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Abstract: Let G be a simple graph of order n and L (G) ≡ L 1(G) its line graph. Then, the iterated line graph of
G is defined recursively as L 2(G) ≡ L (L (G)),L 3(G) ≡ L (L 2(G)), . . . ,L k(G) ≡ L

(
L k−1(G)

)
.

The energy E(G) is the sum of absolute values of the eigenvalues of G. In this paper, it is derived
a sharp upper bound for the energy of the line graph of a connected graph G of order n and inde-
pendence number not less than α where 1 ≤ α ≤ n − 2. This bound is attained, if and only if, G is
isomorphic to the complete split graphs SKn,α. It is also determined a lower bound for the energy
of the line graph of a graph G of order n and independence number α. For 1 ≤ α ≤ n − 1 and
H =

(
n− α

⌊n
α

⌋)
Kbn

α
c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbn

α
c, the equality holds, if and only if G ∼= H. As a

consequence, families of hyperenergetic graphs are determined. Also, a lower bound for the energy of
the iterated line of a graph G of order n and independence number α is given and, for 1 ≤ α ≤ n− 1,
the equality holds, if and only if, G ∼= αKbnαc. Additionally, an upper bound for the incidence energy
of connected graphs G of order n and independence number not less than α is presented. Moreover, an
upper bound on the Laplacian energy-like of the complement G of G is presented. For 1 ≤ α ≤ n−1,
the bound is attained, if and only if, G ∼= H. Finally, a Nordhaus-Gaddum type relation is given.
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1. Introduction

In this section, some notation and framework are introduced. Let G be an undirected simple graph
with vertex set V (G) of cardinality n, where each vi, i ∈ {1, . . . , n} denotes a vertex of G and the edge
set is E = E (G) , of cardinality m, where each ej , j ∈ {1, . . . ,m} represents an edge of G. Sometimes,
to simplify the notation we represent a vertex vi just by its index i and then an edge is just represented
by ij. In this case we say that i is adjacent to j, or that i and j are neighbors. The degree of a vertex v
and its set of neighbors are denoted by dv and NG(v), respectively. The graph G is bipartite if its vertex
set can be splitted into two disjoint sets V1 and V2, such that every edge connects a vertex in V1 to one
vertex in V2, and there are no edges between vertices in the disjoint sets, that is V1 ∩ V2 = ∅. A bipartite
graph (V1, V2, E) is said to be complete, usually denoted by Kpq, if |V1| = p, |V2| = q and ij ∈ E for
all i ∈ V1 and j ∈ V2. Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of vertex
degrees of G, respectively. The complement of a graph G is represented by G. The Laplacian matrix
of G is the matrix L(G) = D(G) − A(G) and the signless Laplacian matrix is Q(G) = A(G) + D(G).
The eigenvalues of A(G), L(G) and Q(G) are called the eigenvalues, Laplacian eigenvalues and signless
Laplacian eigenvalues of G, respectively. In this work, λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of
A(G) and µ1 ≥ µ2 ≥ · · · ≥ µn and q1 ≥ q2 ≥ · · · ≥ qn are the eigenvalues of L(G) and Q(G), respectively.
The line graph, L (G), is the graph whose vertex set is in one-to-one correspondence with the edge set of
G where two vertices are adjacent, if and only if, the corresponding edges in G have a common vertex.
The energy of the line graph of a graph G and its relations with other concepts of graph energies were
earlier studied for instance in [17, 27]. The join of two vertex disjoint graphs G1 and G2 is the graph
obtained from the disjoint union G1 ∪ G2, by adding new edges from each vertex in G1 to every vertex
in G2. It is usually denoted by G1 ∨G2.

This graph operation can be generalized in the following way: Let H be a graph of order k and
V (H) = {1, 2, . . . , k}. Let F = {G1, G2, . . . , Gk} be a set of pairwise vertex disjoint graphs. Here,
each vertex j ∈ V (H) is assigned to the graph Gj ∈ F . Let G be the graph obtained from the graphs
G1, G2, . . . , Gk, and the edges connecting each vertex of Gi with all the vertices of Gj , for all edge
ij ∈ E(H). That is, G is the graph with vertex set

V (G) =

k⋃
i=1

V (Gi)

and edge set

E(G) =

(
k⋃
i=1

E(Gi)

)⋃ ⋃
ij∈E(H)

{uv : u ∈ V (Gi), v ∈ V (Gj)}

 .

This graph is called the H − join (or generalized composition) of the graphs G1, G2, . . . , Gk, [9, 10, 47],
and it is denoted by

G =
∨
H

{Gj : 1 ≤ j ≤ k}.

As usual, Kn, Pn, Cn and Sn denote the complete graph, path, cycle and star on n vertices, respec-
tively. A cocktail party graph is a graph consisting of two rows of paired vertices in which all vertices but
the paired ones are connected with an edge. An independent set is a set of vertices in a graph where no
two of which are adjacent. The independence number of a graph G, denoted by α(G), or just α, if there is
no ambiguity, is the number of vertices of a largest independent set in G. The vertex connectivity, denoted
by κ(G), is the minimum number of vertices whose deletion disconnects G. The minimum number of
edges that disconnects G is called edge connectivity. Moreover, a complete split graph SKn,α is a graph
that can be partitioned into an independent set on α vertices and a clique on n−α vertices such that every
vertex in the independent set is adjacent to every vertex in the clique. Clearly, SKn,α

∼=
∨
P2
{Kα,Kn−α}.

For other undefined notations and terminology from graph theory, the readers are referred to [4].

