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Abstract: Let R be a commutative ring with unity. The essential ideal graph £r of R, is a graph with a vertex
set consisting of all nonzero proper ideals of R and two vertices I and K are adjacent if and only
if I + K is an essential ideal. In this paper, we study the adjacency spectrum of the essential ideal
graph of the finite commutative ring Z,,, for n = {p™,p™ q™?}, where p, q are distinct primes, and
m, m1, my € N. We show that 0 is an eigenvalue of the adjacency matrix of &z, if and only if either
n = p or n is not a product of distinct primes. We also determine all the eigenvalues of the adjacency
matrix of £, whenever n is a product of three or four distinct primes. Moreover, we calculate the
topological indices, namely the Wiener index and hyper-Wiener index of the essential ideal graph of
Z, for different forms of n.
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1. Introduction

In recent decades, researchers have been exploring algebraic structures using graph theory properties.
The notion of a graph connected to the zero divisors of a commutative ring was put forward by Beck [6]
in 1998. However, the current definition and term for the zero-divisor graph were initially presented by
Anderson and Livingston [3]| in 1999. Following this, various studies were pursued on graphs defined on
commutative rings by taking the ideals as vertices. Another graph, namely the comazimal ideal graph
was introduced in [20] as a graph with vertices as the proper ideals of the ring R, and a pair of vertices
I and K are adjacent if and only if I + K = R. Interested readers may refer to the papers [1, 7, 17| for
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more details. In 2018, J. Amjadi [2] introduced the essential ideal graph of a commutative ring, which is
denoted as €. The graph £ has all nonzero proper ideals of R as the vertex set, and any two vertices [
and K are adjacent if and only if I + K is an essential ideal. It is worth mentioning that a proper ideal I

of a ring R is said to be an essential ideal if it has a nonzero intersection with every other non-zero ideal
of R.

In mathematical chemistry, molecular descriptors like the topological indices play a vital role. A
topological index is an invariant of molecular graphs that can be used to study the properties of their
constituent molecules. Among this, the Wiener index introduced by H. Wiener [19] is a well-known
molecular descriptor, which, in particular, is used for the preliminary testing of drug molecules. A
generalization of the Wiener index known as the hyper- Wiener index was introduced by M. Randic [15],
and is widely used in biochemistry. Determining various topological indices of graphs associated with
different algebraic structures has been an interesting area of research in the past few years. To get a
better understanding of this, refer [5, 16]. Being motivated by the previous works, in this paper, we
determine the Wiener and the hyper-Wiener index of &z, , where Z,, is the ring of integers modulo n.

Let G be a simple graph with vertex set V(G) = {v1,v2,- -+ ,v,} and edge set E(G). The degree of
a vertex v, denoted by deg(v), is defined as the number of edges that occur in v. In G, a vertex v is said
to be universal, if it is adjacent to all other vertices. The complete graph K, , is a graph in which any
two vertices are adjacent. A graph G is a k — partite graph if V(G) can be partitioned into k subsets
Vi, Vo, -+, Vi (named partite sets) such that the vertices u and v form an edge in G if they belong
to different partite sets. If, in addition, there exists an edge between every two vertices belonging to
different partite sets, then graph G can be classified as complete k-partite graph. The graph denoted as
K., » represents a complete bipartite graph consisting of two sets with sizes m and n respectively. The
induced subgraph, G[S], is formed by taking the subset S of vertices from G, along with all the edges
that connect vertices solely within S. The complement of a graph G is denoted by G. A set of vertices
in a graph G is independent if any two vertices in the set are nonadjacent. The join of two graphs,
G1 and G, represented as G V Go, is formed by adding edges between any two vertices v; and vs,
where v1 € G and vy € Ga. The adjacency matriz A(G) of a graph G of order n is the n x n matrix
A(G) = (ai;), where a;; = 1, if v; is adjacent to v; in G and a;; = 0 otherwise. The eigenvalues of
a graph G are defined to be the eigenvalues of its adjacency matrix. The collection of all eigenvalues
of G is called the spectrum(adjacency spectrum) of G. The energy of a graph G, denoted by E(G), is

n

defined as the sum of the absolute values of the eigenvalues of A(G). That is, E(G) = Z|)\i|, where
i=1

1=
A1, Ao, -+, A, are the eigenvalues of G. A graph with energy greater than a complete graph is called
hyperenergetic. Otherwise, it is called non-hyperenergetic. To delve into more definitions and results in
ring, graph, and spectral graph theories, one can refer [4, 8, 11, 12, 18, 22].

