On maximal plane curves of degree 3 over \mathbb{F}_4, and Sziklai’s example of degree $q - 1$ over \mathbb{F}_q

Research Article

Masaaki Homma

Abstract: An elementary and self-contained argument for the complete determination of maximal plane curves of degree 3 over \mathbb{F}_4 will be given, which complements Hirschfeld-Storme-Thas-Voloch’s theorem on a characterization of Hermitian curves in \mathbb{P}^2. This complementary part should be understood as the classification of Sziklai’s example of maximal plane curves of degree $q - 1$ over \mathbb{F}_q. Although two maximal plane curves of degree 3 over \mathbb{F}_4 up to projective equivalence over \mathbb{F}_4 appear, they are birationally equivalent over \mathbb{F}_4 each other.

2020 MSC: 14G15, 14H50, 14G05, 11G20, 05B25

Keywords: Plane curve, Finite field, Rational point, Maximal curve

1. Introduction

This paper is concerned with upper bounds for the number of \mathbb{F}_q-points of plane curves defined over \mathbb{F}_q. Let C be a plane curve defined by a homogeneous polynomial $f \in \mathbb{F}_q[x_0, x_1, x_2]$. The set of \mathbb{F}_q-points $C(\mathbb{F}_q)$ of C is $\{(a_0, a_1, a_2) \in \mathbb{P}^2 \mid a_0, a_1, a_2 \in \mathbb{F}_q$ and $f(a_0, a_1, a_2) = 0\}$. The cardinality of $C(\mathbb{F}_q)$ is denoted by $N_q(C)$, and the degree of C by $\deg C$, or simply by d. We are interesting in upper bounds for $N_q(C)$ with respect to $\deg C$.

Aubry-Perret’s generalization [1] of the Hasse-Weil bound implies that for absolutely irreducible plane curve C of degree d over \mathbb{F}_q,

$$N_q(C) \leq q + 1 + (d - 1)(d - 2)\sqrt{q}. \quad (1)$$

On the other hand, the Sziklai bound established by a series of papers of Kim and the author [5–7] gives one under a more mild condition, that is, for C without \mathbb{F}_q-linear components,

$$N_q(C) \leq (d - 1)q + 1 \quad (2)$$

Masaaki Homma; Department of Mathematics, Faculty of Science, Kanagawa University, Yokohama 221-8686, Japan (email: homma@kanagawa-u.ac.jp).
except for the curve over \mathbb{F}_4 defined by
\[(x_0 + x_1 + x_2)^4 + (x_0x_1 + x_1x_2 + x_2x_0)^2 + x_0x_1x_2(x_0 + x_1 + x_2) = 0.\]

When $d < \sqrt{q} + 1$, the Aubry-Perret generalization of the Hasse-Weil bound is better than the Sziklári bound, however when $d > \sqrt{q} + 1$, the latter is better than the former, and these two bounds meet at $d = \sqrt{q} + 1$, that is, both (1) and (2) imply
\[N_q(C) \leq \sqrt{q}^3 + 1 \text{ if } \deg C = \sqrt{q} + 1,\]
where q is an even power of a prime number. From now on, when a statement contains \sqrt{q}, we tacitly understand q to be an even power of a prime number.

More than three decades ago, Hirschfeld, Storme, Thas and Voloch [4] gave a characterization of Hermitian curves of degree $\sqrt{q} + 1$ over \mathbb{F}_q, which is a maximal curve in the sense of the bound (3). Here we understand a Hermitian curve as a plane curve defined by an equation
\[(x_0^\sqrt{q}, x_1^\sqrt{q}, x_2^\sqrt{q})A \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = 0\]
for a certain matrix $A \in GL(3, \mathbb{F}_q)$ satisfying $tA = A(\sqrt{q})$, where tA denotes the transposed matrix of A and $A(\sqrt{q})$ the matrix taking entry-wise the \sqrt{q}-th power of A. Note that any two Hermitian curves are projectively equivalent each other over \mathbb{F}_q [3, §7.3].

Theorem 1.1 (Hirschfeld-Storme-Thas-Voloch). In \mathbb{P}^2 over \mathbb{F}_q with $q \neq 4$, a curve over \mathbb{F}_q of degree $\sqrt{q} + 1$, without \mathbb{F}_q-linear components, which contains $\sqrt{q}^3 + 1$ \mathbb{F}_q-points, is a Hermitian curve.

For $q = 4$, they gave an example of a nonsingular plane curve over \mathbb{F}_4 which had $9 (= 2^3 + 1)$ \mathbb{F}_4-points, but was not a Hermitian curve. Actually the plane curve defined by
\[x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0\]
is such an example, where $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$.

It would be preferable to give the complete picture of plane curves over \mathbb{F}_q of degree $\sqrt{q} + 1$, without \mathbb{F}_q-linear components, having $\sqrt{q}^3 + 1$ \mathbb{F}_q-points.

Theorem 1.2. Let C be a plane curve over \mathbb{F}_q without \mathbb{F}_q-linear components. If $\deg C = \sqrt{q} + 1$ and $N_q(C) = \sqrt{q}^3 + 1$, then C is either

(i) a Hermitian curve, or

(ii) a nonsingular curve of degree 3 which is projectively equivalent to the curve (4) over \mathbb{F}_4.

Proof. Thanks to Theorem 1.1, only the missing case for the determination of maximal curves of degree $\sqrt{q} + 1$ is the case of $q = 4$. In this case, C is a cubic curve, which must be nonsingular (see, Lemma 3.2 in Section 3 below). The number of projective equivalent classes of nonsingular cubic curves over \mathbb{F}_4 with 9 \mathbb{F}_4-points is exactly two, which is given by Schoof [9, Example 5.3].