190



E. Andrade et. al. / J. Algebra Comb. Discrete Appl. 11(3) (2024) 189–206

The incidence matrix of G is the n×m matrix I(G) whose (i, j)-entry is 1 if vi is incident to ej and
0 otherwise. It is known, [11], that

I(G)I(G)T = D(G) +A(G) = Q(G). (1)

The definition of energy of a graph, E(G), was introduced by I. Gutman in 1978, [23], as the sum of the
absolute values of its eigenvalues,

E(G) =
n∑
i=1

|λi|.

Although in mathematical literature, this quantity was formally put forward in 1978, its chemical
roots go back to the 1940s and it is used to approximate the total π-electron energy of a molecule
[24, 38]. Note that the concept of graph energy is defined for all graphs, and many mathematicians
studied it without being restricted by any chemistry-caused constrains; see for instance the recent papers
[18, 22, 29, 32, 33, 40, 48, 49] and the references cited therein. Besides applications in Chemistry, this
concept can also be applied in medical sciences, see for instance [31] where the authors use it in glaucoma
detection with machine learning techniques. V. Nikiforov [42] proposed an extension of the graph energy
concept: for a p × q matrix M with real entries and singular values s1, s2, . . . , sp, the energy of M is
defined as

E(M) =

p∑
i=1

si.

Note that if M is real and symmetric then the singular values are the absolute values of its eigenvalues.
The Laplacian energy of a graph G with n vertices and m edges is defined in [28] as follows

LE(G) =

n∑
j=1

µj − 2m

n

 .

The Laplacian energy is nowadays widely study; see for instance [15, 16, 28, 44] and all the references
cited therein. Similarly, the signless Laplacian energy of a graph G with n vertices and m edges is defined
in [27] by

LE+(G) =

n∑
j=1

qj − 2m

n

 .

Notice that the definition of energy of a matrix given in [42] is in perfectly harmony with the ordi-

nary graph energy as it is easily seen that E(G) = E(A(G)), LE(G) = E
(
L(G)− 2m

n
I

)
, LE+(G) =

E
(
Q(G)− 2m

n
I

)
. Details on the properties of the two last previous graph energies can be found for

instance in [1, 12, 15, 28, 52]. Therefore, attending to previous observations, the concept of graph energy
was extended to non symmetric and even to non square matrices and gave rise to new concepts related
with different energies like skew energy, incidence energy, see e.g. [2, 25, 26].

The energy of the line graph of a graph G and its relations with the other graph energies were earlier
studied for instance in [17, 27]. Some recent work that relates the signless Laplacian energy of a graph
and the energy of its line graph as function of some invariant parameters (like the first Zagreb index, the
clique number, n, m) is done in [21]. Moreover, in [37], a sharp upper bound for the energy of the line
graph of a graph G having vertex connectivity less than or equal to a positive number was obtained. In
addition, upper bounds on the energy in terms of the edge connectivity, the inertia and the matching
number of G were presented and a new family of hyperenergetic graphs (graphs for which its energy is
greater than the energy of the complete graph) was given.
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In [25, 34], the authors introduce the notion of incidence energy IE(G) of G as the sum of the
singular values of the incidence matrix I(G). From these facts and (1), it follows that

IE(G) =

n∑
i=1

√
qi.

Analogously, the Laplacian-energy like LEL(G) of G is defined as

LEL(G) =

n∑
i=1

√
µi.

This energy was presented in [39], and some properties can be seen there.

In [19], a relation between the energy and the energy of its line graph is presented and some bounds
on the energy of the line graph were obtained. Moreover, results related to equienergetic (non-isomorphic
graphs that have the same energy) and hyperenergetic graphs were also given.

Let now Fn be the family of simple undirected connected graphs on n vertices and k ∈ N. Consider
the set Vkn = {G ∈ Fn : κ(G) ≤ k}. If G ∈ Vkn then the following upper bounds for IE(G) and LEL(G)
can be seen in [45] and [53], respectively:

LEL(G) ≤ k
√
n+
√
k + (n− k − 2)

√
n− 1,

IE(G) ≤ k
√
n− 2 + (n− k − 2)

√
n− 3 +

√
n− 2 +

k

2
+

1

2

√
(2n− k)2 + 16(k − n+ 1)

+

√
n− 2 +

k

2
− 1

2

√
(2n− k)2 + 16(k − n+ 1).

The equality holds for both bounds, if and only if, G ∼=
∨
P3
{K1,Kk,Kn−k−1}. Throughout this paper,

Sp(M) is the spectrum associated to a square matrix M . When M is the adjacency matrix of a graph
the used notation is Sp(G). This paper is organized in the following way. In Section 1, besides the
main concepts and notation used throughout the paper we present some recent work that motivated the
authors. In Section 2, the spectrum of the line graph of the complete split graph SKn,α is presented and
its negative eigenvalues and respective multiplicities are discussed.

In Section 3, when G is connected, an upper bound for E(L (G)) in terms of n and the indepen-
dence number α is given and it is shown that the equality is attained in the complete split graphs
G ∼= SKn,α. Additionally, we present conditions for which L (Kn,α) is hyperenergetic reforcing the
idea from Walikar et al, [50], that Kn its not the only graph that has maximum energy, a conjec-
ture firstly posed in [23]. Moreover, we derive a lower bound for the energy of the line graph of
graphs of order n and independence number α. It is shown that the bound is attained, if and only
if, G ∼=

(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c. In Section 4, a lower bound for the energy

of the iterated line graph of graphs of order n and independence number α is given and, it is shown
that the equality holds, if and only if, G ∼= αKbnα c. In Section 5, an upper bound for the incidence
energy of connected graphs G of order n and independence number not less than α is given. In Sec-
tion 6, an upper bound for the Laplacian energy-like of the complement of a graph G of order n and
independence number α is presented. Again, it is shown that the bound is attained, if and only if,
G ∼=

(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c. Finally, a Nordhaus-Gaddum type relation is given.