The paper is organized as follows. In Section 2, we state the results that are needed for the subsequent
sections. In Section 3, we find the eigenvalues of &£, for n = p",m > 1, and n = p™1¢™?2, where p and
q are distinct primes with p < ¢ and mj, mo are positive integers. We also prove that for the essential
ideal graph of Z,,, 0 is not an eigenvalue if and only if either n = p™, m > 2 or n is a product of distinct
primes. In Section 4, we calculate the Wiener index and the hyper-Wiener index of the essential ideal
graph of Z,, for different values of n.

2. Preliminaries

The results shown below are beneficial for the parts that follow.

Lemma 2.1. [21] Let M,N,P,Q be matrices and let Q be non-singular. Let S = <AI§ g), then

det S = det Q x det(M — NQ~'P). Here, (M — NQ~'P) is known as the Schur complement of M in
S.
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S11 Sz
So1 Sao
Sii € My, (F), i =1,2 and n = ny + na. If S11, Sao and both Schur complements S11 — 51252_21521 and
Sog — Sngl_llSlg are all invertible, then

Lemma 2.2. [21] Let S € M, (F) be a partitioned 2 x 2 block matriz S = < >,where each matriz

(511 S12> - _ ( (S11 — S12555 Sa1) ™ —S171812(S22 — 5215'111512)_1)'

Sa1 Sz —(Sag — 82157, S12) 185157 (Saz — S2181;" S12)
ab - - b
ba b --- b

Proposition 2.3. [14/ Let Cqpny=| . . . . . | be a circulant matriz of order n xn with entries
bb b - a

a,b € R. Then its determinant, denoted by 6, is given by § = (a + (n — 1)b)(a — b)" 1.

Proposition 2.4. [14] If the circulant matriz C(, ) is nonsingular, then its inverse is given by
Ope1 ANp_q1 -+ Ap_q
-1 Ap—1 On-r 0 An
C(a,b,n) =5 : . . . , where

JA N O
Op_1=(a+ (n—2)b)(a—b)""2 and A,_1 = —b(a — b)" 2.
Theorem 2.5. [10] If G is a regular graph of degree r with n vertices, then the characteristic polynomial
of G is Pg(\) = (—1)" A2l o (—A — 1),
Theorem 2.6. [10] Let G1 and G4 be two graphs of order ny and no respectively. Then the characteristic
polynomial of the join of G1 and G is given by

PGlVGz (A) = (71)n2PG1 ()\)I:)Giz(iA - 1)+

(=1)" Py (A Pgr (=X — 1) = (=1)" "2 Pe(=A = 1) Pz (=X — 1).

Observation 2.7. [2] Let R be a commutative ring with nonzero unity. Then every proper essential ideal
of R is a universal vertez in Eg.

For any composite integer n > 1, let n = p{'ps®---pp*, (k, a;) € N, (k,a1) # (1,1), pi’s are
distinct primes (1 < < k).

Theorem 2.8. [13] For the essential ideal graph &z, , €z, = H V Ky, where H is a k-partite graph and
k

K,, is a complete graph of order m = H a; — 1.
i=1

3. Adjacency spectrum of essential ideal graph of Z,

In this section, we study the adjacency spectrum of the essential ideal graph of Z,,. We obtain the
spectrum for n = p™* and n = p"1¢™2, where p and ¢ are distinct primes with p < ¢, and mj, mo are
positive integers. We also determine the adjacency spectrum of £z, , when n is a product of three distinct
primes and a product of four distinct primes. Throughout the section, by spectrum of £(Z,), we shall
mean the adjacency spectrum of £(Z,,).

