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Abstract: In the present paper automorphisms, local and 2-local automorphisms of n-dimensional null-filiform
and filiform associative algebras are studied. Namely, a common form of the matrix of automorphisms
and local automorphisms of these algebras is clarified. It turns out that the common form of the matrix
of an automorphism on these algebras does not coincide with the local automorphism’s matrices
common form on these algebras. Therefore, these associative algebras have local automorphisms
that are not automorphisms. Also, that each 2-local automorphism of null-filiform algebra is an
automorphism and some associative filiform algebras admit 2-local automorphisms which are not
automorphisms are proved.
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Introduction

The Gleason-Kahane-Zelazko theorem [13, 16], which is a fundamental contribution to the theory of
Banach algebras, asserts that every unital linear local homomorphism from an unital complex Banach
algebra A into C is multiplicative. We recall that a linear map T from a Banach algebra A into a
Banach algebra B is said to be a local homomorphism if for every a in A there exists a homomorphism
®, : A — B, depending on a, such that T'(a) = D,(a).
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Later, in [15], R. Kadison introduces the concept of local derivations and proves that each continuous
local derivation from a von Neumann algebra into its dual Banach bemodule is a derivation. B. Jonson
[14] extends the above result by proving that every local derivation from a C*-algebra into its Banach
bimodule is a derivation. In particular, Johnson gives an automatic continuity result by proving that local
derivations of a C*-algebra A into a Banach A-bimodule X are continuous even if not assumed a priori
to be so (cf. [14, Theorem 7.5]). Based on these results, many authors have studied local derivations on
operator algebras.

_A similar notion, which characterizes non-linear generalizations of automorphisms, was introduced
by Semrl in [21] as 2-local automorphisms. He described such maps on the algebra B(H) of all bounded
linear operators on an infinite dimensional separable Hilbert space H.

The first results concerning local derivations and automorphisms on finite-dimensional Lie algebras
were obtained in [4]. Namely, in [4] the authors have proved that every local derivation on semi-simple
Lie algebras is a derivation and gave examples of nilpotent finite-dimensional Lie algebras with local
derivations which are not derivations. Sh.A.Ayupov, K.K.Kudaybergenov, B.A.Omirov proved similar
results concerning local derivations and automorphisms on simple Leibniz algebras in their recent paper
[7]. Local automorphisms of certain finite-dimensional simple Lie and Leibniz algebras are investigated
in [5]. Concerning local automorphism, T.Becker, J.Escobar, C.Salas, and R.Turdibaev in [9] established
that the set of local automorphisms LAut(sly) coincides with the group Aut™(sly) of all automorphisms
and anti-automorphisms. Later in [11] M.Costantini proved that a linear map on a simple Lie algebra
is a local automorphism if and only if it is either an automorphism or an anti-automorphism. The local
derivation of semisimple Leibniz algebras investigated in [19]. Similar results concerning local derivations
and automorphisms on Lie superalgebras were obtained in [10, 22] and [23].

In the paper [6], local derivations of solvable Lie algebras are studied, and it is proved that in the
class of solvable Lie algebras, there exist algebras that admit local derivations which are not deriva-
tion. Also, algebras, every local derivation of which is a derivation, are found. Moreover, every local
derivation on a finite-dimensional solvable Lie algebra with model nilradical and the maximal dimen-
sion of complementary space is a derivation. Sh.A.Ayupov, A.Kh.Khudoyberdiyev, and B.B.Yusupov
proved similar results concerning local derivations on solvable Leibniz algebras in their recent papers
[8, 24]. F.N.Arzikulov, I.A.Karimjanov, and S.M.Umrzaqov established that every local and 2-local au-
tomorphisms on the solvable Leibniz algebras with null-filiform and naturally graded non-Lie filiform
nilradicals, whose dimension of complementary space is maximal, is an automorphism [2]. Recently, local
derivations and automorphisms of Cayley algebras, local derivations on the simple Malcev algebra and
local and 2-local derivations of simple n—ary algebras considered in [1, 12, 19]

In the paper [18], I.A.Karimjanov, S.M.Umrzaqov, and B.Yusupov describe automorphisms, local
and 2-local automorphisms of solvable Leibniz algebras with a model or abelian null-radicals. They show
that any local automorphisms on solvable Leibniz algebras with a model nilradical, the dimension of the
complementary space of which is maximal, is an automorphism. But solvable Leibniz algebras with an
abelian nilradical with a 1-dimensional complementary space admit local automorphisms which are not
automorphisms.