2. Spectrum of the line graph L (SKn,α)

In this section, we present the signless Laplacian spectrum of the complete split graph SKn,α viewed
as a join of two graphs and then, as a consequence, the spectrum of L (SKn,α) is presented. The
multiplicities of its eigenvalues are also presented.
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Recall the definition of H-join and consider H a graph of order k. Let {G1, . . . , Gk} be a family of
graphs where each Gj is of order nj , for j ∈ {1, . . . , n}. We label its vertices with the labels 1, 2, . . . , n−
1, n, starting with the vertices of G1, then with the vertices of G2 and so on and finally ending with the
vertices of Gk. The next theorem describes the spectrum of the signless Laplacian matrix of the H-join of
graphs when {G1, . . . , Gk} is a family of regular graphs. In [9, Theorem 5], the spectrum of the adjacency
matrix of the H − join of regular graphs is obtained. The version of this result for the signless Laplacian
matrix is given below and its proof is similar. Recently, in [46] the spectrum of the adjacency matrix of
the H- join of a family of arbitrary graphs was studied.

Theorem 2.1. [37] If G ∼=
∨
H{Gj : 1 ≤ j ≤ k} where Gj is a rj-regular graph of order nj, for all

j = 1, 2, . . . , k, then

Sp(Q(G)) =
⋃

Gj 6=K1

{sj + λ : λ ∈ Sp(Q(Gj))− {2rj}}
⋃
Sp(Qk(G))

where Qk(G) is a matrix of order k × k given by

Qk(G) =


s1 + 2r1 δ12

√
n1nk · · · δ1k

√
n1nk

δ12
√
n1n2 s2 + 2r2

. . .
...

...
. . . . . . δ(k−1)k

√
nk−1nk

δ1k
√
n1n2 · · · δ(k−1)k

√
nk−1nk sk + 2rk


where δij = 1 if ij ∈ E(H) and 0 otherwise, and

si =
∑

ji∈V (H)

nj

for i = 1, 2, . . . , k.

In the next result the signless Laplacian eigenvalues of the graph SKn,α are presented in an explicit
way. We must refer that these eigenvalues were also presented in [30]. However, we believe that the list of
eigenvalues is the one presented below as, from computational results, the list presented in [30] does not
work, for instance for the graph SK7,3 its signless Laplacian eigenvalues are 13+

√
73

2 ≈ 10.772, 13−
√
73

2 ≈
2.228, 5 with multiplicity 3 and 4 with multiplicity 2. The signless Laplacian eigenvalues of the graph
SKn,α can also be seen in the reference [14, Theorem 3.2].

However, here we regard SKn,α
∼= Kα ∨Kn−α ∼=

∨
P2
{Kα,Kn−α} and then from Theorem 2.1 the

signless Laplacian eigenvalues of the graphs SKn,α are obtained in the following lemma:

Lemma 2.2. The signless Laplacian eigenvalues of SKn,α where 2 ≤ α ≤ n− 2 are given by

3n/2− α− 1 +
√
(n− 2)2 + 4α(n− α)/2,

3n/2− α− 1−
√
(n− 2)2 + 4α(n− α)/2,

n− 2 n− α− 1 times,

n− α α− 1 times.

Lemma 2.3. [5, 27] Let G be a graph of order n with m ≥ 1 edges. Let qi be the i− th largest signless
Laplacian eigenvalue of G and λi(L (G)) the i− th largest eigenvalue of the line graph L (G). Then,

qi = λi(L (G)) + 2,

for i = 1, 2, . . . , k, where k = min{n,m}. In addition, if m > n, then λi(L (G)) = −2 for i ≥ n+ 1 and
if n > m, then qi = 0 for i ≥ m+ 1.
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From Lemma 2.2 and Lemma 2.3, the following result is an immediate consequence.

Corollary 2.4. The eigenvalues of L (SKn,α) where 2 ≤ α ≤ n− 2 are given by

3n/2− α− 3 +
√

(n− 2)2 + 4α(n− α)/2,

3n/2− α− 3−
√
(n− 2)2 + 4α(n− α)/2,

n− 4 n− α− 1 times,

n− α− 2 α− 1 times,

−2 m− n times.

Theorem 2.5. The negative eigenvalues of the graph L (SKn,α) where 2 ≤ α ≤ n − 2 are −2 as
eigenvalue with multiplicity m − n, and additionally, when n < α +

√
α + 2, the eigenvalue 3n/2 − α −

3−
√
(n− 2)2 + 4α(n− α)/2 is also negative and a simple characteristic root.

Proof. Since 2 ≤ α ≤ n− 2, we get

3n/2− α− 3 +
√
(n− 2)2 + 4α(n− α)/2 ≥ 0,

n− 4 ≥ 0 and n− α− 2 ≥ 0.
Suppose n− α− 2 ≥

√
α then α2 + 3α− 2nα+ n2 + 4− 4n ≥ 0, which is equivalent to:

(3n− 2α− 6)2 ≥ (n− 2)2 + 4α(n− α) ≥ 0.

Therefore, 3n/2−α−3 ≥
√
(n− 2)2 + 4α(n− α)/2, and in consequence, using the previous inequal-

ity it is easy to conclude that:

3n/2− α− 3−
√
(n− 2)2 + 4α(n− α)/2 ≥ 0.

Now, suppose n < α+
√
α+ 2, using the previous argument, we get

3n/2− α− 3−
√
(n− 2)2 + 4α(n− α)/2 < 0.

Thus, Theorem 2.5 follows from Corollary 2.4.

