in \mathbb{F}_q^*$, the equation $\sum_{i=0}^{q-2} g_i(a) y^i = 0$ has to have $q-1 (= |\mathbb{F}_q^*|)$ solutions because $\sum_{i=0}^{q-2} g_i(x) y^i \in I$. Hence $g_i(a) = 0$ for any i. Since $\deg g_i \leq q-2$, g_i must be the zero polynomial. Hence $f(x,y) \equiv 0 \mod J$.

Proof of Proposition 2.1. Choose a homogeneous equation $f(x_0, x_1, x_2) = 0$ of degree q - 1 over \mathbb{F}_q for a given curve C with the property (8). From Lemma 2.2, there are elements $\alpha, \beta \in \mathbb{F}_q$ such that $f(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1) = \alpha((\frac{x_0}{x_2})^{q-1} - 1) + \beta((\frac{x_1}{x_2})^{q-1} - 1)$. Therefore $f(x_0, x_1, x_2) = x_2^{q-1} f(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1) = \alpha(x_0^{q-1} - x_2^{q-1}) + \beta(x_1^{q-1} - x_2^{q-1})$. Since $C(\mathbb{F}_q) \cap \{x_2 = 0\}$ is empty, $f(a, b, 0) \neq 0$ for any $(a, b) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}$. In particular, $\alpha = f(1, 0, 0) \neq 0$, $\beta = f(0, 1, 0) \neq 0$ and $\alpha + \beta = f(1, 1, 0) \neq 0$. Hence $C \in \mathscr{S}_q$.

Now we want to classify \mathscr{S}_q up to projective equivalence over \mathbb{F}_q .

Definition 2.3. Let C be a possibly reducible curve in \mathbb{P}^2 over \mathbb{F}_q , and δ a nonnegative integer. An \mathbb{F}_q -line l is said to be a δ -line with respect to C if $|l \cap C(\mathbb{F}_q)| = \delta$.

Lemma 2.4. Let $C \in \mathscr{S}_q$, and δ a nonnegative integer such that a δ -line with respect to C actually exists. Then δ is either 0 or q-2 or q-1, and the number of δ -lines are as in Table 1.

Table 1. δ -lines w.r.t. $C \in \mathcal{S}_q$

$$\begin{array}{c|c} \delta & \text{the number of } \delta\text{-lines} \\ \hline 0 & 3 \\ q-2 & (q-1)^2 \\ q-1 & 3(q-1) \end{array}$$

Proof. Note that q > 2 because \mathscr{S}_q is not empty. Since $\mathbb{P}^2(\mathbb{F}_q) = C(\mathbb{F}_q) \sqcup (\cup_{i=0}^2 \{x_i = 0\})$ (where the symbol \sqcup indicates disjoint union) and q > 2, the possible values of δ are 0, q - 2 and q - 1. Obviously the number of 0-lines is 3. A (q-1)-line is not a 0-line, and passes through one of intersection points of two 0-lines. Other lines are (q-2)-lines.

We need an elementary fact on the finite group action, so called "Burnside's lemma" [10, Corollary 7.2.9].

Lemma 2.5. Let G be a finite group which acts on a finite set X. For $g \in G$, Fix g denotes the set of fixed points of g on X. Then the number ν of orbits of G on X is given by

$$\nu = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix} g|.$$

Proof of Theorem 1.3. The first claim is that if two members $C_{(\alpha,\beta,\gamma)}$, $C_{(\alpha',\beta',\gamma')} \in \mathscr{S}_q$ are projectively equivalent over \mathbb{F}_q , then the point $(\alpha',\beta',\gamma') \in \mathbb{P}^2(\mathbb{F}_q)$ is a permutation of the point $(\alpha,\beta,\gamma) \in \mathbb{P}^2(\mathbb{F}_q)$, that is, there is a nonzero element $\lambda \in \mathbb{F}_q^*$ such that the triple $(\lambda \alpha', \lambda \beta', \lambda \gamma')$ is a permutation of the triple (α,β,γ) .

