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Positive harmonic functions on biregular trees
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Abstract: We show that if f is a positive harmonic function on a biregular tree which has maximal growth along
an infinite path in the tree, then every harmonic function g on the tree with 0 ≤ g ≤ f is a multiple
of f , thus generalizing a result of Cartier about regular trees.

2020 MSC: 31C20, 05C05

Keywords: Biregular tree, Maximal growth, Positive harmonic function

1. Introduction

A tree is homogeneous (or regular) if all its vertices have the same degree; it is biregular if any
vertices x and y whose distance is even have the same degree, which we will assume greater than two.
Regular and biregular trees are infinite.

A complex valued function f defined on the vertices of a graph is harmonic at a vertex x if its value
at x is the arithmetical mean of its values at the neighbours of x; the function is harmonic on the graph
if it is harmonic at every vertex of the graph. The study of harmonic functions on graphs is connected
to such diverse domains as probability [7], potential theory [1] or harmonic analysis.

In particular, since the seminal work of Cartier [4] the properties of harmonic functions on regular
trees have been thoroughly investigated (see for example [5], [1] and the references therein). Although
biregular trees are quite straightforward generalizations of regular trees, they have not attracted a similar
interest.

In a preceding paper, we have shown that if h is a positive harmonic function on a biregular tree T
of degrees q + 1 and r + 1, and x, y are adjacent vertices with x of degree q + 1, then

q + 1

q(r + 1)
h(x) ≤ h(y) ≤ r(q + 1)

(r + 1)
h(x). (1)
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[6, Proposition 3.3, p. 76]. Moreover if χ = (. . . , x−2, x−1, x0, x1, x2, . . . ) is an infinite path in T (using
the terminology of [3]), there exists one and only one positive harmonic function f on T with f(x0) = 1
which has maximal growth on χ [6, Conclusion 3.5, p. 78]. Here we will show that such a function is also
maximal in the following sense:

Theorem 1.1. If g is a harmonic function on T with 0 ≤ g ≤ f , then it is a multiple of f .

Remark 1.2. This was proved by Cartier for regular trees [4, Corollary 2.6 p. 236]. But contrary to
Cartier, here we shall use only elementary tools.

2. Positive harmonic functions

Proposition 2.1. Given an infinite path χ = (. . . , x−2, x−1, x0, x1, x2, . . . ) in T with x0 of degree q+ 1,
there exists one and only one positive harmonic function f on T with f(x0) = 1 such that f has maximal
growth along χ. On χ, f is given by

f(x2k) = (qr)k and f(x2k+1) = (qr)k
r(q + 1)

r + 1
.

and on a vertex y not in χ it is defined as follows: let x be the vertex in χ closest to y, and n the distance
between x and y; then

f(y) = f(x) · (qr)−k if n = 2k,

f(y) = f(x) · (qr)−k q + 1

q(r + 1)
if n = 2k + 1.

Proof. See [6, Conclusion 3.5, p. 78].

Let χ = (. . . , x−2, x−1, x0, x1, x2, . . . ) be an infinite path in T with x0 of degree q + 1 and f the
function defined as in Proposition 2.1.

Corollary 2.2. If ζ = (. . . , z−2, z−1, z0, z1, z2, . . . ) is an infinite path in T such that f(z0) = 1 and
limj→+∞ f(zj) = +∞, then there exists m ∈ Z with zj = xj for all j ≥ m.

Corollary 2.3. If ζ = (. . . , z−2, z−1, z0, z1, z2, . . . ) is an infinite path in T such that there exists m ∈ Z
with zj = xj for all j ≥ m, then f(zj) = f(xj) for all j ∈ Z.

It follows also from the definition of f that it has maximal growth between any two adjacent vertices
x and y: if deg x = q + 1 and deg y = r + 1, then

f(y) =
q + 1

q(r + 1)
f(x) or f(y) =

r(q + 1)

(r + 1)
f(x);

and if deg x = r + 1 and deg y = q + 1, then

f(y) =
r + 1

r(q + 1)
f(x) or f(y) =

q(r + 1)

(q + 1)
f(x).