3. Bounds on the energy of line graphs and a family of hyperen-
ergetic graphs

In this section, bounds for the energy of the line graph of a graph are presented. Some of the bounds
are determined for connected graphs with independence number not less than a positive number α. The
equality cases are discussed. Additionally, we present conditions for which L (Kn,α) is hyperenergetic
reforcing the idea from Walikar et al, [50], that Kn its not the only graph that has maximum energy, a
conjecture firstly posed in [23].

The following result reveals that the energy of the line graph of a connected graph strictly increases
when it is added an edge to the original graph.

Lemma 3.1. [37] Let G be a connected graph on n vertices non-isomorphic to the complete graph Kn.
Then,

E(L (G)) < E(L (G+ e)).

194



E. Andrade et. al. / J. Algebra Comb. Discrete Appl. 11(3) (2024) 189–206

The next results are immediate consequences of previous lemma. However, the next corollary can
also be seen in [27] and it is clear that the equality holds, if and only if, H ∼= G.

Corollary 3.2. [27] If H is a subgraph of a graph G, then

E(L (H)) ≤ E(L (G)).

Recalling that the signless Laplacian eigenvalues of the complete graph Kn are 2n−2 and n−2 with
multiplicity n− 1, attending to Lemma 2.3 and Corollary 3.1 we can write:

Corollary 3.3. Let G be a connected graph of order n ≥ 4. Then,

E(L (G)) ≤ 2n2 − 6n. (2)

Equality holds in (2), if and only if, G ∼= Kn.

Lemma 3.4. The number of edges of the graph SKn,α is

(n− α)(n+ α− 1)

2
.

Proof. The number of edges of the graph Kn is
n(n− 1)

2
. Then, the number of edges of the graph

SKn,α is given by m =
(n− α)(n− α− 1)

2
+ α(n− α) = (n− α)(n+ α− 1)

2
.

We remark that recently in [8, Lemma 2.7] the energy of line graph of the graph Kr ∨ Kn−r for
2 ≤ r ≤ n−1

2 was studied. In this work, under some simpler conditions, the energy of the line graph
of the same graph viewed as a P2− join of the family of graphs {Kα,Kn−α} is also presented in the
proof of the next theorem. These conditions allowed us to determine a family of hyperenergetic graphs

in Theorem 3.9. Note that, if α = n − r and 2 ≤ r ≤ n−1
2 then

n+ 1

2
≤ α ≤ n − 2 which implies that

the energy determined for L (SKn,α) at the proof of Theorem 3.5 generalizes the energy determined in
[8, Lemma 2.7], as the condition used is 1 ≤ α ≤ n− 2.

Theorem 3.5. Let G be a connected graph of order n ≥ 4 and independence number not less than α.
Let 1 ≤ α ≤ n− 2. Then,

E(L (G)) ≤


2(n2 − 3n− α2 + α) if n ≥ α+

√
α+ 2

2n2 − 9n+ 6− 2α2 + 4α+
√

(n− 2)2 + 4α(n− α) if n < α+
√
α+ 2.

(3)

Equality holds in (3), if and only if, G ∼= SKn,α.

Proof. Let G be a connected graph of order n ≥ 4 and independence number not less than a positive
integer α. Firstly consider α = 1. Then G ∼= Kn. Let n ≥ α +

√
α + 2. We want to prove that

E(L (G)) ≤ 2n2 − 6n. Since Kn,1
∼= Kn, by Corollary 3.3, the result holds. Consider now 2 ≤ α ≤ n− 2

and let G be a graph with α(G) = α1 such that L (G) has largest energy among all connected graphs
L (H), where H has order n and independence number α1 ≥ α. Let S be an independent set of G with
cardinality α(G). Suppose that G � SKn,α(G), then there are two vertices non-adjacent u, v ∈ V (G). We
can assume two situations, u ∈ S and v ∈ V (G)−S or u, v ∈ V (G)−S. In both cases, a graph G1

∼= G+e
where e is an edge connecting the vertices u, v can be constructed. By Lemma 3.1, E(L (G)) < E(L (G1)),
which is a contradiction to the maximality of G. Then, G ∼= SKn,α(G).
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From Corollary 2.4, the following is obtained:

E
(
L
(
SKn,α(G)

))
= (α(G)− 1)|n− α(G)− 2|+ (n− α(G)− 1)|n− 4|+ (m− n)| − 2|

+
3n/2− α(G)− 3 +

√
(n− 2)2 + 4α(G)(n− α(G))/2


+
3n/2− α(G)− 3−

√
(n− 2)2 + 4α(G)(n− α(G))/2

 .

Suppose n ≥ α+
√
α+ 2. From Theorem 2.5 and Lemma 3.4, we get:

E
(
L
(
SKn,α(G)

))
= (α(G)− 1)(n− α(G)− 2) + (n− α(G)− 1)(n− 4)

+ (n− α(G))(n+ α(G)− 1)− 2n

+ 3n/2− α(G)− 3 +
√
(n− 2)2 + 4α(G)(n− α(G))/2

+ 3n/2− α(G)− 3−
√
(n− 2)2 + 4α(G)(n− α(G))/2.