In the present paper automorphisms, local and 2-local automorphisms of n-dimensional filiform and
null-filiform associative algebras are studied. Namely, a common form of the matrix of automorphisms
and local automorphisms of these algebras is clarified. It turns out that the common form of the matrix
of an automorphism on these algebras does not coincide with the local automorphism’s matrix’s common
form on these algebras. Therefore, these associative algebras have local automorphisms that are not
automorphisms. Also, that each 2-local automorphism of null-filiform algebra is an automorphism and
some associative filiform algebras admit 2-local automorphisms which are not automorphisms are proved.

1. Preliminaries

Null-filiform and filiform associative algebras. For an algebra A of an arbitrary variety, we
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consider the series

A=A, AT =N ARATET i

k=1
~ We say that an algebra A is nilpotent if A" = 0 for some i € N. The smallest integer satisfying
A" = 0 is called the index of nilpotency or nilindex of A.

Definition 1.1. An n-dimensional associative algebra A is called null-filiform if dimA* = (n+1)—i,1 <
1 <n+1.

Theorem 1.2 ([20]). An arbitrary n-dimensional null-filiform associative algebra is isomorphic to the
following algebra:

Ho: eej=¢ei;,2<i+7<mn,
where {e1,e,...,en} is a basis of the algebra A and the omitted products vanish.
Definition 1.3. An n-dimensional associative algebra A is called filiform if dim(A") =n—i, 2 <i < n.

Theorem 1.4 ([17]). For n > 3 every n-dimensional filiform associative algebra over an algebraically
closed field F of characteristic zero is isomorphic to one of the following pairwise non - isomorphic algebras
with a basis {e1,ea,...,en}:

M1t €€ = €iyj
H1,2 - €i€j = €i4j,En€n = €En_1
H13: €i€j = €i1j,€1€p = €Epn_1
H14: €€ = €j4j,€1€En = En€p = €Ep_1,

where 2 <i+j<n-—1.

2. Description of automorphisms of finite-dimensional null-
filiform and filiform associative algebras

Here we describe automorphisms of the associative algebras from Theorems 1.2 and 1.4.

Theorem 2.1. A linear map ¢ : g — o s an automorphism if and only if it has the following form:
n
pler) = Zaieia
i=1

n

ple)=> (> agcag-..cay)e, 2<i<n, (1)

j=i kit+ko+...+ki=j

where a1 # 0.

Proof. Let

pler) = Z a;e;.
i=1

1E-

[3 18
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Then

Also we have

(P(63> = @(6162) = @(61)(,0(62) = Z

Jj= ki1+kot+ks=j

Similarly, for any ¢« = 2,3, ...n, we have

Ay * Afy * Afey €j.

plei) = plerei1) = pler)p(ei—1) = (Z ai€i> (Z ai@i)

= E a;e; = E E Ay " Qfgy * oee®
i=1 =

j=t \ki+ko+...+ki=j

The proof is complete.

O

Theorem 2.2. A linear map ¢ : 11,1 — 1,1 @5 an automorphism if and only if it has the following form:

n
pler) = Z i€,
i=1

ple)=> (> Ak, * Ay oo * A, )G,
j=t ki+ko+...+ki=j
@(en) =bp_16n—1 + bpey

where a1 # 0.

Proof. Let

n
pler) = Z a;e;.
i=1

Then similar to the proof of Theorem 2.1 we have

n

ple)=> (Y Aky * Ay " e Ok, )€5,

j=t ki+ko+...+ki=j

where a; # 0.

