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Abstract: An FM labeling of the vertices of an undirected graph requires that half the neighbors of each vertex
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examples of the smallest and largest of graphs having one of these FM labelings are given. It is also
shown that if T is a linear operator on the set of all undirected graphs on n vertices that strongly
preserves sets of graphs that are labelable by one of the various FM type labelings, then T is a vertex
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1. Introduction

Binary labeling of the vertices of graphs has recently been a focus of some research interest. There
have been a few binary labelings of graphs introduced recently, see [2, 4, 7]. We continue those investi-
gations.

A (0, 1)-labeling of the vertices of a graph is cordial if the zeros and ones are evenly distributed over
the vertices and if the edges are also evenly labeled by zeros and ones, where that labeling is the absolute
difference of the vertex labelings of the incident vertices. This concept was introduced by Cahit [6] in
1987. Since then there have been a couple of further binary vertex labelings of graphs defined, see [2, 7].
In this article we investigate the linear operators that preserve them.

Let Gn denote the set of simple (loopless) undirected graphs on the vertex set V = {v1, v2, . . . vn}.
In this article we need to specify the concept of a friendly labeling.

Definition 1.1. Let Z be a set and label the set with entries from the set A. Let f be the mapping f :
Z → A that preforms this labeling. This labeling of a set is called friendly if −1 ≤ |f−1(i)|− |f−1(j)| ≤ 1
for any i, j ∈ A. To specify that the indexing set is A we say the labeling f is A-friendly. The labeling is
strongly friendly if |f−1(i)| = |f−1(j)| for any i, j ∈ A.
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Definition 1.2. Let A be a set and G be an undirected graph with vertex set V and edge set E. Let
f : V → A be an A-friendly labeling of the non-isolated vertices of V and let g : E → A be an induced
labeling of E, that is given an edge uv, g(uv) = ĝ(f(u), f(v)) where ĝ : A×A → A. Note that ĝ must be
symmetric to be well defined. The graph G with the A-friendly labeling f of the non-isolated vertices of
G and induced edge labeling g is said to be (A, f, g)-cordial if g is also an A-friendly mapping. Also,
given the labeling f , and the induced labeling, g, we say that an (A, f, g)-cordial graph G is k-cordial if
A is Zk, and we say G is cordial if A is Z2.

If the induced mapping g : E → A is defined to be g(uv) = f(u) ∗ f(v) where ∗ is a binary operation
on A and G is A-cordial with the friendly vertex label f , and induced labeling g, we say G is (A, ∗)-cordial.

Remark 1.3. It should be noted that (Z2,+)-cordial and (Z2,−)-cordial are the same and in fact is
the usual definition of a cordial graph labeling where f is a (0, 1) labeling and g(u, v) = |f(u) − f(v)|
using real arithmetic. Further, the restriction that f is a friendly labeling of the non-isolated vertices, not
necessarily all vertices, is required to avoid ambiguity because, for example, if all vertices were labeled,
the graph 2K2 would be (Z2,+)-cordial as a graph on five or more vertices but not on four vertices.

For digraphs we have a similar definition, however, as digraphs are not usually symmetric, we do not
require the induced mapping g to be symmetric:

Definition 1.4. Let A and B be sets and let G = (V,A) be a directed graph with vertex set V and arc
set A. Let f : V → A be an A-friendly labeling of the non-isolated vertices of V and let g : A → B be
an induced labeling of A, that is, given an arc −→uv, g(−→uv) = ĝ(f(u), f(v)) where ĝ : A × A → B. The
graph G with the A-friendly labeling f of the non-isolated vertices and induced edge labeling g is said to
be (A,B)-cordial if g is a B-friendly mapping. When A = Zk and B = Z` we say that G is (k, `)-cordial.
In particular we say that G is (2, 3)-cordial if A = Z2, B = Z3 and g(−→uv) = f(v) − f(u). Note that in
this case g is anti-symmetric.

Note that in the above definitions, if ĝ is the binary mapping corresponding to one of the binary
operations on B we indicate that by placing that operator in the notation. For example a digraph is
(A,B,−)-cordial indicates that the induced labeling g is g(−→uv) = f(v) − f(u). So a digraph is (2, 3,−)-
cordial means that the arc labelings are f(v)− f(u) for the arc −→uv. In this specific case we usually drop
the minus sign and write (2, 3)-cordial. A graph with an A-friendly vertex labeling is product cordial if it
is (A,×)-cordial.