We first prove the following result which provides a necessary and sufficient condition for an ideal
to be an essential ideal of Z,,.

ot
ot



P. Jamsheena et. al. / J. Algebra Comb. Discrete Appl. 12(1) (2025) 55-66

Theorem 3.1. Let n = p"'py?---p'™* where p1 < pa < --- < pi are distinct primes, and m; is a
non-negative integer for 1 < i < k. Any nonzero ideal I = (p\'py* ---pF) of Zy is essential if and only
if r; £ my for any 1.

Proof. Assume that I = (p]'p5®---p.") be a nonzero essential ideal of Z,. We need to prove

that r; # m; for any i, 1 < i < k. Suppose that r; = m; for some i; say 1. Then for the ideal
N = (py2pg®---pp*), INN = (0), contradicting the fact that I is essential.

Conversely, let r; # m; for any . That is, I = (pi*p5*---p*), 0 <7y <my —1for 1 <i <k be
a nonzero ideal. We need to prove that [ is essential. If not, there is a nonzero ideal L # I such that
INnL = (0). But all the ideals of Z,, other than I will be in any one of the following sets.

Ay = (P15 - p);0 <7y <y for 2 < i < kY

Ap;'m ={('py”? - p);0<r <my—land 0 <7, <my for 3 <i<k}.
In general, Ap;_nj = {1y PP P )0 < <my —1, for 1<i<j—1 and0<r; <
m; for j+1<i<k}; 1< <k Thus, L mustbe in any of the sets Ap71"17 Ap;nz o ,Ap;nk so that its
intersection with [ is nonzero. This contradiction proves the result. O

Proposition 3.2. Let n = p™, m > 2 be a positive integer and p be any prime. Then the spectrum of

L o (m—-2 -1
the essential ideal graph Z,, is < 1 m— 2).

Proof. 1If n = p™, then all the nonzero proper ideals of Z,, are essential by Theorem 3.1, and hence
&z, 1s a complete graph. O

Corollary 3.3. Let n = p™, m > 2 be a positive integer and p be any prime. Then the energy of the
essential ideal graph of Z,, is 2m — 4.

Theorem 3.4. Let n = p™1q™?, where p and q are distinct primes with p < q and my, mo are positive
integers. Then the characteristic polynomial of Ez, is given by Pe, (X) = A™Fm2=2(\ 4 1)mm2=2P(})),
where P(\) = X3 4 (2 — m1ma) A2 + [(1 — mima)(mq + ma) — mima] A — m12ma?.

Proof. We can partition the vertex of £z, as follows:

X={{p¢):0<r<m;—1,0<s<mg—1and (r,s) # (0,0)}
Vi={(®p™¢):0<s<my—1}and
Vo={(®¢™):0<r <my—1}sothat V(&z,) > X UV; UV;.
By Theorem 3.1 and Observation 2.7, &, [X]| ~ Ky m,—1- And, since V; and V5 consist of independent
vertices, &z, [V1, V2] =~ Ky, m, Thus, by Theorem 2.8, £z, ~ Kyimo—1 V Kinyom, -
To find the characteristic polynomial of &z, , we take G1 = Ky, m,—1 and G2 = Ky, m,. Then using
Theorems 2.5 and 2.6, we have,

Pe, (A) = (=1)™F"2 P, (\) Py (A — 1) + (=1)™" 7 P, (\) Pg(—A — 1)
— (=1)mmamitmatme P (X — 1) P (=X — 1).
Here, G is the empty graph consisting of mimsy — 1 vertices and Gy = K,,,, U K,,,,. Hence,

Par(=A=1) = (~1)™m (g e,
P@(_A _ 1) _ (_1)m1+m272(>\ + ml)()\ +m2))\m1+m272.
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Thus we have,