Conversely, if a positive harmonic function g on T has maximal growth between any two adjacent vertices,
then there exists an infinite path in T along which g has maximal growth. Indeed, a given vertex z0 in
T has at least a neighbour z−1 with g(z−1) < g(z0) and a neighbour z1 with g(z1) > g(z0), by the
harmonicity of g; similarly, there exist at least a neighbour z−2 of z−1 with g(z−2) < g(z−1) and a
neighbour z2 of z1 with g(z2) > g(z1); in this way we can construct step by step the needed infinite path
(. . . , z−2, z−1, z0, z1, z2, . . . ).
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We are now ready to prove Theorem 1.1. So, let us take an harmonic function g on T such that
0 ≤ g ≤ f .

If g = 0 or g = f , g is a mutiple of f . If g(z) = 0 on a vertex z of T, then g is necessarily null on the
whole tree, by the minimum principle, similar to the one on Rn [2, p. 71]. The function f − g is positive
harmonic on T; if (f − g)(z) = 0 on a vertex z of T, then f − g is necessarily null on the whole tree, by
the same minimum principle. Hence we can assume that 0 < g < f on all T.

Firstly we suppose that g has maximal growth between any two adjacent vertices in T. From the
discussion held above we deduce that there exists an infinite path ζ = (. . . , z−2, z−1, z0, z1, z2, . . . ) on
which it has maximal growth. Then limj→+∞ g(zj) = +∞ and, since g < f , limj→+∞ f(zj) = +∞.
From Corollary 2.3 follows that there exist m,n ∈ Z with zj = xm+j for all j ≥ n. And then g is a
multiple of f .

Next, we suppose that g has not everywhere maximal growth; this means that there exist two
adjacent vertices x and y satisfying one of the followings

i) deg x = q + 1, deg y = r + 1 and

q + 1

q(r + 1)
g(x) < g(y) or g(y) <

r(q + 1)

(r + 1)
g(x);

ii) deg x = r + 1, deg y = q + 1 and

r + 1

r(q + 1)
g(x) < g(y) or g(y) <

q(r + 1)

(q + 1)
g(x).

It will suffice to study the case i).

Using Corollary 2.2, we may change the path χ without changing the function f so that x = x2k for
some k ∈ Z (and then f(x) = f(x2k) = (qr)k). We put

β := g(x2k) = g(x).

We suppose now that

g(x2k+1) =
r(q + 1)

r + 1
g(x2k) =

r(q + 1)

r + 1
β.

Let x2k−1, y1, . . . , yq−1 be the other neighbours of x2k. If g takes the same value γ on the vertices
x2k−1, y1, . . . , yq−1, then the harmonicity of g in x2k:

1

q + 1
[g(x2k+1) + g(x2k−1) + g(y1) + · · ·+ g(yq−1)] = g(x2k)

can be written

1

q + 1

[
r(q + 1)

r + 1
β + qγ

]
= β

or
r

r + 1
β +

q

q + 1
γ = β;

hence
q

q + 1
γ =

r + 1− r
r + 1

β

and finally

γ =
q + 1

q(r + 1)
β,
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from which we deduce that g does take this value γ on all vertices x2k−1, y1, . . . , yq−1, because in the
contrary it would take at least once a value inferior to γ, contradicting (1). But then a vertex y as in i)
above does not exist. We conclude that

g(x2k+1) <
r(q + 1)

r + 1
g(x2k) =

r(q + 1)

r + 1
β.

So there exists 0 < α < 1 with

g(x2k+1) =
r(q + 1)

r + 1
αβ;

and then we may find an integer ` ∈ N such that

qr

(qr)` − 1

[
(qr)k

β
− 1

]
< 1− α, (2)

since β = g(x2k) < f(x2k) = (qr)k.