Then,

E
(
L
(
SKn,α(G)

))
= 2(n2 − 3n− α2(G) + α(G)). (4)

Define the function f(x) = −x2 + x + n2 − 3n where x ≥ α. Clearly, f is strictly decreasing for
x ≥ 1. Consequently, E(L (G)) ≤ E

(
L
(
SKn,α

))
, for all connected graphs G of order n and independence

number not less than α. Suppose that n < α+
√
α+ 2. By Theorem 2.5, the eigenvalue 3n/2− α(G)−

3−
√
(n− 2)2 + 4α(G)(n− α(G))/2 is negative and then

E
(
L
(
SKn,α(G)

))
= 2n2 − 9n+ 6− 2α(G)2 + 4α(G) +

√
(n− 2)2 + 4α(G)(n− α(G)). (5)

Consider the functions g(x) = −2x2 + 4x+ 2n2 − 9n+ 6 and h(x) =
√
(n− 2)2 + 4x(n− x) where

x ≥ α. Clearly, g is strictly decreasing for x ≥ 1 and h is strictly decreasing for x ≥ n

2
. The conditions

n < α+
√
α+ 2 and 2 ≤ α ≤ n− 2 imply that if n ≥ 6 then α ≥ 3.

Thus,
√
α ≤ α− 1, which implies that α ≥ n

2
, i.e., g+h is strictly decreasing for x ≥ α. Taking into

account the hypothesis 2 ≤ α ≤ n− 2, it remains to consider the cases:

(a) n = 4 and α = 2;

(b) n = 5 and α = 3;

(c) n = 5 and α = 2.

In cases (a) and (b) the condition α ≥ n

2
is verified. Thereby, g + h is strictly decreasing for x ≥ α. If

condition (c) is verified, that is, n = 5 and α = 2, it is easy to see that among all integers the values
for x for which the function h(x) =

√
9 + 4x(5− x) attains its maximum value are x = 2 = α and

x = 3 = α + 1. Hence, the function g + h attains it maximum value in x = 2 = α. Consequently,
E(L (G)) ≤ E

(
L
(
SKn,α

))
, for all connected graphs G of order n and independence number not less

than α. The equality in (3) holds, if and only if, G ∼= SKn,α.

The proof is complete. �

It remains to study the case α = n− 1. Recalling that Sn ∼= SKn,α with α = n− 1, and its signless
Laplacian eigenvalues are n, 1 with multiplicity n − 2 and 0, attending to Lemma 2.3, the next remark
gives, for n ≥ 4, an exact value for E (L (Sn)) .

Remark 3.6. For n ≥ 4, E(L (Sn)) = 2(n− 2).
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The next definition can be seen in [38].

Definition 3.7. [38] A graph G on n vertices is said to be hyperenergetic graph if

E(G) ≥ E(Kn) = 2(n− 1). (6)

It was conjectured in [23] that all graphs have energy at most 2(n − 1). Nevertheless, this was
disproved by Walikar et al in [50] and the following result was presented:

Theorem 3.8. [50] For n ≥ 5, the line graph of Kn is hyperenergetic. For n ≥ 4, the line graph of the
complete bipartite graph Kn,n is hyperenergetic. For n ≥ 6, the line graph of the cocktail party graph with
n vertices is hyperenergetic.

As a consequence of the previous theorem we can state the following:

Theorem 3.9. The line graph of the graph SKn,α is hyperenergetic,

(a) if α ≥ 2 and n ≥ α+
√
α+ 2,

(b) if 2 ≤ α ≤ n− 3 and n < α+
√
α+ 2,

(c) if α = n− 1 and n ≥ 4,

(d) if α = 1 and n ≥ 5.

Proof. (a) Suppose α ≥ 2 and n ≥ α +
√
α + 2. Then, n ≥ α + 4. Taking α(G) = α in (4), we have

E
(
L
(
SKn,α

))
= 2(n2−3n−α2+α). By Lemma 3.4, the number of edges of SKn,α, is the number

of vertices of L (SKn,α), that is,

(n− α)(n+ α− 1)

2
.

Imposing the condition (6), the following inequality is obtained

2(n2 − 3n− α2 + α) ≥ 2

(
(n− α)(n+ α− 1)

2
− 1

)
.

From the previous inequality, we get n2 − 5n ≥ α2 − α− 2, which is equivalent to:

n(n− 5) ≥ (α+ 1)(α− 2).

Since n ≥ α+ 4,
the previous inequality is always true and therefore the graph L (SKn,α) is hyperenergetic.

(b) Consider now n < α+
√
α+ 2. Suppose 3 ≤ α ≤ n− 3 and take α(G) = α in the expression in (5),

we get E(L (SKn,α)) = 2n2− 9n+6− 2α2 +4α+
√

(n− 2)2 + 4α(n− α). Imposing the condition
(6), the following inequality is obtained

2n2 − 9n+ 6− 2α2 + 4α+
√
(n− 2)2 + 4α(n− α) ≥ 2

(
(n− α)(n+ α− 1)

2
− 1

)
. (7)

Since the inequality

2n2 − 8n− 2α2 + 4α+ 4 ≥ 2

(
(n− α)(n+ α− 1)

2
− 1

)
,

it is equivalent to

(n− 6)(n− 1) ≥ α(α− 3),

the graph L
(
SKn,α

)
is hyperenergetic.

Suppose α = 2 then n = 5. Hence, the inequality (7) is true. Thereby, the graph L
(
SKn,α

)
is

hyperenergetic.
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(c) For α = n − 1, follows from Remark 3.6 as E
(
L
(
SKn,n−1

))
= E

(
L
(
Sn
))

= 2(n − 2), and that
L
(
Sn
)
has n− 1 vertices.

(d) For α = 1, we get SKn,α
∼= Kn. Since n ≥ 5, by Theorem 3.8 the proof is complete.

To illustrate the previous theorem, in next example we present two graphs that are hyperenergetic
as they verify the conditions (a) and (b) of Theorem 3.9.

Example 3.10. At Fig.1 the graphs SK7,3 and SK5,2 are depicted. The condition (a) of Theorem 3.9 is
fulfilled in the graph SK7,3 and the condition (b) of Theorem 3.9 is fulfilled in the graph SK5,2. In fact,
in SK7,3 we have α ≥ 2 and n = 7 ≥ 5+

√
3 = α+

√
α+2 then E(L (SK7,3)) = 2(n2−3n−α2+α) = 44.