Pt‘:zn (>‘)

(=1)™Fm2 (X —mymg 4+ 2)(A 4 1)™™272(—1)™Fm2=2(\ 4 )

X (A mg) NToHma=2 L (_qymama=l xmitme=2(32 (] ymama=]

X ()\ + 1)m1m2*1 _ (71)m1m2*1+m1+m2(71)m1m271(>\ + 1)m1m271
(_1)m1+m2—2()\+ml)()\+m2)>\m1+mz—2

= A2 (N Loy ) (A 4 mg) (A + 1) ™22 (N — mymg + 2) + ATt
X ()\2 — mlmg)()\ + 1)m1m2_1 — /\m1+m2—2(/\ + 1)m1m2_1()\ + ml)(/\ + mz).

X

On simplifying, we obtain
Pe, (A) = A™MTm2 (X 4 1) 2 P()),
where

P\ = A+ (2-— mlmg))\Q + [(1 = myma)(my + ma) — myma] X — mi2ms?.

O
Corollary 3.5. Let n = p™q™,where p and q are distinct primes and m > 1. Then the spectrum of
E(Zy,) is
k+vVk2+4m3 0 1 k—vVk2+4m? —m L i 9 0
2 2 = —92).
( 1 2m —2 m?—2 1 1)’“’”6 (m”+m—2)

Example 3.6. Let n = 36 = 2232. The vertex set of Ez,, (see Fig.1) is
V ={(2), (3), (4), (6),(9), (12), (18) }. It can be partitioned as V =X U X3 U X5, where

X ={(2),(3),(6)}, 1 = {(4), (12))}, V2 = {(9), (18) }.

Since X contains all the proper essential ideals of Zsg, the subgraph Ez,,[X] is K3. Now, Ez,,[V1, Va] =
Ky o and hence €z, ~ K3V Ky . Then the spectrum of Ez,, s

249230 -1 2—2V3 -2
1 2 2 1 1

Corollary 3.7. Let n = p™q™,where p and q are distinct primes and m > 1. Then the energy of the
essential ideal graph of Z, is k + VEkZ +4m3, k= (m?> + m — 2).

Lemma 3.8. Letn = p1ps - - pg, where py,pa, - -+ ,pi are distinct primes. Then any two vertices (x) and
(y) of the essential ideal graph of Z,, are adjacent if and only if ged(x,y) = 1, provided x is the product
of © distinct primes and y is the product of j distinct primes for 1 <i,5 <k —1.

Theorem 3.9. Let n = pipaps, pi be a distinct prime for 1 <1i < 3. Then the spectrum of £z, is

1442 71;\/5 1-v2 —1?/5
1 2 1 2 )

Proof. The number of nonzero proper ideals of Z,, is 23> — 2 = 6. Hence, the adjacency matrix is a
6 x 6 symmetric matrix. Then the corresponding six vertices of £, can be partitioned as follows.

Vi = {(p1), (p2), (p3)} and
Vo ={

(p2p3), (p1p3), (P1p2) }-

ot
~
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Figure 1. &z,

By Lemma 3.8, we see that all vertices of V; are adjacent and they form the block J — I of order
3, where J is a matrix having all entries 1, in the adjacency matrix of £z, . Also, the vertices of V5 are
nonadjacent and each vertex is adjacent exactly to one of the vertices of V;. Hence the vertices of V;
and V5 together form an identity block I of order 3 while the vertices of V5 form a zero block of order 3.
Then the adjacency matrix and characteristic polynomial of &, are given by,

A — (J3x3 = Isxs Isxs
I3xs O3x3

and

det(A — AI) = det (J ~ O+l _il)
=det(J — (A + 1)I) x det(—=N — I(J — (A +1)I)~'D),

where J — (A + 1)I is the circulant matrix C(_) ; 3). By Propositions 2.3 and 2.4, its determinant and
inverse are given by

§=12-N\+1)?