Let T be the subtree of T formed by all the paths ζ = (z0, z1, z2, . . . ) with z0 = x2k and z1 6= x2k+1;
in particular (x2k, x2k−1, x2k−2, . . . ) is a path in T . We write S(x2k, j) the sphere in T of centre x2k and
radius j, that is the set of vertices in T whose distance to x2k is j. An easy recurrence shows that

|S(x2k, j) ∩ T | = qb(j+1)/2c · rbj/2c

for all j ∈ N (where brc = max{m ∈ Z : m ≤ r} if r ∈ R). In particular

|S(x2k, 2`) ∩ T | = (qr)`.

An automorphism of T which fixes x2k and all vertices out of T sends any S(x2k, j) ∩ T to itself.
Hence we can identify the group of permutations of {1, 2, . . . , (qr)`} to a subgroup S of automorphisms
of T which fix x2k and all vertices out of T and permute the vertices of S(x2k, 2`) ∩ T .

Given an automorphism σ of T and a function φ defined on T we put

σ(φ)(y) := φ(σ(y))

for all y ∈ T. This defines a function σ(φ) on T which is positive if φ is positive and harmonic if φ is
harmonic. Also, if φ < φ′ then σ(φ) < σ(φ′).

We choose now

h :=
1

|S|
∑
σ∈S

σ(g);

it is positive harmonic on T. Since g < f , σ(g) < σ(f) for all σ ∈ S and then

h <
1

|S|
∑
σ∈S

σ(f) = f

by the definition of f . Moreover, if y, y′ are two vertices in T whose distances to x2k are equal and not
more than 2`, then h(y) = h(y′). Finally, because any σ ∈ S fixes x2k and x2k+1,

h(x2k+1) = g(x2k+1) =
r(q + 1)

r + 1
αβ

and

h(x2k) = g(x2k) = β.
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We then put, for all j ∈ N with 0 ≤ j ≤ 2`,

βj := h(x2k−j);

in fact βj = h(y) for any y ∈ S(x2k, j) ∩ T .
We will now prove that if n is odd

βn =
(q + 1)β

q(n+1)/2 r(n−1)/2(r + 1)

 n∑
j=0

qbj/2crb(j+1)/2c − α
n∑
j=1

qbj/2crb(j+1)/2c

 ,
and if n is even

βn =
β

qn/2 rn/2

 n∑
j=0

qbj/2crb(j+1)/2c − α
n∑
j=1

qbj/2crb(j+1)/2c

 ,
by strong induction on 0 ≤ n ≤ 2`. The case n = 0 is immediate:

β0 =
β

q0 r0

[
qb0crb1/2c

]
= β.

The value β1 is obtained using the harmonicity of h at x2k: if x2k+1, x2k−1, y1, . . . , yq−1 are the neighbours
of x2k,

1

q + 1
[h(x2k+1) + h(x2k−1) + h(y1) + . . . h(yq−1)] = h(x2k)

can be written

1

q + 1

[
r(q + 1)

r + 1
αβ + qβ1

]
= β

or
r

r + 1
αβ +

q

q + 1
β1 = β;

hence

q

q + 1
β1 =

(r + 1)β − αrβ
r + 1

and finally

β1 =
(q + 1)β

q(r + 1)
[r + 1− αr],

which establishes the case n = 1. Then we suppose n ≥ 2 and the assertion true for 0, . . . , n− 1. Firstly
the case n even: the value βn is obtained by using the harmonicity of h in x2k−(n−1) = x2k−n+1, which
is of degree r + 1: if x2k−n+2, x2k−n, y1, . . . , yr−1 are the neighbours of x2k−n+1,