Definition 1.5. A graph G ∈ Gn is said to be (2, 3)-orientable if some orientation of the edges of G
yeilds a digraph that is (2, 3)-cordial.

Let Gn denote the set of all undirected simple loopless graphs on the vertex set V = {v1, v2, . . . , vn}.
Let G and H be two graphs in Gn. The union of G and H is the graph whose edge set is the union of
the edge set of G and the edge set of H. That is, G∪H = (V,E(G)∪E(H)). The graph G contains the
graph H if the edge set of H is a subset of the edge set of G and is denoted H v G or G w H. If G w H
then we write G \ H to denote the graph whose edge set consists of the edges of G that are not edges
of H. Since the vertex set is fixed, we describe a graph G as larger (or smaller) than graph H when the
edge set of G contains more (or fewer) elements than the edge set of H.

Let G ∈ Gn. Let f(G) be a two element labeling of the vertices of G.

In 2022, at a virtual presentation of the 53rd Southeastern International Conference on Combina-
torics, Graph Theory & Computing, Brian Freyberg defined a red-blue coloring:

Definition 1.6. [7] Let G be a simple graph with each vertex colored red or blue. If every vertex has an
equal number of red and blue neighbors, then the coloring is a red-blue coloring and G is a red-blue graph.

So, a graph has a red-blue labeling if each the neighborhood of each vertex is strongly (red,blue)-
friendly.

We now define some graph labelings based on this definition.
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Definition 1.7. Let G = (V,E) be an undirected simple (loopless) graph with vertex set V and edge set
E. The open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E}. The closed neighborhood of
v is N(v) = N(v) ∪ {v}.

Let f : V → X be a labeling of the vertices of G. For ξ ∈ X and U a subset of the vertices of G, let
ξ(U) denote the vertices of U that are labeled ξ. So that, ξ(V ) = f−1(ξ).

Definition 1.8. Let f : V → X be labeling of G = (V,E) ∈ Gn.

• The labeling f is a open Freyberg-Marr-labeling, an FMO-labeling, if for each v ∈ V, for any
ξ, χ ∈ X , |ξ(N(v))| = |χ(N(v))|. That is, the open neighborhood of each vertex is strongly X -
friendly.

• The labeling f is a closed Freyberg-Marr-labeling , an FMC-labeling, if for each v ∈ V, for any
ξ, χ ∈ X , |ξ(N(v))| = |χ(N(v))|. That is, the closed neighborhood of each vertex is strongly X -
friendly.

Note that if X = {0, 1}, an FMO-labeling is the red-blue labeling introduced by Brian Freyberg [7].

We now define another similar labeling that arises by using open or closed neighborhoods depending
on the parity of the vertex degree:

Definition 1.9. A labeling of G, f : V → X is a mixed Freyberg-Marr-labeling, an FMM -labeling, if
for each v ∈ V , for any ξ, χ ∈ X , |ξ(N(v))| = |χ(N(v))| if δ(v) is even, and |ξ(N(v))| = |χ(N(v))| if
δ(v) is odd.

Henceforth, we shall assume that the vertex labeling set is {0, 1}.

Note that any graph with a vertex of odd degree is not FMO-labelable and any graph with a vertex
of even degree is not FMC-labelable. Further every FMO-labelable graph or FMC-labelable graph is an
FMM -labelable graph. No graph except the trivial one (V = ∅) is both FMO-labelable and FMC-labelable,
and a graph that is neither FMO-labelable nor FMC-labelable may or may not be FMM -labelable.

Example 1.10.

1. Every cycle on an even number ( ≥ 4) of vertices is FMO-labelable.

2. The cube (3-dimensional) is FMC-labelable.

3. The fan graph on five vertices is neither FMO-labelable graph nor FMC-labelable but is FMM -
labelable.

4. The Petersen graph (as well as the fan graph on 6 vertices) is neither FMO-labelable graph nor
FMC-labelable and is not FMM -labelable.

The tesseract (the four dimensional cube) is FMO-labelable. Probably every n dimensional cube
is either FMO- or FMC-labelable. Fan graphs (k-fan for k vertices total) are neither FMO- nor FMC-
labelable, they have vertices of both even and odd degree. but some are FMM -labelable, the 5-fan and
8-fan in particular.