Actually, let Σ be a projective transformation so that $\Sigma C_{(\alpha,\beta,\gamma)} = C_{(\alpha',\beta',\gamma')}$. Note that Σ induces an automorphism of the homogeneous coordinate ring $\mathbb{F}_q[x_0,x_1,x_2]$, which is denoted by Σ^* . The set of 0-lines with respect to each of curves in \mathscr{S}_q is $\{\{x_0=0\},\{x_1=0\},\{x_2=0\}\}\}$ by Lemma 2.4. Hence Σ induces a permutation of those three lines. Hence $\Sigma^*(x_i) = u_i x_{\sigma(i)}$ for some $u_i \in \mathbb{F}_q^*$, and $(\sigma(0),\sigma(1),\sigma(2))$ is a permitation of (0,1,2). Hence

$$\Sigma^*(\alpha x_0^{q-1} + \beta x_1^{q-1} + \gamma x_2^{q-1}) = \alpha x_{\sigma(0)}^{q-1} + \beta x_{\sigma(1)}^{q-1} + \gamma x_{\sigma(2)}^{q-1}$$

because $u_i^{q-1} = 1$.

So we need to classfy $\mathscr{S}_q/\mathbb{F}_q^*$ by the action of S_3 as permutations on coefficients.

Observe the map

$$\rho: \mathscr{S}_q/\mathbb{F}_q^* \ni C_{(\alpha,\beta,\gamma)} \to (\alpha:\beta) \in \mathbb{P}^1(\mathbb{F}_q),$$

which is well-defined and

$${\rm Im}\, \rho = \mathbb{P}^1(\mathbb{F}_q) \setminus \{(0,1), (1,0), (1,-1)\}.$$

Obviously, ρ gives a one to one correspondence, so S_3 acts on Im ρ also. Table 2 shows the S_3 -action on Im ρ explicitly.

Table 2. S_3 -action on Im ρ

S_3	$\mathscr{S}_q/\mathbb{F}_q^*$	$\operatorname{Im} ho$
(1)	$(\alpha, \beta, \gamma) \mapsto (\alpha, \beta, \gamma)$	$(\alpha:\beta)\mapsto(\alpha:\beta)$
(1, 2)	$(\alpha, \beta, \gamma) \mapsto (\beta, \alpha, \gamma)$	$(\alpha:\beta)\mapsto(\beta:\alpha)$
(2, 3)	$(\alpha, \beta, \gamma) \mapsto (\alpha, \gamma, \beta)$	$(\alpha:\beta)\mapsto (\alpha:-(\alpha+\beta))$
(1, 3)	$(\alpha, \beta, \gamma) \mapsto (\gamma, \beta, \alpha)$	$(\alpha:\beta)\mapsto (-(\alpha+\beta):\beta)$
		$(\alpha:\beta)\mapsto (-(\alpha+\beta):\alpha)$
		$(\alpha:\beta) \mapsto (\beta:-(\alpha+\beta))$

Now we compute the number of fixed points on $\operatorname{Im} \rho$ by each $\sigma \in S_3$.

- Fixed points of the identity (1) are all the q-2 points of Im ρ .
- $(\alpha:\beta) \in \text{Fix}(1,2) \Leftrightarrow (\alpha:\beta) = (\beta:\alpha) \Leftrightarrow \alpha^2 \beta^2 = 0$. If the characteristic of $\mathbb{F}_q \neq 2$, then $\text{Fix}(1,2) = \{(1:1)\}$ because $(1:-1) \notin \text{Im } \rho$. If q is a power of 2, then Fix(1,2) is empty.
- $(\alpha:\beta) \in \text{Fix}(2,3) \Leftrightarrow (\alpha:\beta) = (\alpha:-(\alpha+\beta)) \Leftrightarrow \alpha = -2\beta \text{ because } \alpha \neq 0$. If the characteristic of $\mathbb{F}_q \neq 2$, then $\text{Fix}(2,3) = \{(-2:1)\}$. If q is a power of 2, then Fix(2,3) is empty.
- $(\alpha:\beta) \in \text{Fix}(1,3) \Leftrightarrow (\alpha:\beta) = (-(\alpha+\beta):\beta) \Leftrightarrow \beta = -2\alpha \text{ because } \beta \neq 0$. If the characteristic of $\mathbb{F}_q \neq 2$, then $\text{Fix}(1,3) = \{(1:-2)\}$. If q is a power of 2, then Fix(1,3) is empty.