The second case (ii) in the above theorem should be understood the case of $q = 4$ among Sziklári curves [11] of degree $q - 1$ that achieve the Sziklári bound (2). Here a Sziklári curve means one over \mathbb{F}_q, of degree $q - 1$ defined by the following type of equation:
\[\alpha x_0^{q-1} + \beta x_1^{q-1} + \gamma x_2^{q-1} = 0 \text{ with } \alpha \beta \gamma \neq 0 \text{ and } \alpha + \beta + \gamma = 0.\]
The curve (5) will be denoted by $C_{(\alpha, \beta, \gamma)}$, which is obviously nonsingular, in particular has no linear component. Since $x^{q-1} = 1$ for any $x \in \mathbb{F}_q^*$ and $\alpha + \beta + \gamma = 0$,

$$C_{(\alpha, \beta, \gamma)}(\mathbb{F}_q) \supset \mathbb{P}^2(\mathbb{F}_q) \setminus (\cup_{i=0}^2 \{x_i = 0\}).$$ \hspace{1cm} (6)

Here $\{x_i = 0\}$ denotes the line defined by $x_i = 0$. Furthermore, since $\deg C_{(\alpha, \beta, \gamma)} = q - 1$,

$$N_q(C_{(\alpha, \beta, \gamma)}) \leq (q - 2)q + 1 = (q - 1)^2$$

by the Szikali bound. Therefore equality must hold in (6), that is,

$$C_{(\alpha, \beta, \gamma)}(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus (\{x_0 = 0\} \cup \{x_1 = 0\} \cup \{x_2 = 0\}).$$ \hspace{1cm} (7)

(6) Here $\{x_i = 0\}$ denotes the line defined by $x_i = 0$. Furthermore, since $\deg C_{(\alpha, \beta, \gamma)} = q - 1$,

$$N_q(C_{(\alpha, \beta, \gamma)}) \leq (q - 2)q + 1 = (q - 1)^2$$

by the Szikali bound. Therefore equality must hold in (6), that is,

$$C_{(\alpha, \beta, \gamma)}(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus (\{x_0 = 0\} \cup \{x_1 = 0\} \cup \{x_2 = 0\}).$$ \hspace{1cm} (7)

Note that $C_{(\alpha, \beta, \gamma)}$ makes sense under the condition $q > 2$.

Theorem 1.3. The number ν_q of projective equivalence classes over \mathbb{F}_q in the family of curves

$$\{C_{(\alpha, \beta, \gamma)} | \alpha, \beta, \gamma \in \mathbb{F}_q^*, \alpha + \beta + \gamma = 0\}$$

is as follows:

(I) Suppose that the characteristic of \mathbb{F}_q is neither 2 nor 3.

(I-i) If $q \equiv 2 \mod 3$, then $\nu_q = \frac{q+1}{6}$.
(I-ii) If $q \equiv 1 \mod 3$, then $\nu_q = \frac{q+5}{6}$.

(II) Suppose that q is a power of 3. Then $\nu_q = \frac{q+3}{6}$.

(III) Suppose that q is a power of 2.

(III-i) If $q = 2^{2s+1}$, that is, $q \equiv 2 \mod 3$, then $\nu_q = \frac{q-2}{6}$.
(III-ii) If $q = 2^{2s}$, that is, $q \equiv 1 \mod 3$, then $\nu_q = \frac{q+2}{6}$.

In this theorem, we don’t assume $q > 2$ explicitly, however the assertion (III-i) says the family of curves in question is empty if $q = 2$.

Remark 1.4. Since (I-i) $\Leftrightarrow q \equiv 5 \mod 6$, (I-ii) $\Leftrightarrow q \equiv 1 \mod 6$, (II) $\Leftrightarrow q \equiv 3 \mod 6$, (III) $\Leftrightarrow q \equiv 2 \mod 6$, and (III-ii) $\Leftrightarrow q \equiv 4 \mod 6$, we can state Theorem 1.3 more simply that

if $q \neq 2 \mod 6$, then $\nu_q = \lceil \frac{q}{6} \rceil$; and if $q \equiv 2 \mod 6$, then $\nu_q = \lceil \frac{q}{6} \rceil - 1$, where $\lceil \frac{q}{6} \rceil$ denotes the least integer greater than (or equal to) $\frac{q}{6}$.

The construction of this article is as follows:

In Section 2, we will give the proof of Theorem 1.3 together with the characterization of Sziklai curves of degree $q - 1$.

In Section 3, we will give a self-contained proof of Theorem 1.2 for the case $q = 4$ without using the result of Schoff.

In Section 4, we will make explicitly an \mathbb{F}_q-isomorphism between the function field of the Hermitian curve over \mathbb{F}_q defined by $x_0^3 + x_1^3 + x_2^3 = 0$ and that of the curve (4).

\[\text{129} \]
2. Sziklai's example of maximal curves of degree \(q - 1 \)

The purpose of this section is to prove Theorem 1.3. Let \(\mathcal{S}_q = \{ C(\alpha, \beta, \gamma) \mid \alpha, \beta, \gamma \in \mathbb{F}_q^* \; \alpha + \beta + \gamma = 0 \} \). The first step of the proof is to give a characterization of the member of \(\mathcal{S}_q \).

Proposition 2.1. Let \(C \) be a possibly reducible plane curve over \(\mathbb{F}_q \) of degree \(q - 1 \). Then \(C \in \mathcal{S}_q \) if and only if

\[
C(\mathbb{F}_q) = \mathbb{P}^2(\mathbb{F}_q) \setminus \left(\bigcup_{i=0}^{2} \{ x_i = 0 \} \right). \tag{8}
\]

The “only if” part has already observed in Introduction. Now we prove the “if” part.

Lemma 2.2. In \(\mathbb{A}^2 \) with coordinates \(x, y \) over \(\mathbb{F}_q \), the ideal \(I \) in \(\mathbb{F}_q[x, y] \) of the set \(\{(a, b) \in \mathbb{F}_q^2 \mid ab \neq 0 \} \) is \((x^q - 1, y^q - 1) \).