1

r + 1
[h(x2k−n+2) + h(x2k−n) + h(y1) + . . . h(yr−1)] = h(x2k−n+1)

can be written

1

r + 1
[βn−2 + rβn] = βn−1;
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hence

rβn = (r + 1)βn−1 − βn−2

that is, by the induction hypothesis and since n is even,

rβn =
(q + 1)β

qn/2 r(n−2)/2

n−1∑
j=0

qbj/2crb(j+1)/2c − α
n−1∑
j=1

qbj/2crb(j+1)/2c


− β

q(n−2)/2 r(n−2)/2

n−2∑
j=0

qbj/2crb(j+1)/2c − α
n−2∑
j=1

qbj/2crb(j+1)/2c



=
(q + 1)β

qn/2 r(n−2)/2

n−1∑
j=0

qbj/2crb(j+1)/2c − α
n−1∑
j=1

qbj/2crb(j+1)/2c


− qβ

qn/2 r(n−2)/2

n−2∑
j=0

qbj/2crb(j+1)/2c − α
n−2∑
j=1

qbj/2crb(j+1)/2c



=
β

qn/2 r(n−2)/2

n−1∑
j=0

qbj/2c+1rb(j+1)/2c − α
n−1∑
j=1

qbj/2c+1rb(j+1)/2c

+

n−1∑
j=0

qbj/2crb(j+1)/2c − α
n−1∑
j=1

qbj/2crb(j+1)/2c


− β

qn/2 r(n−2)/2

n−2∑
j=0

qbj/2c+1rb(j+1)/2c − α
n−2∑
j=1

qbj/2c+1rb(j+1)/2c


=

β

qn/2 r(n−2)/2

[
qb(n−1)/2c+1rbn/2c − αqb(n−1)/2c+1rbn/2c

+

n−1∑
j=0

qbj/2crb(j+1)/2c − α
n−1∑
j=1

qbj/2crb(j+1)/2c

]

=
β

qn/2 r(n−2)/2

[
n∑
j=0

qbj/2crb(j+1)/2c − α
n∑
j=1

qbj/2crb(j+1)/2c

]

using the fact that b(n−1)/2c+1 = (n−2)/2+1 = n/2 = bn/2c and bn/2c = n/2 = b(n+1)/2c. Hence

βn =
β

qn/2 rn/2

[
n∑
j=0

qbj/2crb(j+1)/2c − α
n∑
j=1

qbj/2crb(j+1)/2c

]

and the case n even is established. The case n odd can be handled in a similar way.

In particular, the case n = 2` is now established:

β2` =
β

q` r`

 2∑̀
j=0

qbj/2crb(j+1)/2c − α
2∑̀
j=1

qbj/2crb(j+1)/2c

 .
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But

2∑̀
j=1

qbj/2crb(j+1)/2c = r + qr + qr2 + q2r2 + · · ·+ q`−1r` + q`r`

= (r + qr)

`−1∑
i=0

(qr)i

= (r + qr)
(qr)` − 1

qr − 1
.

Therefore

β2` =
β

(qr)`

[
(r + qr)

(qr)` − 1

qr − 1
+ 1− α(r + qr)

(qr)` − 1

qr − 1

]
.

From h < f follows h(x2k−2`) < f(x2k−2`), that is β2` < (qr)k−l or

β

(qr)`

[
(r + qr)

(qr)` − 1

qr − 1
+ 1− α(r + qr)

(qr)` − 1

qr − 1

]
<

(qr)k

(qr)`
.

Hence

β

qr − 1

[
(r + qr)((qr)` − 1) + qr − 1− α(r + qr)((qr)` − 1)

]
< (qr)k.

Then

(r + qr)((qr)` − 1) + qr − 1− α(r + qr)((qr)` − 1) <
(qr − 1)(qr)k

β

and

(r + qr)((qr)` − 1) + qr − 1− (qr − 1)(qr)k

β
< α(r + qr)((qr)` − 1),

from which we deduce

1 +
(qr − 1)− (qr − 1)(qr)k/β

(r + qr)((qr)` − 1)
< α

and further

1− α < (qr − 1)
(qr)k/β − 1

(r + qr)((qr)` − 1)

<
qr

(r + qr)((qr)` − 1)

[
(qr)k

β
− 1

]

<
qr

(qr)` − 1

[
(qr)k

β
− 1

]
,

in contradiction to our choice (2) of `. We conclude that g must have maximal growth everywhere; but
then we have already shown that it is a multiple of f : the theorem is proved.
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