- $(\alpha:\beta) \in \text{Fix}(1,2,3) \Leftrightarrow (\alpha:\beta) = (-(\alpha+\beta):\alpha) \Leftrightarrow \alpha^2 + \alpha\beta + \beta^2 = 0 \Leftrightarrow (\alpha:\beta) = (\eta:1) \text{ with } \eta^2 + \eta + 1 = 0 \text{ and } \eta \in \mathbb{F}_q.$
- $(\alpha:\beta) \in \text{Fix}(1,3,2) \Leftrightarrow (\alpha:\beta) = (\beta:-(\alpha+\beta)) \Leftrightarrow \alpha^2 + \alpha\beta + \beta^2 = 0 \Leftrightarrow (\alpha:\beta) = (\eta:1) \text{ with } \eta^2 + \eta + 1 = 0 \text{ and } \eta \in \mathbb{F}_q.$

For the last two cases, since a cubic root of 1 other than 1 exists in \mathbb{F}_q if and only if $q \equiv 1 \mod 3$, and only the cubic root of 1 is 1 if q is a power of 3,

$$|\operatorname{Fix}(1,2,3)| = |\operatorname{Fix}(1,3,2)| = \begin{cases} 2 & \text{if } q \equiv 1 \bmod 3 \\ 1 & \text{if } q \text{ is a power of 3} \\ 0 & \text{else.} \end{cases}$$

The number of fixed points can be summarized as in Table 3.

Table 3. Number of fixed points

$q \mod 6$	$ \operatorname{Fix}(1) $	$ \operatorname{Fix}(12) $	$ \operatorname{Fix}(13) $	$ \operatorname{Fix}(23) $	$ \operatorname{Fix}(123) $	$ \operatorname{Fix}(132) $	$6\nu_q$
5	q-2	1	1	1	0	0	q+1
1	q-2	1	1	1	2	2	q+5
3	q-2	1	1	1	1	1	q+3
2	q-2	0	0	0	0	0	q-2
4	q-2	0	0	0	2	2	q+2

Since $\nu_q = \frac{1}{6} \sum_{\sigma \in S_3} |\operatorname{Fix} \sigma|$ by Lemma 2.5, we are able to know ν_q explicitly as in the last column of Table 3.

At the end of this section, we raise a question: are there non-Sziklai curves over \mathbb{F}_q of degree q-1 that attain the Sziklai bound (2)?

Added in the revision: Recently, Walteir de Paula Ferreira and Pietro Speziali showed the answer of the above question is negative if $q \ge 5$ [2].

3. Maximal curves of degree 3 over \mathbb{F}_4

The purpose of this section is to give an elementary and self-contained proof of the following theorem.

Theorem 3.1. Let C be a plane curve of degree 3 over \mathbb{F}_4 without \mathbb{F}_4 -linear components. If $N_4(C) = 9$, then C is either

- (i) Hermitian, or
- (ii) projectively equivalent to the curve

$$x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0,$$

where $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}.$

Lemma 3.2. Let C be a plane curve of degree 3 over \mathbb{F}_4 without \mathbb{F}_4 -linear components, and $N_4(C) \geq 7$. Then C is nonsingular.

Proof. Since the degree of C is 3, C is absolutely irreducible. If C had a singular point, then C would be an image of \mathbb{P}^1 with exactly one singular point, and hence $N_4(C)$ would be at most $6 (= N_4(\mathbb{P}^1) + 1)$. Therefore C is nonsingular.

From now on, we consider a nonsingular plane curve C of degree 3 with $N_4(C) = 9$, and lines over \mathbb{F}_4 .

Notation 3.3. Let l be a line in \mathbb{P}^2 . The symbol l.C denotes the divisor $\sum_{P \in l \cap C} i(l.C; P)P$ on C, where i(l.C; P) is the local intersection multiplicity of l and C at P. Note that though l.C is defined over \mathbb{F}_4 , a point P in the support of l.C may not be \mathbb{F}_4 -point.

Lemma 3.4. Let l be a 2-line with respect to C, say $l \cap C(\mathbb{F}_4) = \{P_1, P_2\}$. Then $l.C = 2P_1 + P_2$ or $P_1 + 2P_2$.

Proof. Since deg C=3, there is a closed point Q of C such that $l.C=P_1+P_2+Q$. Applying the Frobenius map F_4 over \mathbb{F}_4 to both side of the above equality, we know $P_1+P_2+Q=P_1+P_2+F_4(Q)$, which implies that the point Q is also \mathbb{F}_4 -point. Therefore Q must concide with either P_1 or P_2 because l is a 2-line.