2<i<n—-1

2<i<n-—1,
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Now, let

n
plen) = Z bie;.
i=1
Then, by the table of multiplication of the algebra p,; and equality
‘P(elen) =0,

we have
0= p(eren) = ple1)p(en) = (Z aie¢> (Z bm) =

n—2 n—1
= Z Z ajb;_1€;.
J=11i=j+1
From this it follows that
b;=0, 1<i<n—2, b,-1#0,b,#0.
So,
olen) =bp—1en—1 + bpey,.
The proof is complete. O
We can similarly prove the following theorems.

Theorem 2.3. A linear map ¢ : j11,2 — 1,2 s an automorphism if and only if it has the following form:
n
pler) = Zaieia
i=1

n—1

plea) =Y (Y ar, - ak,)e; +anen

J=2 ki1+ko=j

go(ei):Z( Z Aky * Ay~ oo Oy )€5, 3<i<n—1

Jj=t kitke+..+ki=j

n—3 n—1
Qﬁ(en) = —Aan\/a; €n-—2 +bp_1€n—1 + a; €n

where a1 # 0.

Theorem 2.4. A linear map ¢ : p1,3 — p1,3 45 an automorphism if and only if the map ¢ has the
following form.:

pler) = Z a;€q,
i=1

ot
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n—1
plea) => (> k- ak,)ej +aranen_1
J=2 kitkz=j

(,0(67;)22( Z Aky * Ay~ o G )€, 3<i<n—1

j=i ki+ko+..+ki=j

Qp(en) = bn—len—l + a?_2en

where a1 # 0.

Theorem 2.5. A linear map ¢ : p14 — p1,.4 15 an automorphism if and only if the map ¢ has the
following form:

n
pler) = ae;,
=1

n—1

plea) =D (> ak, - ar,)ej + (aran + al)en 1,

§=2 ki+ko=j

go(ei):Z( Z Aky ~ Qky - oo - Gk, )E5, 3 <i<n—1,

Jj=i ki+ko+...+ki=j

(p(en) = —Qpep—2 + bnflenfl +en

where a1 # 0.

3. Description of local automorphisms of finite-dimensional null-
filiform and filiform associative algebras

Now we describe local automorphisms of the associative algebras from Theorems 1.2 and 1.4.

Definition 3.1. Let A be an algebra. A linear map ® : A — A is called a local automorphism, if for any
element © € A there exists an automorphism ¢y, : A — A such that ®(z) = p,(z).

Theorem 3.2. A linear map ® is a local automorphism of o if and only if the matrix of ® has the
following lower triangular form

by 0O 0 ... 0 0
ba1 b2 .o 0 o 0 0
bg,l b372 b3’3 . 0 0
bp—11 bp—12 bp—13 ... bp_1p-1 O
bn,l bn,2 bn,3 R bn,n—l bn,n

Proof. Let ® be an arbitrary local automorphism on . By the definition of local derivation, for any
element = € g, there exists an automorphism ¢, on pg such that

O(z) = pa(@).

156
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By Theorem 2.1, the matrix of the automorphism ¢, has the following form:

af 0 0 0
a¥ (a?)? 0 0
Ag = . .
al _ > af af_ ... (af)n— 0
nel ke TR ke 1
al af af = af af af (aP)™
1
" by thg=n F1 k2 Bydkotothy,_j=n—1 F1 k2 kp—1

Let A be the matrix of ® and

bii b2 bz ... bino1 b
bai  ba2  baz ... bap—1 bapn
bsi b32 b3z ... bzn—1 b3n
A= . .
bn—1,1 bn—12 bp—13 ... bp—in—1 bn_1pn
bn,l bn,2 bn,3 v bn,n—l bn,n

Then, by choosing subsequently x = e, x = ea, ...,z = e, and using ®(z) = p,(z), i.e. AT = A,T,
where T = (21, x2, . .. xn)T is the vector corresponding to x = z1e1 + - - + xpe,, we have b; ; = 0,7 < 7,
and by # 0, 1 < k < n, which implies

by O 0 ... 0 0
boi bra O ... 0 0
b371 b372 b3’3 e 0 0
bp—11 bp—12 bp—13 ... bp_1pn-1 O
bn,l bn,Z bn,3 .. bn,n—l bn,n