and
! ! (()\AZ J: 11)) ((/\>\2+ 11)) 8 i B
DT 2=NOEDP G r) (k) (02-1)
1 A=1) 1 1
T 2=MN(A+1) 1 (AII) ()\i1)
Also,
- (A1) -1 —1
(CESNICESD) 2=N(A+1) 2=N(A+1)
ST = (A D) = o) AT (23)_(;)“) EN0F ’
23 —1 Y (A-1)

2= (+1) 2= (A+1) BCESNIeYS)
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is the circulant matrix C( A1) 1 3"
IRAECESVICE SV RACEDVICER DL

Again by Proposition 2.3,

(=A2 =) = D) (=AM +1)+1)2
(2= (A+1)2

2=NDA+1)2A2 =22 - 1)(A\2 + X —1)?

det(—A[ — (J — (A+1))7Y) =

, and hence

det(A — AI) =
et( ) 2N +1)2
=N =22 -1\ + 1 -1)2%
By solving the two quadratic polynomials, we obtain the required spectrum. O

Corollary 3.10. Let n = pi1paps, p; be a distinct prime for 1 <1i < 3. Then

1. The energy of the essential ideal graph of Z,, is 2(v/2 + V/5).
2. The graph &z, s non-hyperenergetic.

Theorem 3.11. Let n = pipapsps, p; be a distinct prime for 1 < i < 4. Then the spectrum of the
essential ideal graph of Z,, is

5421 | 5-v21 —3+VE _ | —3-V5
2 2 2 2
( 1 5 1 3 1 3 )

Proof. To find the adjacency matrix, we first partition the vertex set of £, as follows.

Vi = {{p1), (p2), (p3), (pa) }

Vo = {{p1p2), (P1p3), (P1P4), (P2p3), (P2p4), (P3p4) }

Va = {(p1p2p3), (p1D2p4), (P1P3p4), (P2D3P4) }-

Then by Lemma 3.8, we observe that all vertices of V; form the block matrix J — I of order 4 and each

vertex of V5 is adjacent exactly to one of the vertices of V5, which will form the block matrix

000001
000010
000100 . . .
C= 001000 . Also, each vertex of V7 is adjacent exactly to three vertices of V5 and one of the
010000
100000

vertices of V3, forming the blocks B = of order 4 x 6 and I, identity matrix of order 4,

000111
011001
101010
110100
respectively. Finally, vertices of V5 together with vertices of V3 form zero block of order 6 x 4 and vertices

of V3 constitute zero blocks of order 4 to the adjacency matrix of &, . Hence the adjacency matrix is

(J = Daxa Baxe Iixa

A= Bty  Cexe Osxa
Lyxa O4x6 Oaxa
Then
J-(A+1I B | I
A = BT C-)| 0 (M N)
I Y PQ
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60

By Lemma 2.1, if X\ # 0,

det(A — A1) = det Q x det(M — NQ ™' P).
Now,

1
(J=N+1)I+ <-I)sxs  Baxs

det(M — NQ™'P) = det A
BT D — Mgy
001
where D — Mgy = ~Maxs Esxa ,E=1010
Esxs  —A3x3 100
Applying Lemmas 2.1, 2.2 and Proposition 2.3, we have

det(D — AI) = det “AMsxs Baxz ) _ (A2 —1)3
E3x3  —MA3x3

and for A # =£1,

37 1-A7 1-AZ 1-X?
240 3\ 24N 24\
1T — | 1-37 T-x2 122 1-x7 | _
and B(D—ATB" = | 7% 5% 5 a0 [ =6
-3 1-A7 T-AZ 1-X7
24N 24X 24X _3)
-3 I-A7 1-A7 T-X7

3N 24X 4y
(17>\§’17>\§7 )

And, Equation (1) is,

det(M — NQ 'P) = (\* — 1)® x det Claimryy a2y

—1
NaoaT) oA Y

ML —A2) 1= %)

Hence,

M3 —8A2 —3A+ 1) /AN — AN+ A+ 1)1
_ =\ 2_1)3
det(A — M) = X% x (A ) ( A1 =A%) )( A1 = )2) )

= (A% —9AT £ 267° — 295 + 2003 — 26)% + 9\ — 1)(\? + 3\ + 1)°.