The only FMM -labeling of a graph that is also a cordial labeling is an FMO-labeling, since the
number of edges whose incident vertices are labeled the same and the number of edges whose incident
vertices are labeled differently differ precisely by the number of odd vertices, which in any graph is always
an even number. Thus, an FMC-labeling is never a cordial labeling.

A graph that we shall use below is Harary’s random graph, a four cycle with a secant, see Figures 1
and 2.
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Figure 1. Harary’s Random Graph Figure 2. Frank Harary with Random Hat

1.1. Small and large FM labelable graphs.

Here we identify some large and small graphs that are labelable by one of the Freyberg-Marr labelings.

1.1.1. FMO-labelable graphs

These graphs must have all vertices of even degree, so,Kn is not FMO-labelable if n is even since all
vertices have odd degree.

If n is odd, say there are more vertices of Kn labeled 0 than 1. Then each vertex labeled 0 of Kn

has n−1
2 neighbors labeled 0 and n−1

2 neighbors labeled 1. Thus there are n+1
2 vertices labeled 0 and n−1

2

vertices labeled 1. Thus, each vertex labeled 1 has n−1
2 − 1 neighbors labeled 1 and n−1

2 + 1 neighbors
labeled 0, so that Kn is not FMO-labelable.

If n is even then Kn \ n
2K2 is FMO-labelable. If n is odd, Kn−1 \ n−1

2 K2 is FMO-labelable. However,
when n is odd, there may be FMO-labelable graphs with more edges.

The smallest number of edges in an FMO-labelable graph is C4, the 4-cycle and it is the only FMO-
labelable graph on at most 4 edges.

Note that no star graph is FMO-labelable.

1.1.2. FMC-labelable graphs

These graphs must have all vertices of odd degree, so

Kn is not FMC-labelable if n is odd. If n is even, Kn is FMC-labelable, however given any edge
graph E, Kn \ E is not FMC-labelable.

All edge graphs are FMC-labelable. The only graph with two edges that is FMC-labelable is 2K2,
the only graph with three edges that is FMC-labelable is 3K2, and the only graph with four edges that
is FMC-labelable is 4K2. There are only two graphs on five edges that are FMC-labelable: 5K2 and the
tree with degree sequence (3,3,1,1,1,1).

Note that no star graph is FMC-labelable.
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1.1.3. FMM -labelable graphs

Since any FMO-labelable or FMC-labelable graph is FMM -labelable, we have that for n even, Kn

is FMM -labelable. If n is odd then Kn−1 is FMM -labelable, but it is unknown at this time if there are
larger FMM -labelable graphs when n is odd.

For small graphs, no star graphs are FMM -labelable. For graphs of at most four edges, only graphs
of parallel edges, the 3-path, and C4 are FMM -labelable. There are six graphs with five edges that are
FMM -labelable, P5, the 4pan (a 4-cycle with one attached edge), the Harary random graph, the 4-cycle
with a non-incident edge, the three path, P3, with two disjoint parallel edges and 5 parallel edges.

2. Linear preservers

A mapping T : Gn → Gn is said to be a linear operator if T (G∪H) = T (G)∪ T (H) where G and H
are graphs in Gn. Due to the fact that Gn is finite, we have the obvious Proposition:

Proposition 2.1. Let T : Gn → Gn be a linear operator. then the following are equivalent:

• T is injective.

• T is surjective.

• T is bijective,

Recall that a map on Gn is nonsingular means only that the only graph mapped to the edgeless
graph is the edgeless graph.

Henceforth we let O denote the edgeless graph. Some authors prefer Kn.

Definition 2.2. Let X be a subset of Gn. Then T is said to preserve the set X if whenever U ∈ X ,
T (U) ∈ X . We say T strongly preserves X if T preserves X and T preserves Gn \ X .

Due to the nature of the algebraic structure of Gn, addition of graphs being the union of the edge
sets, any map that maps all of Gn to a single graph preserves every subset of Gn that contains that
graph. Thus additional conditions on the mapping is required for any reasonable investigation, usually
bijectivity or that the mapping be a linear operator that strongly preserves the set.