Additionally, 2(m− 1) = 34. Thus, L (SK7,3) is a hyperenergetic graph. Considering the graph SK5,2,

the condition (b) is satisfied as 2 ≤ α ≤ n− 3 and n = 5 < 4 +
√
2 = α+

√
α+ 2 then E(L (SKn,α)) =

2n2 − 9n + 6 − 2α2 + 4α +
√

(n− 2)2 + 4α(n− α) ≈ 16.744563. Moreover, 2(m − 1) = 16. Therefore,
L (SK5,2) is a hyperenergetic graph.

Figure 1. The complete split graphs SK7,3 and SK5,2.

The next remark and lemma will be an important tool to present a lower bound for the energy of
the line graph of a graph of order n and independence number α.

Lemma 3.11. [36] Let G be a graph of order n and independence number α where 1 ≤ α ≤ n−1. Then,(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c,

is a subgraph of G.

Theorem 3.12. Let G be a graph of order n and independence number equals to a positive integer α.
Let 1 ≤ α ≤ n− 1. Then,

E(L (G)) ≥



0 if
⌊n
α

⌋
= 1

4 (n− 2α) if
⌊n
α

⌋
= 2, 3

2

(
(2n− α)

⌊n
α

⌋
− 2n− α

⌊n
α

⌋2)
if
⌊n
α

⌋
≥ 4.

(8)

The equality holds in (8), if and only if, G ∼=
(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c.

Proof. By Lemma 3.1 and Lemma 3.11, we get

E(L (G)) ≥
(
n− α

⌊n
α

⌋)
E
(
L
(
Kbnα c+1

))
+
(
α+ α

⌊n
α

⌋
− n

)
E
(
L
(
Kbnα c

))
,
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for all graphs of order n and independence number equals to α, the equality holds, if and only if,
G ∼=

(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c.

The proof is complete.

The next lemma gives an expression for the number of edges of the graph H, where

H =
(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c.

Lemma 3.13. The number of edges of the graph H =
(
n− α

⌊n
α

⌋)
Kbnα c+1

⋃(
α+ α

⌊n
α

⌋
− n

)
Kbnα c is

m =

⌊n
α

⌋(
2n− α

⌊n
α

⌋
− α

)
2

.

Proof. The graphH has
⌊n
α

⌋(
α+ α

⌊n
α

⌋
− n

)
vertices of degree

⌊n
α

⌋
−1 and

(
n− α

⌊n
α

⌋)(⌊n
α

⌋
+ 1
)

vertices of degree
⌊n
α

⌋
. Thus,

2m =
⌊n
α

⌋(
α+ α

⌊n
α

⌋
− n

)(⌊n
α

⌋
− 1
)
+
⌊n
α

⌋(
n− α

⌊n
α

⌋)(⌊n
α

⌋
+ 1
)
.

Hence,

m =

⌊n
α

⌋(
2n− α

⌊n
α

⌋
− α

)
2

.

Lemma 3.14. [19] Let G be a graph of order n with m edges and p pendant vertices. If m > 2n− p− 1,
then L (G) is hyperenergetic.

Remark 3.15. For n ≥ 5, the number of edges of the complete graph Kn is not less than 2n.

The next result is an immediate consequence of Remark 3.15, Lemma 3.13 and Lemma 3.14.

Theorem 3.16. Let 0 ≤ α ≤ n− 1. The graph L
((
n− α

⌊n
α

⌋)
Kbnαc+1

⋃(
α− n+ α

⌊n
α

⌋)
Kbnαc

)
is

hyperenergetic if the following conditions are verified

1.
⌊n
α

⌋
≥ 5

2.
⌊n
α

⌋
= 4 and

2n+ 1

10
≥ α

3. n = 3 and α = 1

4. n = 2 and α = 1.

Proof. Let G ∼=
(
n− α

⌊n
α

⌋)
Kbnαc+1

⋃(
α− n+ α

⌊n
α

⌋)
Kbnαc.

1. Denote by m(G), the number of edges of the graph G. Let
⌊n
α

⌋
≥ 5. By Remark 3.15,

m(G) =
(
n− α

⌊n
α

⌋)
m
(
Kbnαc+1

)
+
(
α− n+ α

⌊n
α

⌋)
m
(
Kbnαc

)
≥ 2

(
n− α

⌊n
α

⌋)(⌊n
α

⌋
+ 1
)
+ 2

(
α− n+ α

⌊n
α

⌋) ⌊n
α

⌋
= 2n.

By Lemma 3.14, the graph L (G) is hyperenergetic.
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2. Let
⌊n
α

⌋
= 4. From Theorem 3.12 and imposing the condition (6), the following inequality is

obtained

4(3n− 10α) ≥ 8n− 20α− 2.

From the previous inequality is equivalent to

2n+ 1

10
≥ α.

Thereby, the graph L (G) is hyperenergetic.

3. Let
⌊n
α

⌋
= 3. Imposing the condition (6) and again from Theorem 3.12, the following inequality is

obtained

4(n− 2α) ≥ 2(3n− 6α− 1).

The previous inequality is equivalent to

α ≥ n− 1

2
.

Since
⌊n
α

⌋
= 3, the previous inequality is equivalent to have n = 3 and α = 1.

4. Consider
⌊n
α

⌋
= 2, the proof is similar as in 3.

Example 3.17. At Fig. 2 the graph it is depicted a graph H where the vertices in equal colors and sizes
represent the independent sets. Therefore, there are 5 independent sets of order 3 and an independent
set of order 1 in the conditions (a), (b) and (c) from Lemma 3.11. Then n = 16, α = 3, and

⌊
n
α

⌋
= 5.