Now we prove that the linear operator, defined by the matrix A is a local automorphism. If, for each
element = € g, there exists a matrix A, of the form in Theorem 2.1 such that

AT = A7, 2)

then the linear operator, defined by the matrix A is a local automorphism. In other words, if, for each
element x € pg, the system of equations

p— T
b1,1I1 = ayxy,

i i
; 3
> bijry = afr + ) > ag,ay, ---ap. x5, 2<i<n, (3)
J=1 J=2 kitkat- k=i

obtained from (2), has a solution with respect to the variables

x

€T x
ai, ay, ...a,,

then the linear operator, defined by the matrix A, is a local automorphism.

Let us consider the following cases

o If x # 0 then af = by 1,
i

_ 1 )
ai =bix+ 5 > (bij — > ag, ay, - -- aj, )xj, 2 < i <n, (af #0).
Jj=2 ki+ko4-+kj=i
eIfry =29=---=2x,_1=0and z,, # 0 then (a{)” = bymm,
kl1+k12+"‘+klm71?&'ﬂl—l
a¥ = A (bip — > ag, a ay,, +
i—m+1 = map)m—1 \Vik k1 Qkg - - GOk,

ki+ka+-tkm=i

~
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o)

7
+ i > (b — > aj ag, ...aij)xj),
Jj=k+1 ki+kot-+k;j=i
m+]— SZSTL, l17127"';lm71 € {1)27"'3m}7 ((ZT #0)

Hence, the system of equation (3) always has a solution. Therefore, the linear operator, defined by
the matrix A is a local automorphism. This completes the proof.

O

Theorem 3.3. A linear map ® is a local automorphism of py1 if and only if the matriz of ® has the
following lower triangular form

b1y 0 0 ... 0 0
ba1 b2.2 0 .. 0 0
b371 bg,g b373 . 0 0
bnle bn71,2 bnfl,S o bnfl,nfl bnfl,n
bpi 0 0 ... 0 by

Proof. Let ® be an arbitrary local automorphism on f; ;. Then, by the definition, for any element
X € fi1,1, there exists an automorphism ¢, on ;1 such that

O(z) = ().

By Theorem 2.2, the matrix of the automorphism ¢, has the following form:

af 0 0 0 0
a§ (af)i‘ . ;) . o 0 0
a a a . 0 0
3 k1+%2=3 k1 ko (D)
Ay =
T T L L amyn—l
“,Lfl Kyt hn—1 k1 %z k1+k2£3:n71“ 1 %o %k (a1) n—1
af 0 0 0 by
Let A be the matrix of ® and, let
bii bi2 bis ... bino1 b
boi  bao  baz ... banp1 bay
bsi b3s2 b3z ... banp—1  b3n
A= . . . . )
bnfl,l bn71,2 bnfl,B e bnfl,nfl bnfl,n
bn,l bn,2 bn,3 o bn,nfl bnm
Then, by choosing subsequently = ey, x = ea, ...,x = e, and using ®(x) = p,(z), i.e. AT = A, 7,

where Z = (21, 2a,...2,)7 is the vector corresponding to x = z1e1 + - -+ + zye,, we have b; ; =0, i < j,
i#n—1,and by # 0, 1 <k <n, which implies

biy 0 0 ... 0 0

ba.1 b2 0 .. 0 0

b371 b372 b373 . 0 0

A= . : . _ : :
bnfl,l bn71,2 bn71,3 e bnfl,nfl bnfl,n

bpi 0 0 ... 0 bym
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Similar to the proof of Theorem 3.2 we prove that, for each element x € j11 1, the system of equations

bi1z1 = afxy,

i i

R T T T .. . _
> bijrj=afzi+ 3 > apag,...ap x;, 2<i<n-—2,
Jj=1 J=2ki+kot+--+kj=i (4)
n n—1
_ i T .. T

> bno1jmy =ag_ @1+ ) > ag, @y, - - - A, Tj + by _1Tn,
j=1 J=2 k1+ka+---+kj=n—1
bn,lml + bn,nxn = aixl + b;blx'ru

obtained from the equality AZ = A,Z, has a solution with respect to the variables

x X X

T T
Ay, Ao,y «..Qp,0,_ 1,0,.