In particular, if \(f(x, y) \in I \) is of degree at most \(q - 1 \), then \(f(x, y) = \alpha(x^q - 1) + \beta(y^q - 1) \) for some \(\alpha, \beta \in \mathbb{F}_q \).

Proof. Let \(J \) denote the ideal \((x^q - 1, y^q - 1) \) of \(\mathbb{F}_q[x, y] \). Obviously \(J \subseteq I \). For \(f(x, y) \in I \), there are polynomials \(g_i(x) \in \mathbb{F}_q[x] \) \((0 \leq i \leq q - 2)\) of degree \(\leq q - 2 \) so that

\[
f(x, y) \equiv \sum_{i=0}^{q-2} g_i(x)y^i \mod J.
\]

For each \(a \in \mathbb{F}_q^* \), the equation \(\sum_{i=0}^{q-2} g_i(a)y^i = 0 \) has to have \(q - 1 \) (= \(|\mathbb{F}_q^*| \)) solutions because \(\sum_{i=0}^{q-2} g_i(x)y^i \in I \). Hence \(g_i(a) = 0 \) for any \(i \). Since \(\deg g_i \leq q - 2 \), \(g_i \) must be the zero polynomial. Hence \(f(x, y) \equiv 0 \mod J \).

Proof of Proposition 2.1. Choose a homogeneous equation \(f(x_0, x_1, x_2) = 0 \) of degree \(q - 1 \) over \(\mathbb{F}_q \) for a given curve \(C \) with the property (8). From Lemma 2.2, there are elements \(\alpha, \beta \in \mathbb{F}_q \) such that

\[
f(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1) = \alpha(\frac{x_0}{x_2})^q - 1 \) + \(\beta(\frac{x_1}{x_2})^q - 1 \).
\]

Therefore \(f(x_0, x_1, x_2) = x_2^{q-1}f(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1) = \alpha(x_0^q - x_1^q) + \beta(x_0^q - x_2^q) \). Since \(C(\mathbb{F}_q) \cap \{ x_2 = 0 \} \) is empty, \(f(a, b, 0) \neq 0 \) for any \((a, b) \in \mathbb{F}_q^2 \setminus \{ (0, 0) \} \). In particular, \(\alpha = f(1, 0, 0) \neq 0 \), \(\beta = f(0, 1, 0) \neq 0 \) and \(\alpha + \beta = f(1, 1, 0) \neq 0 \). Hence \(C \in \mathcal{S}_q \).

Now we want to classify \(\mathcal{S}_q \) up to projective equivalence over \(\mathbb{F}_q \).

Definition 2.3. Let \(C \) be a possibly reducible curve in \(\mathbb{P}^2 \) over \(\mathbb{F}_q \), and \(\delta \) a nonnegative integer. An \(\mathbb{F}_q \)-line \(l \) is said to be a \(\delta \)-line with respect to \(C \) if \(|l \cap C(\mathbb{F}_q)| = \delta \).

Lemma 2.4. Let \(C \in \mathcal{S}_q \), and \(\delta \) a nonnegative integer such that a \(\delta \)-line with respect to \(C \) actually exists. Then \(\delta \) is either \(0 \) or \(q - 2 \) or \(q - 1 \), and the number of \(\delta \)-lines are as in Table 1.

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>the number of (\delta)-lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>q - 2</td>
<td>((q - 1)^2)</td>
</tr>
<tr>
<td>q - 1</td>
<td>(3(q - 1))</td>
</tr>
</tbody>
</table>

Proof. Note that \(q > 2 \) because \(\mathcal{S}_q \) is not empty. Since \(\mathbb{P}^2(\mathbb{F}_q) = C(\mathbb{F}_q) \cup \bigcup_{i=0}^{2} \{ x_i = 0 \} \) (where the symbol \(\cup \) indicates disjoint union) and \(q > 2 \), the possible values of \(\delta \) are \(0 \), \(q - 2 \) and \(q - 1 \). Obviously the number of 0-lines is 3. A \((q - 1)\)-line is not a 0-line, and passes through one of intersection points of two 0-lines. Other lines are \((q - 2)\)-lines. \(\square \)
We need an elementary fact on the finite group action, so called “Burnside’s lemma” [10, Corollary 7.2.9].

Lemma 2.5. Let G be a finite group which acts on a finite set X. For g ∈ G, Fix(g) denotes the set of fixed points of g on X. Then the number ν of orbits of G on X is given by

\[\nu = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|. \]

Proof of Theorem 1.3. The first claim is that if two members C(α,β,γ), C(α',β',γ') ∈ S_q are projectively equivalent over \(\mathbb{F}_q \), then the point (α',β',γ') ∈ \(\mathbb{P}^2(\mathbb{F}_q) \) is a permutation of the point (α,β,γ) ∈ \(\mathbb{P}^2(\mathbb{F}_q) \), that is, there is a nonzero element \(\lambda \in \mathbb{F}_q^* \) such that the triple (λα',λβ',λγ') is a permutation of the triple (α,β,γ).

Actually, let \(\Sigma \) be a projective transformation so that \(\Sigma C(α,β,γ) = C(α',β',γ') \). Note that \(\Sigma \) induces an automorphism of the homogeneous coordinate ring \(\mathbb{F}_q[x_0, x_1, x_2] \), which is denoted by \(\Sigma^* \). The set of 0-lines with respect to each of curves in \(S_q \) is \(\{(x_0 = 0), (x_1 = 0), (x_2 = 0)\} \) by Lemma 2.4. Hence \(\Sigma^* \) induces a permutation of those lines. Hence \(\Sigma^*(x_i) = u_i x_{σ(i)} \) for some \(u_i \in \mathbb{F}_q^* \), and \(σ(0), σ(1), σ(2) \) is a permutation of \((0, 1, 2) \). Hence

\[\Sigma^*(αx_0^{q-1} + βx_1^{q-1} + γx_2^{q-1}) = αx_0^{q-1} + βx_1^{q-1} + γx_2^{q-1} \]

because \(u_i^{q-1} = 1 \).