Lemma 3.5. Let l_0 be a 1-line with respect to C, say $l_0 \cap C(\mathbb{F}_4) = \{P\}$. Then $l_0.C = 3P$.

Proof. Consider all the \mathbb{F}_4 -lines passing through the point P, say l_0, l_1, \ldots, l_4 . Counting $N_4(C)$ by using the disjoint union

$$C(\mathbb{F}_q) = \{P\} \sqcup \left(\sqcup_{i=1}^4 (l_i \cap C(\mathbb{F}_4) \setminus \{P\})\right),\,$$

we know that $|l_i \cap C(\mathbb{F}_4) \setminus \{P\}|$ is 2, that is, the remaining four lines $l_1, \ldots l_4$ to be 3-lines with respect to C. So each of them meets with C transversally because $\deg C = 3$. Therefore l_0 is the tangent line to C at P. Hence there is a closed point $Q \in C$ such that $l_0.C = 2P + Q$. Apply F_4 to this divisor, Q should be \mathbb{F}_4 -points. Since l_0 is a 1-line, Q = P.

Definition 3.6. Since C is nonsingular, for any closed point $P \in C$, the tangent line to C at P exists, which is a unique line l such that $i(l.C;P) \geq 2$. This line is denoted by $T_P(C)$. A point P with $i(T_P(C).C;P) = 3$ is called a flex or an inflection point. It is obvious that if P is an \mathbb{F}_4 -points, then $T_P(C)$ is an \mathbb{F}_4 -line.

Corollary 3.7. Let $P \in C(\mathbb{F}_4)$.

- (i) If $i(T_P(C).C; P) = 3$, then $T_P(C)$ is a 1-line, and conversely, if an \mathbb{F}_4 -line l passing through P is a 1-line, then $l = T_P(C)$ and $i(T_P(C).C; P) = 3$.
- (ii) If $i(T_P(C).C; P) = 2$, then $T_P(C)$ is a 2-line, and conversely, if an \mathbb{F}_4 -line l passing through $P_1, P_2 \in C(\mathbb{F}_4)$ is a 2-line, then l coincides with either $T_{P_1}(C)$ or $T_{P_2}(C)$.

Proof. (i) The first part is obvious because $\deg C=3$, and the second part is a consequence of Lemma 3.5.

(ii) This is also a consequence of Lemma 3.5: since $T_P(C)$ is not a 1-line, it should be a 2-line, and the second part is just in Lemma 3.4

Notation 3.8. For each nonnegative integer $\delta \leq 3$, \mathcal{L}_{δ} denotes the set of δ -lines with respect to C, and μ_{δ} denotes the cardinality of the set \mathcal{L}_{δ} .

The next lemma is essential for the proof of Theorem 3.1.

Lemma 3.9. The possibilities of quadruple $(\mu_0, \mu_1, \mu_2, \mu_3)$ are either

- (i) $\mu_0 = 0$, $\mu_1 = 9$, $\mu_2 = 0$, $\mu_3 = 12$; or
- (ii) $\mu_0 = 3$, $\mu_1 = 0$, $\mu_2 = 9$, $\mu_3 = 9$.

Proof. Step 1. Let us consider the correspondence

$$\mathscr{I} := \{ (l, P) \in \check{\mathbb{P}}^2(\mathbb{F}_4) \times C(\mathbb{F}_4) \mid l \ni P \}$$

with projections $p_1: \mathscr{I} \to \check{\mathbb{P}}^2(\mathbb{F}_4)$ and $p_2: \mathscr{I} \to C(\mathbb{F}_4)$, where $\check{\mathbb{P}}^2(\mathbb{F}_4)$ is the projective space of the \mathbb{F}_4 -lines. Since $|p_2^{-1}(P)| = 5$ for all $P \in C(\mathbb{F}_4)$ and $|C(\mathbb{F}_4)| = 9$, we know $|\mathscr{I}| = 45$.

From Corollary 3.7, the tangent line at an \mathbb{F}_q -point is a 1-line or 2-line, and vice versa. Since $\deg C = 3$, there are no bi-tangents. Hence

$$\mu_1 + \mu_2 = 9. (9)$$

Since $|p^{-1}(l)| = \delta$ if l is a δ -line,

$$\mu_1 + 2\mu_2 + 3\mu_3 = |\mathcal{I}| = 45. \tag{10}$$

Additionally, since the total number of \mathbb{F}_q -lines is 21,

$$\mu_0 + \mu_1 + \mu_2 + \mu_3 = 21. \tag{11}$$

Step 2. Suppose that $\mu_1 = 0$. From (9), (10), (11), we have $\mu_0 = 3$, $\mu_2 = \mu_3 = 9$, which is the case (ii).