In [3] it was shown that T : Gn → Gn is a linear operator that strongly preserves

• the set of (Z2,+)-cordial graphs for n ≥ 4,

• the set of (Z2,×)-cordial graphs for n ≥ 5, or

• the set of (2, 3)-orientable graphs for n ≥ 6

if and only if T is a vertex permutation.

The next sections use the following lemma from [1]:

Lemma 2.3. [1, Lemma 2.2] If T : Gn → Gn is bijective, preserves |E(G)|, and maps 2-stars to 2-stars
then T is a vertex permutation.

2.1. Preservers of FMO-labelable graphs

Lemma 2.4. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMO-labelable
graphs, then T is nonsingular.
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Proof. Suppose that T is singular. Then there is some edge graph, E, such that T (E) = O. Let C4

be a 4-cycle such that E is not one of the edges of C4 and connects two of the vertices of C4, so C4 ∪ E
is Harary’s random graph H4. Now H4 is not FMO-labelable, while C4 is, but here T (C4) = T (H4), a
contradiction. Thus T is nonsingular.

Lemma 2.5. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMO-labelable
graphs, then T maps edge graphs to edge graphs.

Proof. Suppose that E is an edge graph, so that |E| = 1 and |T (E)| > 1. Let Q be a graph with
maximal number of edges that is FMO-labelable. Then, Q has only vertices of even degree. Suppose Q
dominates E. Let q = |Q|. Then there are edge graphs E1 = E,E2, E3, . . . , Ek such that T (E1∪E2∪· · ·∪
Ek) is dominated by T (Q) and such that |T (E1 ∪E2 ∪ · · · ∪Ek)| > k. That is, there is some edge graph
F dominated by Q such that T (Q) = T (Q \ F ). But Q is FMO while Q \ F is not since Q \ F has two
vertices of odd degree. Thus we have a contradiction. That is T maps edge graphs to edge graphs.

Lemma 2.6. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMO-labelable
graphs, then T is bijective.

Proof. By Lemma 2.5 and Proposition 2.1, we only need show that the image of two edge graphs
cannot be equal. Suppose that E and F are edge graphs and G is an FMO-labelable graph that dominates
E ∪ F . Let H = G \ (E ∪ F ). So H ∪ E is not FMO-labelable and H ∪ E ∪ F is FMO-labelable. But
T (H ∪ E ∪ F ) = T (H) ∪ T (E) ∪ T (F ) = T (H) ∪ T (E) = T (H ∪ E). a contradiction. That is T is
bijective.

A k star is a tree with k edges and diameter 2. It has one vertex of degree k and all other vertices
are either isolated or degree 1.

Lemma 2.7. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMO-labelable
graphs, then T maps (n− 1)-stars to (n− 1)-stars.

Proof. By Lemma 2.6, T is bijective. Suppose S is an (n− 1)-star and T (S) is not. If T (S) dominates
a 3-path, then there is an edge graph E such that T (S ∪ E) dominates a 4-cycle. But then there is a
3-star S3 such that T (S3 ∪ E) is a 4-cycle, which is FMO-labelable, but S3 ∪ E is not FMO-labelable, a
contradiction. Thus, T (S) does not dominate a 3-path. Thus T (S) is a direct sum of C3’s and stars. But
for n− 1 edges to be a direct sum of C3’s and stars there can be only one block that is a star.

LetF be an edge graph whose image shares a vertex with a C3. Let H be an edge graph such that
E, F and two edges of S, U ∪ V , form a 4-cycle. Then T (U ∪ V ∪ E ∪ F ) must be a 4-cycle (the only
FMO-labelable graph with 4 edges). But that is impossible, Adding two edges to a direct sum of C3’s
and stars can only dominate a C4 if both edges are added to a star.

Thus T maps (n− 1)-stars to (n− 1)-stars.

Theorem 2.8. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMO-labelable
graphs, then T is a vertex permutation.

Proof. By Lemma 2.6, T is bijective and by Lemma 2.7, T preserves (n− 1)-stars. Clearly, a bijective
map preserves the number of edges in a graph and if it preserves (n− 1)-stars, it preserves 2-stars. Thus
by Lemma 2.3, T is a vertex permutation.