So we need to classify \(S_q/\mathbb{F}_q^* \) by the action of \(S_3 \) as permutations on coefficients.

Observe the map

\[ρ : S_q/\mathbb{F}_q^* ⊆ C(α,β,γ) → (α : β) ∈ \mathbb{P}^1(\mathbb{F}_q), \]

which is well-defined and

\[\text{Im} \, ρ = \mathbb{P}^1(\mathbb{F}_q) \setminus \{(0,1), (1,0), (1,-1)\}. \]

Obviously, ρ gives a one to one correspondence, so \(S_3 \) acts on \(\text{Im} \, ρ \) also. Table 2 shows the \(S_3 \)-action on \(\text{Im} \, ρ \) explicitly.

Table 2. \(S_3 \)-action on \(\text{Im} \, ρ \)

<table>
<thead>
<tr>
<th>(S_3)</th>
<th>(S_q/\mathbb{F}_q^*)</th>
<th>(\text{Im} , ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(α,β,γ)</td>
<td>(α : β)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(α,β,γ)</td>
<td>(β,α,γ)</td>
</tr>
<tr>
<td>(2,3)</td>
<td>(α,β,γ)</td>
<td>(γ,α,β)</td>
</tr>
<tr>
<td>(1,3)</td>
<td>(α,β,γ)</td>
<td>(γ,β,α)</td>
</tr>
<tr>
<td>(1,2,3)</td>
<td>(α,β,γ)</td>
<td>(β,α,γ)</td>
</tr>
<tr>
<td>(1,3,2)</td>
<td>(α,β,γ)</td>
<td>(β,γ,α)</td>
</tr>
</tbody>
</table>

Now we compute the number of fixed points on \(\text{Im} \, ρ \) by each \(σ \in S_3 \).

- **Fixed points of the identity (1) are all the q − 2 points of \(\text{Im} \, ρ \).**
- \((α : β) \in \text{Fix}(1,2) \Leftrightarrow (α : β) = (β : α) \Leftrightarrow α^2 - β^2 = 0 \). If the characteristic of \(\mathbb{F}_q \) ≠ 2, then \(\text{Fix}(1,2) = \{(1 : 1)\} \) because \(1 : -1 \not\in \text{Im} \, ρ \). If q is a power of 2, then \(\text{Fix}(1,2) \) is empty.
- \((α : β) \in \text{Fix}(2,3) \Leftrightarrow (α : β) = (α : -(α + β)) \Leftrightarrow α = -2β \) because \(α ≠ 0 \). If the characteristic of \(\mathbb{F}_q \) ≠ 2, then \(\text{Fix}(2,3) = \{-2 : 1\} \). If q is a power of 2, then \(\text{Fix}(2,3) \) is empty.
- \((α : β) \in \text{Fix}(1,3) \Leftrightarrow (α : β) = -(α + β) : β \Leftrightarrow β = -2α \) because \(β ≠ 0 \). If the characteristic of \(\mathbb{F}_q \) ≠ 2, then \(\text{Fix}(1,3) = \{1 : -2\} \). If q is a power of 2, then \(\text{Fix}(1,3) \) is empty.
• \((\alpha : \beta) \in \text{Fix}(1, 2, 3) \iff (\alpha : \beta) = (-\alpha + \beta : \alpha) \iff \alpha^2 + \alpha\beta + \beta^2 = 0 \iff (\alpha : \beta) = (\eta : 1)\) with \(\eta^2 + \eta + 1 = 0\) and \(\eta \in \mathbb{F}_q\).

• \((\alpha : \beta) \in \text{Fix}(1, 3, 2) \iff (\alpha : \beta) = (\beta : -\alpha + \beta) \iff \alpha^2 + \alpha\beta + \beta^2 = 0 \iff (\alpha : \beta) = (\eta : 1)\) with \(\eta^2 + \eta + 1 = 0\) and \(\eta \in \mathbb{F}_q\).

For the last two cases, since a cubic root of 1 other than 1 exists in \(\mathbb{F}_q\) if and only if \(q \equiv 1 \mod 3\), and only the cubic root of 1 is 1 if \(q\) is a power of 3,

\[
|\text{Fix}(1, 2, 3)| = |\text{Fix}(1, 3, 2)| = \begin{cases}
2 & \text{if } q \equiv 1 \mod 3 \\
1 & \text{if } q \text{ is a power of 3} \\
0 & \text{else}
\end{cases}
\]

The number of fixed points can be summarized as in Table 3.

\begin{tabular}{c|c|c|c|c|c|c}
\(q \mod 6\) & Fix(1) & Fix(12) & Fix(13) & Fix(23) & Fix(123) & \(6\nu_q\) \\
\hline
5 & \(q - 2\) & 1 & 1 & 1 & 0 & 0 & \(q + 1\) \\
1 & \(q - 2\) & 1 & 1 & 1 & 2 & 2 & \(q + 5\) \\
3 & \(q - 2\) & 1 & 1 & 1 & 1 & 1 & \(q + 3\) \\
2 & \(q - 2\) & 0 & 0 & 0 & 0 & 0 & \(q - 2\) \\
4 & \(q - 2\) & 0 & 0 & 0 & 2 & 2 & \(q + 2\)
\end{tabular}

Since \(\nu_q = \frac{1}{6} \sum_{\sigma \in S_3} |\text{Fix}\,\sigma|\) by Lemma 2.5, we are able to know \(\nu_q\) explicitly as in the last column of Table 3.