Step 3. Suppose that $\mu_1 \neq 0$. Since (9) and (10), $\mu_1 \equiv 0 \mod 3$. Hence there are at least three 1-lines, and hence there are at least three inflection \mathbb{F}_4 -points. Choose two inflection \mathbb{F}_4 -points Q_1 and Q_2 , and consider the line l_0 passing through these two points, which is an \mathbb{F}_4 -line. Hence l_0 meets C at another point Q_0 , which is also an \mathbb{F}_4 -point.

Claim 1. Q_0 is also a flex.

We need more notation. The linear equivalence relation of divisors on C will be denoted by \sim , and a general line section on C by L. Here a general line section means a representative of the divisor cut out by a line on C, which makes sense up to the relation \sim .

Proof of claim 1. Since $Q_0 + Q_1 + Q_2 \sim L$ and $3Q_i \sim L$ for i = 1 and 2, we have $3Q_0 \sim 3L - 3Q_1 - 3Q_2 \sim L$, which means that Q_0 is a flex.

Hence the following property holds.

(†) There are exactly three \mathbb{F}_4 -lines passing through Q_0 besides l_0 and $T_{Q_0}(C)$, say l_1, l_2, l_3 . Each l_i is a 3-line.

Actually, since

$$C(\mathbb{F}_4) = \{Q_0, Q_1, Q_2\} \sqcup \left(\sqcup_{i=1}^3 (l_i \cap C(\mathbb{F}_4) \setminus \{Q_0\})\right)$$

and $|l_i \cap C(\mathbb{F}_4) \setminus \{Q_0\}| \leq 2$, each l_i is a 3-line.

The six points of $C(\mathbb{F}_4) \setminus \{Q_0, Q_1, Q_2\}$ are named $\{P_i^{(j)} \mid i = 1, 2, 3; j = 1, 2\}$ so that $l_i \cap C(\mathbb{F}_4) = \{Q_0, P_i^{(1)}, P_i^{(2)}\}.$

Claim 2.
$$\sum_{i=1}^{3} (P_i^{(1)} + P_i^{(2)}) \sim 2L$$
.

Proof of claim 2. Since
$$Q_0 + P_i^{(1)} + P_i^{(2)} \sim L$$
 and $3Q_0 \sim L$, we get $L + \sum_{i=1}^{3} (P_i^{(1)} + P_i^{(2)}) \sim 3L$.

Since a nonsingular plane curve is projectively normal, the divisor $\sum_{i=1}^{3} (P_i^{(1)} + P_i^{(2)})$ on C is cut out by a quadratic curve. Let D be the quadratic curve passing through those six points. Suppose that D is absolutely irreducible. Then D has exactly five \mathbb{F}_4 -points if it is defined over \mathbb{F}_4 , or at most four \mathbb{F}_4 -points if it is not defined over \mathbb{F}_4 because an \mathbb{F}_4 -point of D is a point of $D \cap F_4(D)$; both are absurd. Therefore D is a union of two lines m, m'. If a line is not defined over \mathbb{F}_4 , then $F_4(m) = m'$ and D has

only one \mathbb{F}_4 -point: also absured. Hence this split occurs over \mathbb{F}_4 . Since $\deg C=3$, those six points split into two groups; three of them lie on m and the remaining three lie on m', and $P_i^{(1)}$ and $P_i^{(2)}$ do not belong the same group. Hence we may assume that $P_1^{(1)}, P_2^{(1)}, P_3^{(1)} \in m$ and $P_1^{(2)}, P_2^{(2)}, P_3^{(2)} \in m'$. Note that m and m' do not contain Q_0 nor Q_1 nor Q_2 .