Theorem 3.16 asserts that L (H) is hyperenergetic.

4. Bounds for the energy of iterated line graphs

The iterated line graph of a connected graph G is defined recursively as L k+1(G) ≡ L
(
L k(G)

)
for

k ≥ 1 (assuming that L k(G) is nonempty). It is consistent to say that L (G) ≡ L 1(G) and G ≡ L 0(G).
The basic properties of iterated line graph sequences can be found in [6, 7]. In recent years the research
of these type of graphs have been widely studied. The diameter and radius of the iterated line graphs
were studied in [35] and in [41] the authors studied distance properties of these graphs. In [51], Xiong
and Liu characterize the graphs for which L i(G) is Hamiltonian with i ≥ 2. In [43], spectra and energies
of iterated line graphs of regular graphs were studied. In another areas we can see, for instance that the
graphs L 1(G) and L 2(G) are very useful in Chemistry when discussion molecular conformation, [20].
In this section, a lower bound for the energy of the iterated line graph is presented and the equality case
is discussed. The next corollary is a consequence of Corollary 3.2.

Corollary 4.1. Let G be a graph not empty on n vertices. Then, for all k ≥ 1,

E
(
L k+1(G− e)

)
< E

(
L k+1(G)

)
.

If the graph is regular with degree r ≥ 3 then, for any k ≥ 1, the exact value for the energy of the
iterated line graphs was obtained in [43].

200



E. Andrade et. al. / J. Algebra Comb. Discrete Appl. 11(3) (2024) 189–206

H ∼= K6 ∪ 2K5

Figure 2. The line graph of the graph H depicted in the figure is an example of an hyperenergetic
graph. In fact, E(L (H)) = 76 ≥ 68 = 2(m− 1).

Lemma 4.2. [43] Let G be a regular graph of order n and degree r ≥ 3. Then, for any k ≥ 1,

E
(
L k+1(G)

)
= 2n(r − 2)

k−1∏
i=0

(
2ir − 2i+1 + 2

)
.

Theorem 4.3. Let G be a graph on n vertices and independence number α where 1 ≤ α ≤ n− 1. Then,
for any k ≥ 1,

E
(
L k+1(G)

)
≥ 2n

(⌊n
α

⌋
− 3
) k−1∏
i=0

(
2i
(⌊n
α

⌋
− 3
)
+ 2
)
. (9)

Equality holds in (9), if and only if, G ∼= αKbnαc.

Proof. By Lemma 3.11, G has a regular subgraph H of degree
⌊n
α

⌋
− 1. By Lemma 4.2,

E
(
L k+1(H)

)
= 2n

(⌊n
α

⌋
− 3
) k−1∏
i=0

(
2i
(⌊n
α

⌋
− 3
)
+ 2
)
.

By Corollary 3.2,

E
(
L k+1(G)

)
≥ 2n

(⌊n
α

⌋
− 3
) k−1∏
i=0

(
2i
(⌊n
α

⌋
− 3
)
+ 2
)
,

with equality, if and only if, H ∼= G. In addition, H ∼= G, if and only if, n = α
⌊n
α

⌋
, (n is multiple of α),

i.e. G ∼= αKbnα c.

Corollary 4.4. Let G be a graph on n vertices and independence number α where 1 ≤ α ≤ n− 1. Then,

E
(
L 2(G)

)
≥ 2n

(⌊n
α

⌋
− 3
)(⌊n

α

⌋
− 1
)
. (10)

Equality holds in (10), if and only if, G ∼= αKbnα c.
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5. Upper bounds on the incidence energy of a graph

In [45], the authors presented an upper bound for the incidence energy of a graph G of order n
having a vertex connectivity less than or equal to k, and proved that the bound is sharp when G ∼=
Kk ∨ (K1 ∪Kn−k−1). Inspired by their work, in this section we present an upper bound for the incidence
energy of a connected graph with independence number not less than α. The equality case is also
discussed. The next result presented in [45], shows in analogy to the energy, that for a connected graph
G the incidence energy strictly increases when an edge is added.

Lemma 5.1. [45] Let G be a connected graph of order n and non isomorphic to the complete graph.
Then,

IE(G) < IE(G+ e).

Corollary 5.2. Let G be a connected graph of order n ≥ 3. Then,

IE(G) ≤
√
2n− 2 + (n− 1)

√
n− 2. (11)

Equality holds in (11), if and only if, G ∼= Kn.

Theorem 5.3. Let G be a connected graph of order n and independence number not less than α. Let

C (n, α) = (α− 1)
√
n− α+ (n− α− 1)

√
n− 2

+

√
3n/2− α− 1 +

√
(n− 2)2 + 4α(n− α)/2

+

√
3n/2− α− 1−

√
(n− 2)2 + 4α(n− α)/2.

Then,

IE(G) ≤ C (n, α). (12)

Equality holds in (12), if and only if, G ∼= SKn,α.

Proof. Let G be a connected graph of order n and independence number not less than α. We first
consider α = 1. Since C (n, 1) =

√
2n− 2 + (n− 1)

√
n− 2 and Kn

∼= SKn,1 by Corollary 5.2, the result
is true for α = 1. Now, let α = n − 1 then G ∼= Sn. Since C (n, n − 1) = n +

√
n − 2 = IE(Sn) and

Sn ∼= SKn,n−1, the result is true for α = n − 1. Consider now 2 ≤ α ≤ n − 2. Suppose that G has the
largest incidence energy among all the connected graphs of order n and independence number α(G) ≥ α.
Let S be an independent set of G with cardinality α(G). Suppose that G � SKn,α, then there are two
vertices non-adjacent u, v ∈ V (G). We can assume u ∈ S and u ∈ V (G)− S or u, v ∈ V (G)− S. In both
cases a graph G1

∼= G+ e where e is an edge connecting the vertices u, v can be constructed. By Lemma
5.1, IE(G) < IE(G1) which is a contradiction to the maximality of G. Then, G ∼= SKn,α(G). By Lemma
2.2, we obtain

IE (SKn,α) = C (n, α(G)).