At the end of this section, we raise a question: are there non-Sziklai curves over \(\mathbb{F}_q\) of degree \(q - 1\) that attain the Sziklai bound (2)?

Added in the revision: Recently, Walteir de Paula Ferreira and Pietro Speziali showed the answer of the above question is negative if \(q \geq 5\) [2].

3. Maximal curves of degree 3 over \(\mathbb{F}_4\)

The purpose of this section is to give an elementary and self-contained proof of the following theorem.

Theorem 3.1. Let \(C\) be a plane curve of degree 3 over \(\mathbb{F}_4\) without \(\mathbb{F}_4\)-linear components. If \(N_4(C) = 9\), then \(C\) is either

(i) Hermitian, or

(ii) projectively equivalent to the curve

\[x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0,\]

where \(\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}\).

Lemma 3.2. Let \(C\) be a plane curve of degree 3 over \(\mathbb{F}_4\) without \(\mathbb{F}_4\)-linear components, and \(N_4(C) \geq 7\). Then \(C\) is nonsingular.

Proof. Since the degree of \(C\) is 3, \(C\) is absolutely irreducible. If \(C\) had a singular point, then \(C\) would be an image of \(\mathbb{P}^1\) with exactly one singular point, and hence \(N_4(C)\) would be at most 6 (= \(N_4(\mathbb{P}^1) + 1\)). Therefore \(C\) is nonsingular.

\[\square\]
From now on, we consider a nonsingular plane curve C of degree 3 with $N_4(C) = 9$, and lines over \mathbb{F}_4.

Notation 3.3. Let l be a line in \mathbb{P}^2. The symbol $l.C$ denotes the divisor $\sum_{P \in l \cap C} i(l; C; P)P$ on C, where $i(l; C; P)$ is the local intersection multiplicity of l and C at P. Note that though $l.C$ is defined over \mathbb{F}_4, a point P in the support of $l.C$ may not be \mathbb{F}_4-point.

Lemma 3.4. Let l be a 2-line with respect to C, say $l \cap C(\mathbb{F}_4) = \{P_1, P_2\}$. Then $l.C = 2P_1 + P_2$ or $P_1 + 2P_2$.

Proof. Since $\deg C = 3$, there is a closed point Q of C such that $l.C = P_1 + P_2 + Q$. Applying the Frobenius map F_4 over \mathbb{F}_4 to both sides of the above equality, we know $P_1 + P_2 + Q = P_1 + P_2 + F_4(Q)$, which implies that the point Q is also \mathbb{F}_4-point. Therefore Q must coincide with either P_1 or P_2 because l is a 2-line.

Lemma 3.5. Let l_0 be a 1-line with respect to C, say $l_0 \cap C(\mathbb{F}_4) = \{P\}$. Then $l_0.C = 3P$.

Proof. Consider all the \mathbb{F}_4-lines passing through the point P, say l_0, l_1, \ldots, l_4. Counting $N_4(C)$ by using the disjoint union

\[C(\mathbb{F}_4) = \{P\} \sqcup \left(\bigcup_{i=1}^4 (l_i \cap C(\mathbb{F}_4) \setminus \{P\}) \right), \]

we know that $|l_i \cap C(\mathbb{F}_4) \setminus \{P\}|$ is 2, that is, the remaining four lines l_1, \ldots, l_4 to be 3-lines with respect to C. So each of them meets with C transversally because $\deg C = 3$. Therefore l_0 is the tangent line to C at P. Hence there is a closed point $Q \in C$ such that $l_0.C = 2P + Q$. Apply F_4 to this divisor, Q should be \mathbb{F}_4-points. Since l_0 is a 1-line, $Q = P$.

Definition 3.6. Since C is nonsingular, for any closed point $P \in C$, the tangent line to C at P exists, which is a unique line l such that $i(l; C; P) \geq 2$. This line is denoted by $T_P(C)$. A point P with $i(T_P(C); C; P) = 3$ is called a flex or an inflection point. It is obvious that if P is an \mathbb{F}_4-points, then $T_P(C)$ is an \mathbb{F}_4-line.

Corollary 3.7. Let $P \in C(\mathbb{F}_4)$.

(i) If $i(T_P(C); C; P) = 3$, then $T_P(C)$ is a 1-line, and conversely, if an \mathbb{F}_4-line l passing through P is a 1-line, then $l = T_P(C)$ and $i(T_P(C); C; P) = 3$.

(ii) If $i(T_P(C); C; P) = 2$, then $T_P(C)$ is a 2-line, and conversely, if an \mathbb{F}_4-line l passing through $P_1, P_2 \in C(\mathbb{F}_4)$ is a 2-line, then l coincides with either $T_{P_1}(C)$ or $T_{P_2}(C)$.

Proof. (i) The first part is obvious because $\deg C = 3$, and the second part is a consequence of Lemma 3.5.

(ii) This is also a consequence of Lemma 3.5: since $T_P(C)$ is not a 1-line, it should be a 2-line, and the second part is just in Lemma 3.4.

Notation 3.8. For each nonnegative integer $\delta \leq 3$, \mathcal{L}_δ denotes the set of δ-lines with respect to C, and μ_δ denotes the cardinality of the set \mathcal{L}_δ.

The next lemma is essential for the proof of Theorem 3.1.

Lemma 3.9. The possibilities of quadruple $(\mu_0, \mu_1, \mu_2, \mu_3)$ are either

(i) $\mu_0 = 0$, $\mu_1 = 9$, $\mu_2 = 0$, $\mu_3 = 12$; or

(ii) $\mu_0 = 3$, $\mu_1 = 0$, $\mu_2 = 9$, $\mu_3 = 3$.