Apply the same arguments to Q_1 instead of Q_0 after (†). Since Q_1 does not lie on m nor m', there is a permutation $(\sigma(1), \sigma(2), \sigma(3))$ of (1, 2, 3) such that $Q_1, P_i^{(1)}, P_{\sigma(i)}^{(2)}$ are collinear for i = 1, 2, 3. Similarly, there is another permutation τ such that $Q_2, P_i^{(1)}, P_{\tau(i)}^{(2)}$ are collinear for i = 1, 2, 3. Therefore

$$\begin{cases}
Q_0 + P_1^{(1)} + P_1^{(2)} &\sim L \\
Q_1 + P_1^{(1)} + P_{\sigma(1)}^{(2)} &\sim L \\
Q_2 + P_1^{(1)} + P_{\tau(1)}^{(2)} &\sim L
\end{cases}$$
(12)

Claim 3. $\{\sigma(1), \tau(1)\} = \{2, 3\}.$

Proof of claim 3. If not, two of $\{P_1^{(2)}, P_{\sigma(1)}^{(2)}, P_{\tau(1)}^{(2)}\}$ coincide. For example, if $P_1^{(2)} = P_{\sigma(1)}^{(2)}$, then $Q_0, P_1^{(1)}, P_1^{(2)} = P_{\sigma(1)}^{(2)}, Q_1$ are collinear, which is impossible because the line joining Q_0 and Q_1 is l_0 . Other cases can be handled by similar way.

By this claim,

$$P_1^{(2)} + P_{\sigma(1)}^{(2)} + P_{\tau(1)}^{(2)} \sim L.$$
 (13)

Hence adding all equivalence relations in (12), together with (13) we have $3P_1^{(1)} + 2L \sim 3L$, which implies $3P_1^{(1)} \sim L$. Hence $P_1^{(1)}$ is a flex. Similarly we have that any $P_i^{(j)}$ is a flex. Hence $\mu_1 = 9$. Hence, from (9), (10) and (11) in Step 1, $\mu_0 = 0$, $\mu_2 = 0$ and $\mu_3 = 12$.

Remark 3.10. In Step 3 of the proof of Lemma 3.9, what we have shown is essentially that if a point of $C(\mathbb{F}_4)$ is flex, then so are all points of $C(\mathbb{F}_4)$. If $C(\mathbb{F}_4)$ contains a flex, then C is defined over \mathbb{F}_4 as an elliptic curve. A sophisticated proof for the above fact may be possible by using the Jacobian variety, which coincides with the elliptic curve C. For details, see the first part of [8].

Proof of Theorem 3.1. When the case (ii) in Lemma 3.9 occurs, three 0-lines are not concurrent; Actually if three 0-lines are concurrent, there is an \mathbb{F}_4 -point Q outside C, which these \mathbb{F}_4 -lines pass through. The remaining two \mathbb{F}_4 -lines pass through Q can't cover all the points of $C(\mathbb{F}_4)$.

Hence we may choose coordinates x_0, x_1, x_2 so that those 0-lines are $\{x_0 = 0\}$, $\{x_1 = 0\}$ and $\{x_2 = 0\}$. Since $|\mathbb{P}^2(\mathbb{F}_4) \setminus \bigcup_{i=0}^2 \{x_i = 0\}| = 9 = |C(\mathbb{F}_4)|$, $C \in \mathscr{S}_4$ by Proposition 2.1. Furthermore since $\nu_4 = 1$ by Theorem 1.3 (III-ii), and $C_{(1,\omega,\omega^2)} \in \mathscr{S}_4$, C is projectively equivalent to to the curve

$$x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0.$$

Next we consider the case (i) in Lemma 3.9. In this case C has the following properties:

- (1) C is nonsingular of degree 3 defined over \mathbb{F}_4 with nine \mathbb{F}_4 -points;
- (2) for any $P \in C(\mathbb{F}_4)$, $i(T_P(C).C; P) = 3$;
- (3) each point of $\mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$ lies on three tangent lines.

Here we will confirm the property (3). Among the five \mathbb{F}_4 -lines passing through $Q \in \mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$, $\mu_{\delta}(Q)$ denotes the number of δ -lines. Since δ is either 1 or 3, $\mu_1(Q) + 3\mu_3(Q) = 9$ and $\mu_1(Q) + \mu_3(Q) = 5$. Hence $\mu_1(Q) = 3$.

Although the proof of [4, Lemma 7] works well under those three assumptions (1), (2), (3) for C, we give a proof here for readers' convenience, which works only in our case q = 4.