Let us consider the following cases

o If 1 # 0 then af = by 1,

_ 1 .
aj =biy+ 57 2 (bij — > aj, Ay, - af )5, 2 <1 <n =2,
Jj=2 kitkot-+kj=i
g 1
x _ L T .z x . 1 1z
a1 =bn1n+ 57 20 (bn-1 > Ay Ay - - A3, )T + 7o (b — b3) T
Jj=2 ki+ka+-+kj=n—1

a% = bn,l + will(bn,n - bﬁ)xnv
where by, _; and b7 are defined arbitrarily.

o Ifry =29 = =x,_1=0and z,, # 0 then (a{)” = by m,
ki, +kig+-+ki,,  #Fm—1
z -1 (p. T T z
Ai_my1 = m(aF)ym—1 (bz,m Z _ g, g, --- Qg —+
ki+ko+-+kpm=i
i
1 .
+ﬂ Z (biJ_ Z a}glaa...a‘,ﬁj)xj),m—l—lgzSn—Z, l17l2a'--7lm—1 6{1,2,...,7’71}7
Jj=m+1 ki+kot-Akj=i
(a7 #0),

kiy ki ook, Am—1
aﬁ,m = W (bnfl,k - Z a£1a£2 T aim +
kitko++km=n—1
n—1
A Y o= Y afah0f)n + (et — b)),
Jj=m+1 kitkot-+kj=n—1
11712,...,lm_1 S {1,2,...,777,}7 (Gf/f 7é 0)
In this case, by the last equation of System (4), we have b7 = b, ,, if x,, # 0, otherwise b7 is defined

arbitrarily. In this case, aj,, a%_,, ..., al_, , and b} _; are defined arbitrarily.
oelfxy =29 =+ =ux,_1 =0 and x, # 0, then all equation of System (4) except the last two
equations are zero. So, in this case, ay, ay_;, ..., ai are defined arbitrarily. By the last two

equations of System (4), b%_; = b1, and b7 = by, .

Hence, the system of equation (4) always has a solution. Therefore, the linear operator, defined by the
matrix A is a local automorphism. The proof is complete. O

Theorem 3.4. A linear map ® is a local automorphism of pi1.o if and only if the matriz of ® has the
following lower triangular form

by 0 0 ... 0 0

ba.1 ba.2 0 e 0 0

b3,1 bg,g b373 . 0 0
bnfl,l bnfl,Z bnfl,B e bnfl,nfl bnfl,n

bpi O 0O ... 0 bym

15

[3 2>
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Proof. Let ® be an arbitrary local automorphism on f; 2. Then, by the definition, for any element
x € [i1,2, there exists an automorphism ¢, on ;2 such that

O(z) = pa(@).

By Theorem 2.3, the matrix of automorphism ¢, has the following form:

af 0 0 0 0
2
a3 (aF) 0 0 0
*3 kq +%2:3 “k1 %2 (i) o 0 0
Ay =
o aT o 4 (aT)2 > 0T QT QT (a®yn—1 br_
" kqtho=n—1 F1 K " ki dkgifa=n—1 F1 F27k3 ! n-t
a 0 0 0 V@@g)n—1

Let A be the matrix of ®, then from ®(x) = ¢, (x) for x = ¢;, we have that

by 0 0 ... 0 0
boy  bas O ... 0 0
b3)1 b372 b373 . 0 0
A =
bn—l,l bn—1,2 bn—1,3 e bn—l,n—l bn—l,n
by 0 0 ... 0 by

Similar to the proof of Theorem 3.2 we prove that, for each element x € j11 2, the system of equations
bl 171 = ajwy,