Proof. Step 1. Let us consider the correspondence
\[\mathcal{F} := \{(l, P) \in \mathbb{P}^2(\mathbb{F}_q) \times C(\mathbb{F}_q) \mid l \ni P\} \]
with projections \(p_1 : \mathcal{F} \to \mathbb{P}^2(\mathbb{F}_q) \) and \(p_2 : \mathcal{F} \to C(\mathbb{F}_q) \), where \(\mathbb{P}^2(\mathbb{F}_q) \) is the projective space of the \(\mathbb{F}_q \)-lines. Since \(|p_2^{-1}(P)| = 5 \) for all \(P \in C(\mathbb{F}_q) \) and \(|C(\mathbb{F}_q)| = 9 \), we know \(|\mathcal{F}| = 45 \).

From Corollary 3.7, the tangent line at an \(\mathbb{F}_q \)-point is a 1-line or 2-line, and vice versa. Since \(\deg C = 3 \), there are no bi-tangents. Hence
\[\mu_1 + \mu_2 = 9. \] (9)

Since \(|p^{-1}(l)| = \delta \) if \(l \) is a \(\delta \)-line,
\[\mu_1 + 2\mu_2 + 3\mu_3 = |\mathcal{F}| = 45. \] (10)

Additionally, since the total number of \(\mathbb{F}_q \)-lines is 21,
\[\mu_0 + \mu_1 + \mu_2 + \mu_3 = 21. \] (11)

Step 2. Suppose that \(\mu_1 = 0 \). From (9), (10), (11), we have \(\mu_0 = 3, \mu_2 = \mu_3 = 9 \), which is the case (ii).

Step 3. Suppose that \(\mu_1 \neq 0 \). Since (9) and (10), \(\mu_1 \equiv 0 \mod 3 \). Hence there are at least three 1-lines, and hence there are at least three inflection \(\mathbb{F}_q \)-points. Choose two inflection \(\mathbb{F}_q \)-points \(Q_1 \) and \(Q_2 \), and consider the line \(l_0 \) passing through these two points, which is an \(\mathbb{F}_q \)-line. Hence \(l_0 \) meets \(C \) at another point \(Q_0 \), which is also an \(\mathbb{F}_q \)-point.

Claim 1. \(Q_0 \) is also a flex.

We need more notation. The linear equivalence relation of divisors on \(C \) will be denoted by \(\sim \), and a general line section on \(C \) by \(L \). Here a general line section means a representative of the divisor cut out by a line on \(C \), which makes sense up to the relation \(\sim \).

Proof of claim 1. Since \(Q_0 + Q_1 + Q_2 \sim L \) and \(3Q_1 \sim L \) for \(i = 1 \) and \(2 \), we have \(3Q_0 \sim 3L - 3Q_1 - 3Q_2 \sim L \), which means that \(Q_0 \) is a flex. \(\square \)

Hence the following property holds.

(\(\dagger \)) There are exactly three \(\mathbb{F}_q \)-lines passing through \(Q_0 \) besides \(l_0 \) and \(T_{Q_0}(C) \), say \(l_1, l_2, l_3 \). Each \(l_i \) is a 3-line.

Actually, since
\[C(\mathbb{F}_q) = \{Q_0, Q_1, Q_2\} \cup \{l_i \cap C(\mathbb{F}_q) \setminus \{Q_0\}\} \]
and \(|l_i \cap C(\mathbb{F}_q) \setminus \{Q_0\}| \leq 2 \), each \(l_i \) is a 3-line.

The six points of \(C(\mathbb{F}_q) \setminus \{Q_0, Q_1, Q_2\} \) are named \(\{P_i^{(j)} \mid i = 1, 2, 3; j = 1, 2\} \) so that \(l_i \cap C(\mathbb{F}_q) = \{Q_0, P_i^{(1)}, P_i^{(2)}\} \).

Claim 2. \(\sum_{i=1}^3 (P_i^{(1)} + P_i^{(2)}) \sim 2L \).

Proof of claim 2. Since \(Q_0 + P_i^{(1)} + P_i^{(2)} \sim L \) and \(3Q_0 \sim L \), we get \(L + \sum_{i=1}^3 (P_i^{(1)} + P_i^{(2)}) \sim 3L \). \(\square \)

Since a nonsingular plane curve is projectively normal, the divisor \(\sum_{i=1}^3 (P_i^{(1)} + P_i^{(2)}) \) on \(C \) is cut out by a quadratic curve. Let \(D \) be the quadratic curve passing through those six points. Suppose that \(D \) is absolutely irreducible. Then \(D \) has exactly five \(\mathbb{F}_q \)-points if it is defined over \(\mathbb{F}_q \), or at most four \(\mathbb{F}_q \)-points if it is not defined over \(\mathbb{F}_q \) because an \(\mathbb{F}_q \)-point of \(D \) is a point of \(D \cap F_4(D) \); both are absurd. Therefore \(D \) is a union of two lines \(m, m' \). If a line is not defined over \(\mathbb{F}_q \), then \(F_4(m) = m' \) and \(D \) has
only one \mathbb{F}_4-point; also asserted. Hence this split occurs over \mathbb{F}_4. Since $\deg C = 3$, those six points split into two groups; three of them lie on m and the remaining three lie on m', and $P_i^{(1)}$ and $P_i^{(2)}$ do not belong the same group. Hence we may assume that $P_1^{(1)}, P_2^{(1)}, P_3^{(1)} \in m$ and $P_1^{(2)}, P_2^{(2)}, P_3^{(2)} \in m'$. Note that m and m' do not contain Q_0 nor Q_1 nor Q_2.

Apply the same arguments to Q_3 instead of Q_0 after (i). Since Q_1 does not lie on m nor m', there is a permutation $(\sigma(1), \sigma(2), \sigma(3))$ of $(1, 2, 3)$ such that $Q_1, P_i^{(1)}, P_{\sigma(i)}^{(2)}$ are collinear for $i = 1, 2, 3$. Similarly, there is another permutation τ such that $Q_2, P_i^{(1)}, P_{\tau(i)}^{(2)}$ are collinear for $i = 1, 2, 3$. Therefore

$$
\begin{align*}
Q_0 + P_1^{(1)} + P_2^{(2)} & \sim L \\
Q_1 + P_1^{(1)} + P_{\sigma(1)}^{(2)} & \sim L \\
Q_2 + P_1^{(1)} + P_{\tau(1)}^{(2)} & \sim L
\end{align*}
$$

Claim 3. \{\sigma(1), \tau(1)\} = \{2, 3\}.