Let $Q_0 \in \mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$. From the property (3), there are exactly two 3-lines, say l_1 and l_2 . Since l_i has exactly five \mathbb{F}_4 -points, we can find the fifth \mathbb{F}_4 -point Q_i on l_i other than the three points on C or Q_0 . Then the \mathbb{F}_4 -line $\overline{Q_1Q_2}$ is a 3-line. Actually, if the line $\overline{Q_1Q_2}$ is a 1-line, then it tangents to C at a point, say R. However $\overline{Q_0R}$ also tangents at R by (3), which is impossible. Let's choose coordinates x_0, x_1, x_2 so that $\overline{Q_1Q_2}$ is defined by $x_0 = 0$, and l_i by $x_i = 0$ for i = 1, 2. Then the nine points of $C(\mathbb{F}_4)$ is given by

$$\begin{array}{cccc} (0,1,1) & (0,1,\omega) & (0,1,\omega^2) \\ (1,0,1) & (\omega,0,1) & (\omega^2,0,1) \\ (1,1,0) & (1,\omega,0) & (1,\omega^2,0) \end{array}$$

So C is defined by

$$x_0^3 + x_1^3 + x_2^3 + \alpha x_0 x_1 x_2 = 0 \quad (\alpha \in \mathbb{F}_4).$$

If $\alpha \neq 0$, the equation gives a union of three lines, which is absurd.

4. Comparison of two maximal curves of degree 3 over \mathbb{F}_4

Lastly we compare two maximal curves of degree 3

$$C: x_0^3 + x_1^3 + x_2^3 = 0$$

and

$$D: x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0$$

over $\mathbb{F}_4 = \mathbb{F}_2[\omega]$.

Apparently, C and D are projectively equivalent over \mathbb{F}_{2^6} , but not over \mathbb{F}_{2^2} as we have seen. We will show the function fields $\mathbb{F}_4(C)$ and $\mathbb{F}_4(D)$ are isomorphic over \mathbb{F}_4 . This is already guaranteed theoretically by Rück and Stichtenoth [8]. Here we will give an explicit isomorphism between those two fields.

Let
$$x = \frac{x_0}{x_2}|C$$
 and $y = \frac{x_1}{x_2}|C$. Obviously $\mathbb{F}_4(C) = \mathbb{F}_4(x,y)$ with $x^3 + y^3 + 1 = 0$.

Theorem 4.1. Three functions

$$u = 1 + \frac{x}{y+1} + \frac{1}{x+y+1}$$

$$v = \omega^2 \frac{x}{y+1} + \frac{1}{x+y+1}$$

$$w = \omega \frac{x}{y+1} + \frac{1}{x+y+1}$$
(14)

satisfy

$$u^3 + \omega v^3 + \omega^2 w^3 = 0.$$

Proof. By straightforward computation, we have

$$\begin{aligned} &((y+1)(x+y+1)w)^3\\ =&(\omega x(x+y+1)+(y+1))^3\\ =&x^3(x+y+1)^3+\omega^2 x^2(x+y+1)^2(y+1)+\omega x(x+y+1)(y+1)^2+(y+1)^3, \end{aligned}$$

$$((y+1)(x+y+1)v)^3$$

$$=(\omega^2 x(x+y+1) + (y+1))^3$$

$$=x^3(x+y+1)^3 + \omega x^2(x+y+1)^2(y+1) + \omega^2 x(x+y+1)(y+1)^2 + (y+1)^3,$$

and

$$((y+1)(x+y+1)u)^3$$

=((y+1)(x+y+1) + x(x+y+1) + (y+1))^3 = g+h,

where

$$g = (y+1)^3(x+y+1)^3 + (y+1)^2(x+y+1)^2(x(x+y+1) + (y+1)) + (y+1)(x+y+1)(x(x+y+1) + (y+1))^2,$$

$$h = (x(x+y+1) + (y+1))^3$$

= $x^3(x+y+1)^3 + x^2(x+y+1)^2(y+1) + x(x+y+1)(y+1)^2 + (y+1)^3$.