Zbuj—ax1+2 > afaf,...af xj;, 2<i<n-—3,
J=2ki+ko+-+kj=i

Z bn—Q,jmj + bn—2,n$n =
Jj=1

n—2
=al_o,x1+ Y. > a£1a£2 ...aijxj — ai\/(a;f)ﬁxn,

J=2 ki+ko+-+kj=n—2

™=

_ 2
birga=almt S Y afaf,..afw + (@) + b,
J j=2 k1+k2+ +kj=n—1

bn 171 + bn nTn = ay, nT1 + \/ n 1In7

obtained from the equality AZ = A, Z, has a solution with respect to the variables

Il
-

xr x T
ap, Gg, . .ay,

ny“n—1-*
Let us consider the following cases
o If I 7é 0 then a:f = b171,
i
_ 1 )
ai =bi1+ - > (biy — > A, Oy - -0 )5, 2 <0 <n—3,
Jj=2 kitkot-t+kj=i
n—2
T _ 1 T T T 1
A2 = bn21 + 57 Z (bn—2; — > Uy Oy -~'akj)33j + 2 (bn—2n —
Jj=2 ki+kot+-t+kj=n—2
a+/(a¥)"=3)x,,where a¥ is defined arbitrarily,
T _ 1 % T T T 1 T
Ay = bo11 + 57 D (b1 — > Ay Oy -3 )T + 2o ((bno1 — b_y)an —
j=2 ki+kot-thj=n—1

(a%)%x5),where a®, b® ;| are defined arbitrarily,

ay = bna + ?ll(bn,n — /(@) Dz,
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o Ifry =x9=---=x,_1=0and z, # 0 then (a7)” = by m,
ki +kig+-tky,,  Fm—1
T _ 1 T T T
Ai_m+y1 = m(aF)ym—1 (bl,m - Z A Oy + - - A =+
ki+ka+-tkm=i
7
1 T T T
+ - > (bi,j - > ap ag, ... akj)xj>,
Jj=m+1 ki+kot-+kj=i

m+1<i<n-—3,l,l2,....,Im-1 €{1,2,...,m}, (af #0),
ki, +kiy+-+ky,, _ #Fm—1
1
ai—m—l = m(at)m—1 (bn—Z,m - Z ailai‘; ce a’glgm +
! k1tko otk =n—2

+ %m(( Z (bn—Q,j - E a£1a9’£2 T aij)xj T (bn_z’n—i_
j=m+1 ky+ky+--+kj=n—2

a? (agl”)”*g’)xn)), where a? is defined arbitrarily, 1,12, ...,ln—1 € {1,2,...,m}, (af # 0).

ki, tkiy+tk, #Fm—1

T _ 1 T T T
n—m = mad)m1 (bn—l,m - > Ay, Oy - - - O, +
Ky +hot kg =n—1

a

n—1
1
+ (2 (b - > ag af, ...af )a; + (bn-1n — bi_l)xn)), b = by, where
j=m+1 ki4+ko+-+kj=n—1
ap,ab_qy, ..., ar_, ., and b7 _; are defined arbitrarily.

Hence, the system of equation (5) always has a solution. Therefore, the linear operator, defined by the
matrix A is a local automorphism. This ends the proof. O
We can similarly prove the following Theorems using Theorems 2.4 and 2.5.

Theorem 3.5. A linear map ® is a local automorphism of the algebras p112 and pq 3 if and only if the
matriz of ® has the following lower triangular form

by 0 0 ... 0 0
ba.1 ba.2 0 e 0 0
b3,1 bg,g b373 . 0 0
bnfl,l bn71,2 bnfl,B e bnfl,nfl bnfl,n
bpy 0 0 ... 0 bo.m

Theorem 3.6. A linear map ® is a local automorphism of py 4 if and only if the matriz of ® has the
following lower triangular form

by O 0 ... 0 0
ba1 b2.2 0 .. 0 0
bs.1 bs.2 bss ... 0 0
bn—l,l bn—1,2 bn—1,3 N bn—l,n—l bn—l,n
boyi 0 0 ... 0 1

Remark 3.7. Note that the common form of the matriz of a local automorphism on an algebra includes
the common form of the matrixz of an automorphism on this algebra. The coincidence of these common
forms denotes that every local automorphism of the considering algebra is an automorphism. But the
common form of the matriz of an automorphism on the associative algebras o, p1,1, 41,2, 41,3 and [i14
does mot coincide with the common form of the matriz of a local automorphism on these algebras by
theorems 3.2, 3.3, 3.5 and 3.6. Therefore, the associative algebras g, 1.1, f1,2, 1,3 and pq 4 have local
automorphisms that are not automorphisms.