2.2. Preservers of FMC-labelable graphs

Lemma 2.9. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMC-labelable
graphs, then T is nonsingular.
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Proof. Suppose that T is singular, then there is some edge graph, E, such that T (E) = O. Let K4

be the complete graph on four vertices with (n − 4) isolated vertices such that E is one of the edges
of K4. Now, K4 is FMC-labelable, while K4 \ E is not (it has two vertices of even degree). Further,
T (K4) = T (K4 \ E) since T (E) = O, a contradiction. Thus T is nonsingular.

Lemma 2.10. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMC-labelable
graphs, then T maps edge graphs to edge graphs.

Proof. Suppose that E is a edge graph, so that |E| = 1, and suppose |T (E)| > 1. Let Q be a graph
with maximal number of edges that is FMC-labelable and suppose Q dominates E. Let q = |Q|. Then
there are edge graphs E1 = E,E2, E3, . . . , Ek such that T (E1 ∪E2 ∪ · · · ∪Ek) is dominated by T (Q) and
such that |T (E1 ∪ E2 ∪ · · · ∪ Ek)| > k. That is, there is some edge graph F dominated by Q such that
T (Q) = T (Q \F ). But Q is FMO while Q \F is not, Q \F has two vertices of odd degree. Thus we have
a contradiction. That is T maps edge graphs to edge graphs.

Lemma 2.11. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMC-labelable
graphs, then T is bijective.

Proof. By Lemma 2.10 and Proposition 2.1, we only need show that the image of two edge graphs
cannot be equal. Suppose that E and F are edge graphs such that T (E) = T (F ). Let G be an FMC-
labelable graph with minimum vertex degree at least 3 that dominates E ∪F . Then let H = G\ (E ∪F ).
So H ∪ F is not FMC-labelable (it has a vertex of even degree) and H ∪ E ∪ F is FMO-labelable. But
T (H ∪ E ∪ F ) = T (H) ∪ T (E) ∪ T (F ) = T (H) ∪ T (E) = T (H ∪ E). a contradiction. That is T is
bijective.

Lemma 2.12. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMC-labelable
graphs, then T maps 2-stars to 2-stars.

Proof. By Lemma 2.11, T is bijective. Suppose S is a 2-star. If T (S) is not a 2-star, it is a pair of
parallel edges. That is the image of a 2-star is either a 2-star or is FMC-labelable. Since T strongly
preserves FMC-labelable graphs, T(S) is a 2-star.

Theorem 2.13. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMC-labelable
graphs, then T is a vertex permutation.

Proof. By Lemma 2.11, T is bijective and by Lemma 2.12 T preserves 2-stars. Clearly, a bijective map
preserves the number of edges in a graph. Thus by Lemma 2.3, T is a vertex permutation.

2.3. Preservers of FMM -labelable graphs

Lemma 2.14. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMM -labelable
graphs, then T is nonsingular.

Proof. Let C3 ◦E be the graph with 4 edges, three of them forming a C3 and the fourth edge incident
to a vertex of the C3, sometimes called a 3-pan. Then C3 ◦ E is FMM -labelable, while C3 is not. But if
T (E) = O, T (C3 ◦ E) = T (C3), a contradiction, thus T is nonsingular.

A lemma we will use follows. It first appeared in [5, Lemma 2.5], but we include the proof here for
completeness.

Lemma 2.15. Let K be a finite set and φ : K → K be any mapping. Then there is some power of φ that
is idempotent.
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Proof. Since K is finite, and φ can be considered a subset of K×K, the set {φ, φ2, φ3, . . . , φ`, . . .} must
be finite. That is there are a, b ∈ Z+, the set of nonnegative integers, with 1 ≤ a < b such that φa = φb.
Let d = b − a. Since φa = φb = φ(a+d), if k ∈ Z+ then φ(a+kd) = φ(a+d)+(k−1)d = φ(a+(k−1)d), etc. So
that for any k ∈ Z+, φ(a+kd) = φa.

Suppose that c ∈ Z+ with c ≥ a. Then c = a + z for some z ∈ Z+. Thus, φc+kd = φ(a+z+kd) =
φ(a+kd)+z = φ(a+z) = φc. That is, for any c, k ∈ Z+ with c ≥ a, φc+kd = φc.