Proof of claim 3. If not, two of $\{P_1^{(2)}, P_{\sigma(1)}^{(2)}, P_{\tau(1)}^{(2)}\}$ coincide. For example, if $P_1^{(2)} = P_{\sigma(1)}^{(2)}$, then $Q_0, P_1^{(1)}, P_2^{(2)} = P_{\sigma(1)}^{(2)}, Q_1$ are collinear, which is impossible because the line joining Q_0 and Q_1 is l_0. Other cases can be handled by similar way.

By this claim,

$$
P_1^{(2)} + P_{\sigma(1)}^{(2)} + P_{\tau(1)}^{(2)} \sim L. \tag{13}
$$

Hence adding all equivalence relations in (12), together with (13) we have $3P_1^{(1)} + 2L \sim 3L$, which implies $3P_1^{(1)} \sim L$. Hence $P_1^{(1)}$ is a flex. Similarly we have that any $P_i^{(1)}$ is a flex. Hence $\mu_1 = 9$. Hence, from (9), (10) and (11) in Step 1, $\mu_0 = 0$, $\mu_2 = 0$ and $\mu_3 = 12$.

Remark 3.10. In Step 3 of the proof of Lemma 3.9, what we have shown is essentially that if a point of $C(\mathbb{F}_4)$ is flex, then so are all points of $C(\mathbb{F}_4)$. If $C(\mathbb{F}_4)$ contains a flex, then C is defined over \mathbb{F}_4 as an elliptic curve. A sophisticated proof for the above fact may be possible by using the Jacobian variety, which coincides with the elliptic curve C. For details, see the first part of [8].

Proof of Theorem 3.1. When the case (ii) in Lemma 3.9 occurs, three 0-lines are not concurrent; Actually if three 0-lines are concurrent, there is an \mathbb{F}_4-point Q outside C, which these \mathbb{F}_4-lines pass through. The remaining two \mathbb{F}_4-lines pass through Q can’t cover all the points of $C(\mathbb{F}_4)$.

Hence we may choose coordinates x_0, x_1, x_2 so that those 0-lines are $\{x_0 = 0\}, \{x_1 = 0\}$ and $\{x_2 = 0\}$. Since $\mathbb{P}^2(\mathbb{F}_4) \setminus \bigcup_{i=0}^2 \{x_i = 0\} = 9 = |C(\mathbb{F}_4)|$, $C \in \mathcal{X}_4$ by Proposition 2.1. Furthermore since $\nu_4 = 1$ by Theorem 1.3 (III-ii), and $C(1, \omega, \omega^2) \in \mathcal{X}_4$, C is projectively equivalent to the curve

$$
x_0^2 + \omega x_1^2 + \omega^2 x_2^3 = 0.
$$

Next we consider the case (i) in Lemma 3.9. In this case C has the following properties:

1. C is nonsingular of degree 3 defined over \mathbb{F}_4 with nine \mathbb{F}_4-points;
2. for any $P \in C(\mathbb{F}_4)$, $i(T_P(C), C; P) = 3$;
3. each point of $\mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$ lies on three tangent lines.

Here we will confirm the property (3). Among the five \mathbb{F}_4-lines passing through $Q \in \mathbb{P}^2(\mathbb{F}_4) \setminus C(\mathbb{F}_4)$, $\mu_\delta(Q)$ denotes the number of δ-lines. Since δ is either 1 or 3, $\mu_1(Q) + 3\mu_3(Q) = 9$ and $\mu_1(Q) + \mu_3(Q) = 5$. Hence $\mu_1(Q) = 3$.

135
Although the proof of [4, Lemma 7] works well under those three assumptions (1), (2), (3) for C, we give a proof here for readers’ convenience, which works only in our case $q = 4$.

Let $Q_0 \in \mathbb{P}^2(F_4) \setminus C(F_4)$. From the property (3), there are exactly two 3-lines, say l_1 and l_2. Since l_i has exactly five F_4-points, we can find the fifth F_4-point Q_i on l_i other than the three points on C or Q_0. Then the F_4-line Q_1Q_2 is a 3-line. Actually, if the line Q_1Q_2 is a 1-line, then it tangents to C at a point, say R. However Q_0R also tangents at R by (3), which is impossible. Let’s choose coordinates x_0, x_1, x_2 so that Q_1Q_2 is defined by $x_0 = 0$, and l_i by $x_i = 0$ for $i = 1, 2$. Then the nine points of $C(F_4)$ is given by

\begin{align*}
(0, 1, 1) & \quad (0, 1, \omega) & \quad (0, 1, \omega^2) \\
(1, 0, 1) & \quad (\omega, 0, 1) & \quad (\omega^2, 0, 1) \\
(1, 1, 0) & \quad (1, \omega, 0) & \quad (1, \omega^2, 0)
\end{align*}

So C is defined by

$$x_0^3 + x_1^3 + x_2^3 + \alpha x_0 x_1 x_2 = 0 \quad (\alpha \in F_4).$$

If $\alpha \neq 0$, the equation gives a union of three lines, which is absurd. \hfill \Box

4. Comparison of two maximal curves of degree 3 over \mathbb{F}_4

Lastly we compare two maximal curves of degree 3

$$C : x_0^3 + x_1^3 + x_2^3 = 0$$

and

$$D : x_0^3 + \omega x_1^3 + \omega^2 x_2^3 = 0$$

over $\mathbb{F}_4 = \mathbb{F}_2[\omega]$.