Let us define the function

f(x) = (x− 1)
√
n− x+ (n− x− 1)

√
n− 2

+

√
3n/2− x− 1 +

√
(n− 2)2 + 4x(n− x)/2

+

√
3n/2− x− 1−

√
(n− 2)2 + 4x(n− x)/2,

where 1 ≤ x ≤ n − 1. In this interval f is strictly decreasing. Consequently, IE(G) ≤ IE(SKn,α), for
all connected graphs of order n and independence number not less than α. Equality holds in (12), if and
only if, G ∼= SKn,α. The proof is complete.
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6. An upper bound on the Laplacian-energy like of a graph

In this section, we present an upper bound on the Laplacian energy like of the complement G of a
graph G of order n and independence number α where 1 ≤ α ≤ n − 1. Equality holds, if and only if,
G ∼=

(
n− α

⌊n
α

⌋)
Kbnαc+1

⋃(
α− n+ α

⌊n
α

⌋)
Kbnαc. Moreover, a Nordhaus-Gaddum type relation, [3],

is given.

We recall that if µ1 ≥ µ2 ≥ · · · ≥ µn = 0 are the Laplacian eigenvalues of G, then, 0 ≤ n − µ1 ≤
· · · ≤ n− µn−1 are the Laplacian eigenvalues of G.

Additionally, the next result shows that the Laplacian energy like of a graph strictly increases when
an edge is added.

Lemma 6.1. [53]. Let G be a graph of order n non isomorphic to the complete graph. Then,

LEL(G) < LEL(G+ e).

The next result gives an upper bound for LEL(G) in terms of n and the independence number α
and can be seen in [13].

Theorem 6.2. [13] Let G be a connected graph of order n and independence number α. Then,

LEL(G) ≤ (n− α)
√
n+ (α− 1)

√
n− α. (13)

Equality holds in (13), if and only if, G ∼= SKn,α.

Theorem 6.3. Let G be a graph of order n and independence number α where 1 ≤ α ≤ n− 1. Then,

LEL(G) ≤
(
α− n+ α

⌊n
α

⌋)(⌊n
α

⌋
− 1
)√

n−
⌊n
α

⌋
+
(
n− α

⌊n
α

⌋) ⌊n
α

⌋√
n−

⌊n
α

⌋
− 1. (14)

Equality holds in (14), if and only if, G ∼=
(
n− α

⌊n
α

⌋)
Kbnαc+1

⋃(
α− n+ α

⌊n
α

⌋)
Kbnαc.

Proof. By Lemma 6.1, Lemma 3.11, we can see that if G has the minimal Laplacian-energy like among
all the graphs H on n vertices and independence number α, then

G ∼=
(
n− α

⌊n
α

⌋)
Kbnαc+1

⋃(
α− n+ α

⌊n
α

⌋)
Kbnαc.

It is clear that in this case, if

Sp (L (G)) =

0, . . . , 0︸ ︷︷ ︸
α

,
⌊n
α

⌋
, . . . ,

⌊n
α

⌋
︸ ︷︷ ︸

(α−n+αbnαc)(bnαc−1)

,
⌊n
α

⌋
+ 1, . . . ,

⌊n
α

⌋
+ 1︸ ︷︷ ︸

(n−αbnαc)bnαc

 ,

then,

Sp
(
L
(
G
))

=

0, . . . , 0︸ ︷︷ ︸
α

, n−
⌊n
α

⌋
, . . . , n−

⌊n
α

⌋
︸ ︷︷ ︸
(α−n+αbnαc)(bnαc−1)

, n−
⌊n
α

⌋
− 1, . . . , n−

⌊n
α

⌋
− 1︸ ︷︷ ︸

(n−αbnαc)bnαc

 .

Taking into account that
√
x, is a real increasing function for x ≥ 0, we can say that for a graph H,

LEL
(
H
)
increases while the Laplacian eigenvalues of H increase. Moreover, if the Laplacian eigenvalues

of H decrease then the Laplacian eigenvalues of H increase. We conclude that

LEL(G) ≤
(
α− n+ α

⌊n
α

⌋)(⌊n
α

⌋
− 1
)√

n−
⌊n
α

⌋
+
(
n− α

⌊n
α

⌋) ⌊n
α

⌋√
n−

⌊n
α

⌋
− 1.
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for all graphs G of order n and independence number α. The equality in (14) holds, if and only if,
G ∼=

(
n− α

⌊n
α

⌋)
Kbnαc+1

⋃(
α− n+ α

⌊n
α

⌋)
Kbnαc. The proof is complete.

The next corollary gives a Nordhaus-Gaddum type relation, [3].

Corollary 6.4. Let G be a graph of order n and independence number α where 1 ≤ α ≤ n− 1. Then,

LEL(G) + LEL
(
G
)
≤ (n− α)

√
n+ (α− 1)

√
n− α

+
(
α− n+ α

⌊n
α

⌋)(⌊n
α

⌋
− 1
)√

n−
⌊n
α

⌋
+
(
n− α

⌊n
α

⌋) ⌊n
α

⌋√
n−

⌊n
α

⌋
− 1

The equality holds, if and only if, G ∼= Kn.
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