Now, b > a and d = b− a so d ≥ 1. Thus, ad ≥ a. It now follows that φ(ad+kd) = φad. For k = a we
have (φad)2 = φ2ad = φ(ad+ad) = φad. That is φad is idempotent.

Lemma 2.16. Let L : Gn → Gn be an idempotent linear operator. If L strongly preserves the set of
FMM -labelable graphs, then the image of an edge graph is an edge graph.

Proof. Suppose that L is idempotentand let E be an edge graph. From Lemma 2.14, |L(E)| ≥ 1.
Suppose |L(E) > 1, say L(E) ⊇ F ∪G where F and G are edge graphs and F 6= E.

Case 1. Kn is not FMM -labelable. Let Q be a largest graph that is FMM -labelable, so that if
X is an edge graph not in Q, Q ∪ X is not FMM -labelable. Further, by vertex permutation, assume
that E ∈ E(Q) and F /∈ E(Q). Then, L(Q) = L(Q ∪ E) = L(Q) ∪ L(E) ⊇ L(Q) ∪ F ∪ G. Hence
L(Q) = L2(Q) ⊇ L2(Q) ∪ L(F ) = L(Q) ∪ L(F ) = L2(Q ∪ F ) = L(Q ∪ F ), a contradiction since Q is
FMM -labelable and any graph containing Q ∪ F is not FMM -labelable.

Case 2. Kn is FMM -labelable. Let Q be a largest graph that is not FMM -labelable, so that
if X is an edge graph not in Q, Q ∪ X is FMM -labelable. Further, by vertex permutation, assume
that E ∈ E(Q) and F /∈ E(Q). Then, L(Q) = L(Q ∪ E) = L(Q) ∪ L(E) ⊇ L(Q) ∪ F ∪ G. Hence
L(Q) = L2(Q) = L2(Q) ∪ L2(E) ⊇ L(Q) ∪ L(F ) = L(Q ∪ F ), a contradiction since Q is not FMM -
labelable and any graph containing Q ∪ F is FMM -labelable.

Having arrived at a contradiction in both cases, we have that L(E) is an edge graph.

Lemma 2.17. Let L : Gn → Gn be an idempotent linear operator. If L strongly preserves the set of
FMM -labelable graphs, then L is bijective.

Proof. By Lemma 2.1 we only need show L is injective and by Lemma 2.16 we only need show that the
image of two edge graphs cannot be equal. So, suppose L(E) = L(F ) for edge graphs E and F . Let H
be an edge graph which is not adjacent to F and such that E ∪H is a 2-path. Then E ∪H is not FMM -
labelable, while F ∪G is FMM -labelable. But now, L(E∪H) = L(E)∪L(H) = L(F )∪L(H) = L(F ∪H),
a contradiction.

Lemma 2.18. Let : Gn → Gn be a linear operator. If T strongly preserves the set of FMM -labelable
graphs, then T is bijective.

Proof. If T is not bijective, then T is not injective so that there are graphs X and Y, X 6= Y, such that
T (X) = T (Y ). But then, any power of T has that property, so that T d(X) = T d(Y ) for d such that T d

is idempotent. But then, T d is an inempotent linear operator that strongly preserves the set of graphs
that are FMM -labelable. Thus, T d is bijective, a contradiction.

Lemma 2.19. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMM -labelable
graphs, then T maps 2-stars to 2-stars.

Proof. By Lamma 2.18, T is bijective and hence T maps edge graphs to edge graphs. Suppose S is a
2-star. If T (S) is not a 2-star, it must be a pair of parallel edges. That is the image of a 2-star is either a
2-star or is FMM -labelable. If T maps a 2-star to a pair of parallel edges, then T maps a pair of parallel
edges to a two star (since Gn is finite and T is bijective). Now a parallel pair of edges is FMM -labelable,
while a 2-star is not, thus the image of a parallel pair of edges must be a pair of parallel edges. Since T
preserves FMM -labelable graphs, T(S) is a 2-star.
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Theorem 2.20. Let T : Gn → Gn be a linear operator. If T strongly preserves the set of FMM -labelable
graphs, then T is a vertex permutation.

Proof. By Lemma 2.18, T is bijective and by Lemma 2.19 T preserves 2-stars. Clearly, a bijective map
preserves the number of edges in a graph. Thus by Lemma 2.3, T is a vertex permutation.
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