Hence

$$\begin{split} \omega^2((y+1)(x+y+1)w)^3 + \omega((y+1)(x+y+1)v)^3 + h \\ = &(\omega^2 + \omega + 1)x^3(x+y+1)^3 \\ &+ (\omega^4 + \omega^2 + 1)x^2(x+y+1)^2(y+1) \\ &+ (\omega^3 + \omega^3 + 1)x(x+y+1)(y+1)^2 \\ &+ (\omega^2 + \omega + 1)(y+1)^3 \\ = &x(x+y+1)(y+1)^2. \end{split}$$

Therefore

$$\omega^{2}((y+1)(x+y+1)w)^{3} + \omega((y+1)(x+y+1)v)^{3} + ((y+1)(x+y+1)u)^{3}$$

$$= g + x(x+y+1)(y+1)^{2}$$

$$= (y+1)(x+y+1)\Big\{(y+1)^{2}(x+y+1)^{2} + x(y+1)(x+y+1)^{2}$$

$$+ (y+1)^{2}(x+y+1) + x^{2}(x+y+1)^{2} + (y+1)^{2} + x(y+1)\Big\}.$$
(15)

Since the sum of last two terms in the braces is (x + y + 1)(y + 1), (x + y + 1) divides the polynomial in the braces. Hence (15) is equal to

$$(y+1)^3(x+y+1)^3(\omega^2w^3+\omega v^3+u^3)=(y+1)(x+y+1)^2f$$

where

$$f = (y+1)^2(x+y+1) + x(y+1)(x+y+1) + (y+1)^2 + x^2(x+y+1) + (y+1)$$

Continue the computation a little more:

$$f = x(y+1)^{2} + (y+1)^{3} + x^{2}(y+1) + x(y+1)^{2} + (y+1)^{2} + x^{3} + x^{2}(y+1) + (y+1)$$

$$= (y+1)^{3} + (y+1)^{2} + (y+1) + x^{3}$$

$$= y^{3} + x^{3} + 1 = 0.$$

As a conclusion, we have $u^3 + \omega v^3 + \omega^2 w^3 = 0$.

Corollary 4.2. $\mathbb{F}_4(C) \cong \mathbb{F}_4(D)$.

Proof. Trivially $\mathbb{F}_4(C) = \mathbb{F}_4(x,y) = \mathbb{F}_4(\frac{x}{y+1},\frac{1}{x+y+1})$. On the other hand, by definition of u,v,w (14)

$$\omega^2 \frac{v}{u} + \omega \frac{w}{u} = 1 - \frac{1}{u}.$$

Hence $\mathbb{F}_4(D) \cong \mathbb{F}_4(\frac{v}{u}, \frac{w}{u}) = \mathbb{F}_4(u, v, w)$. Since

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \omega^2 & 1 \\ 0 & \omega & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\frac{y+1}{1}} \\ \frac{1}{x+y+1} \end{pmatrix},$$

we know $\mathbb{F}_4(u,v,w) = \mathbb{F}_4(\frac{x}{y+1},\frac{1}{x+y+1})$. Summing up, we get $\mathbb{F}_4(D) \cong \mathbb{F}_4(C)$.

Acknowledgment: The author would like to thank the referee for proposing a simple statement of Theorem 1.3 as in Remark 1.4, and giving information about a recent paper [2].

References

- [1] Y. Aubry, M. Perret, A Weil theorem for singular curves. Arithmetic, geometry and coding theory, Luminy, (1993) 1–7, de Gruyter, Berlin, (1996).
- [2] W. de Paula Ferreira, P. Speziali, Optimal plane curves of degree q-1 over a finite field, Finite Fields Appl., 91 (2023) 102258.
- [3] J. W. P. Hirschfeld, Projective geometries over finite fields, Second Edition, Oxford University Press, Oxford (1998).
- [4] J. W. P. Hirschfeld, L. Storme, J. A. Thas, J. F. A. Voloch, A characterization of Hermitian curves, J. Geom. 41 (1991) 72–78.
- [5] M. Homma, S. J. Kim, Around Sziklai's conjecture on the number of points of a plane curve over a finite field, Finite Fields Appl. 15(4) (2009), 468-474.
- [6] M. Homma, S. J. Kim, Sziklai's conjecture on the number of points of a plane curve over a finite field II, in: G. McGuire, G.L. Mullen, D. Panario, I.E. Shparlinski (Eds.), Finite Fields: Theory and Applications, (2010) 225–234, An update is available at arXiv 0907.1325v2.
- [7] M. Homma, S. J. Kim, Sziklai's conjecture on the number of points of a plane curve over a finite field III, Finite Fields Appl. 16(5) (2010) 315–319.
- [8] H.-G. Rück, H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994) 185–188.
- [9] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987) 183–211.
- [10] B. Steinberg, Representation theory of finite groups. An introductory approach, Universitext, Springer, New York (2012).
- [11] P. Sziklai, A bound on the number of points of a plane curve, Finite Fields Appl. 14(1) (2008) 41–43.