Apparently, C and D are projectively equivalent over \mathbb{F}_4, but not over \mathbb{F}_2, as we have seen. We will show the function fields $\mathbb{F}_4(C)$ and $\mathbb{F}_4(D)$ are isomorphic over \mathbb{F}_4. This is already guaranteed theoretically by Rück and Stichtenoth [8]. Here we will give an explicit isomorphism between those two fields.

Let $x = \frac{x_0}{x_2} | C$ and $y = \frac{x_1}{x_2} | C$. Obviously $\mathbb{F}_4(C) = \mathbb{F}_4(x, y)$ with $x^3 + y^3 + 1 = 0$.

Theorem 4.1. Three functions

\begin{align*}
u & = 1 + \frac{x}{y + 1} + \frac{1}{x + y + 1} \\
v & = \omega^2 \frac{x}{y + 1} + \frac{1}{x + y + 1} \\
w & = \omega \frac{x}{y + 1} + \frac{1}{x + y + 1}
\end{align*}

(14)

satisfy

$$u^3 + \omega u^3 + \omega^2 u^3 = 0.$$

Proof. By straightforward computation, we have

\begin{align*}((y + 1)(x + y + 1)w)^3 = & (\omega x(x + y + 1) + (y + 1))^3 \\
= & x^3(x + y + 1)^3 + \omega^2 x^2(x + y + 1)(y + 1) + \omega x(x + y + 1)(y + 1)^2 + (y + 1)^3
\end{align*}
\[(y + 1)(x + y + 1)\omega^3\]
\[= (\omega^2 x + y + 1) + (y + 1)\omega^3\]
\[= x^3(1 + y + 1)^3 + \omega x^2(x + y + 1)(y + 1)^2 + (y + 1)^3 \omega x(x + y + 1)(y + 1)^2 + (y + 1)^3,\]

and
\[
((y + 1)(x + y + 1)\omega^3)^3
= ((y + 1)(x + y + 1) + x(x + y + 1) + (y + 1))^3 = g + h,
\]

where
\[
g = (y + 1)\omega^3(x + y + 1)^3 + (y + 1)^2(x + y + 1)^2(x(x + y + 1) + (y + 1))
+ (y + 1)(x + y + 1)(x(x + y + 1) + (y + 1))^2,
\]
\[
h = (x(x + y + 1) + (y + 1)^3
= x^3(x + y + 1)^3 + x^2(x + y + 1)(y + 1)^2 + x(x + y + 1)(y + 1)^2 + (y + 1)^3.
\]

Hence
\[
\omega^2((y + 1)(x + y + 1)\omega^3)^3 + \omega((y + 1)(x + y + 1)\omega^3)^3 + h
= (\omega^2 + \omega + 1)x^3(x + y + 1)^3
+ (\omega^4 + \omega^2 + 1)x^2(x + y + 1)^2(y + 1)
+ (\omega^3 + \omega^3 + 1)x(x + y + 1)(y + 1)^2
+ (\omega^2 + \omega + 1)(y + 1)^3
= x(x + y + 1)(y + 1)^2.
\]

Therefore
\[
\omega^2((y + 1)(x + y + 1)\omega^3)^3 + \omega((y + 1)(x + y + 1)\omega^3)^3 + ((y + 1)(x + y + 1)\omega^3)^3
= g + x(x + y + 1)(y + 1)^2
= (y + 1)(x + y + 1)^2(x + y + 1)^2 + x(y + 1)(x + y + 1)^2 + (y + 1)^2 + x(y + 1)^2 + x(y + 1)^2 + x(y + 1)^2 + x(y + 1)^2.
\]

Since the sum of last two terms in the braces is \((x + y + 1)(y + 1), (x + y + 1)\) divides the polynomial in the braces. Hence (15) is equal to
\[
(y + 1)(x + y + 1)^3(\omega^2 w^3 + \omega u^3 + u^3) = (y + 1)(x + y + 1)^2 f,
\]

where
\[
f = (y + 1)^2(x + y + 1) + x(y + 1)(x + y + 1) + (y + 1)^2 + x^2(x + y + 1) + (y + 1)
\]

Continue the computation a little more:
\[
f = x(y + 1)^2 + (y + 1)^3 + x^2(x + y + 1) + y + 1)^2 + x^3 + x^2(y + 1) + (y + 1)
= (y + 1)^3 + (y + 1)^2 + (y + 1) + x^3
= y^3 + x^3 + 1 = 0.
\]

As a conclusion, we have \(u^3 + \omega u^3 + \omega^2 u^3 = 0\). □
Corollary 4.2. $\mathbb{F}_4(C) \cong \mathbb{F}_4(D)$.

Proof. Trivially $\mathbb{F}_4(C) = \mathbb{F}_4(x, y) = \mathbb{F}_4(\frac{x}{y+1}, \frac{1}{x+y+1})$. On the other hand, by definition of u, v, w (14)
\[\omega^2 \frac{v}{u} + \omega \frac{w}{u} = 1 - \frac{1}{u}. \]
Hence $\mathbb{F}_4(D) \cong \mathbb{F}_4(\frac{u}{v}, \frac{w}{u}) = \mathbb{F}_4(u, v, w)$. Since
\[\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \omega^2 & 1 \\ 0 & \omega & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \frac{x}{y+1} \\ \frac{1}{x+y+1} \end{pmatrix}, \]
we know $\mathbb{F}_4(u, v, w) = \mathbb{F}_4(\frac{x}{y+1}, \frac{1}{x+y+1})$. Summing up, we get $\mathbb{F}_4(D) \cong \mathbb{F}_4(C)$. \hfill \qed

Acknowledgment: The author would like to thank the referee for proposing a simple statement of Theorem 1.3 as in Remark 1.4, and giving information about a recent paper [2].

References