Also, note that local automorphisms of an arbitrary low-dimension algebra can be similarly described
using a common form of the matriz of automorphisms on this algebra.
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4. Description of 2-local automorphisms of finite-dimensional
null-filiform and filiform associative algebras
Theorem 4.1. FEach 2-local automorphism of ug is an automorphism.

Proof. Let ¢ be an arbitrary 2 -local automorphism of pg. Then, by the definition, for every element
x € pp and eq, there exist a matrix A .,

a'Jt 0 0 0

aé’el (af’el)2 0 0
Azrey = | o, . . :

1 €1 T,ey1 T,e1 T,€1\n—1

a®€1 k1+k§:n—1ak1 ap oL (a1 0

.’L’,el m,el (E,el m,el (E,el 1',61 1',61 n

“n k1+%2:n “k1 kg ’ k1+k2+---§kn,1:n—lak1 Chy Moy (1)

T = = _ T - .
such that ¢(x) = Ay ., T and @¢(e1) = A, ¢, €1, where T = (z1,%2,...,@y,)" is the vector corresponding
to x and T is an operation on Z such that x = x. Then
= x,e ze1 x,er z,e1\T
— > — »€1 »€1 »E1 »€1
dler) = Az e €1 = (a7, a5 ag™, .. a7 )T
Since ¢(e1) = @g.e, (€1) = @y,e, (€1), we have
z,e z.e1 w1 z,e1\T
— 1 1 1 1 _
oler) = (a7 a5 a3, . an )T =
yer yer - y.er y.e
1 1 1 1
= (a", a3y, oan)T

for each pair, x, y of elements in . Hence, a;" = al*, k =1,2,...n. Therefore

for any = € pg, and the matrix of ¢(z) does not depend on x. Hence ¢ is a linear operator, and the
matrix of ¢, ¢, is the matrix of ¢. Thus, by Proposition 2.1, ¢ is an automorphism. O

Theorem 4.2. The associative algebras pi,1, (1,2, 1,3 and (1 4 admit 2-local automorphisms which are
not automorphisms.

Proof. We prove the theorem for the algebra p; 1; for the algebras p1 2, ft1,3, ft1,4 the proofs are similar.
Let us define a homogeneous non additive function f on C2? as follows

2
[ E i a0
f(z1,20) {O, if z,=0.

where (21, 2,) € C2. Consider the map A : p1 1 — p11 defined by the rule
Ax) =z + f(x1,2n)en—1, where x = Zmiei € pia-
i=1

Since f is not additive, we have A is not an automorphism. Let us show that A is a 2-local automorphism.
For the elements

n n
T = E Ti€iy Y = E Yi€i,
i=1 i=1
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we search an automorphism ® with the matrix of the form (by Theorem 2.2 this matrix defines an
automorphism of p; 1):

1 00...0 O
0 10...0 O
0 01...0 O

Anp—1 00... 1 bn—l
0 00...0 1

such that A(z) = ®(x) and A(y) = ®(y). Then we obtain the following system of equations for a,,_;
and b, _1:

T10p—1 + Tp—1 + xnbn—l =Tp_1+ f(l'l)xn)7
Y101+ Yn-1 + Ynbn-1 = Yn—1+ f(Y1,Yn),
i.e.

T10p—1 + xnbn—l = f(x17xﬂ)7
Y10n—-1 + ynbn—l = f(ylvyn)~

Case 1. Let z1y, — x,y1 = 0, then the system has infinitely many solutions, because of the right-hand
side of this system is homogeneous.

Case 2. Let 1y, — z,y1 # 0, then the system has a unique solution. The proof is complete. The
proof is complete. O

Acknowledgment: We are very grateful to the referee for the careful study of our article and
significant comments.
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