— (A2 1) (A4_3’\3_8’\2_3A+1> <)\4+>\3—4>\2+)\+1>3'

O
Corollary 3.12. Let n = p1pap3pa, pi be a distinct prime for 1 <i < 4. Then
1. The energy of the essential ideal graph of Z, is 20.
2. The graph &gz, is non-hyperenergetic.
Theorem 3.13. Let n = p{"'py?---p'*, where pi,pa,--- ,pi are distinct primes and m; is a non

negative integer for 1 <i < k. Then 0 is not an eigenvalue of &z, if and only if either k =1 and my > 2

orm; =1 for1<i<k.
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Proof. Assume that 0 is not an eigenvalue of the adjacency matrix of &, . If n = p™, m > 2, then
we are done. Suppose that n # p™, m > 2. Then we need to prove that m; =1 for all i = 1,2,--- , k.
If possible, suppose m; > 1 for atleast one i, say m;. Without loss of generality, we assume that
n=7p;"'pa---pg. Then by Theorem 3.1, the set of all essential ideals of Z,, is given by,

X ={(p1), ), -, P }. By Observation 2.7, these are the universal vertices of the essential ideal
graph of Z,. Now consider the vertices I = (p"* "'py---pi) and L = (pop3---pg). In &, I and L are
nonadjacent and are adjacent to any other vertex K if and only if their sums I + K and L + K is an
element of the set X. By elementary number theory, K can be either an element of the set X or the
ideal (p{"*). In other words, the adjacency and non-adjacency of the two vertices I and L are the same.
Then the rows and columns corresponding to the vertices I and L in the adjacency matrix are the same.
Hence the matrix is singular and zero is an eigenvalue.

Conversely, by Proposition 3.2, the result is obvious when n = p™, m > 2. Now, let n =
D1p2ps - - - Pk—1Pk- We shall index the rows and columns of the adjacency matrix of &, in the following
way:

Let us consider the set S = {p1,p2,p3,...,Pk—1,0k}- Clearly, S has k elements. We first list the
vertices of the form (p1), (p2), (P3),. .., (Pk—1), (Pk). That is, we choose one element at a time from S.
Next, we shall consider the vertices of the form (p1p2), (p1ps), -, (P1Pk), -, (Pk—1Pk). That is, we shall
choose two elements at a time from S. Clearly, we shall have (’;) such vertices. This process continues
until we have exhausted all the vertices of £z, . Thus, in the end, we shall choose vertices of the form
(P2p3 -+ PE—1DPk), (D1P3 " Dk—1Dk), "+ (P1D2 -+ - Pr—1). That is, we choose k — 1 elements at a time from
S making a total of (kfl) such vertices. Using the above indexing and Lemma 3.8, the adjacency matrix
of &z, will be of the following form:

Iiwk
Iy O
Iyx 00
0 0 0
0 (2)
T )% (k)
I(kfl)x(kfl) 0 0 0 0 0 0

Note that the matrix in (2) is non-singular. Therefore, 0 is not an eigenvalue of the adjacency matrix of
E(Z,). This proves the result. O

4. The Wiener and hyper-Wiener index of the essential ideal
graph of Z,

In this section, we compute the Wiener index and the hyper-Wiener index of £(Z,,) for various n.

Definition 4.1. The Wiener index of a graph G is the sum of all distances between any pair of vertices
of G. That is,

> d(u,v):% > da(w),

u,veV(G) ueV(GQ)

where dg(u) is the sum of distances between u and all other vertices of V(G).
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(2

Definition 4.2. The hyper-Wiener index of a gmph G is defined as

WW(G) = + = Y dP(uw)
u, eV (G)

Proposition 4.3. Let n =p™, m > 1 is a positive integer. Then

wies) = wwiez) = ("5 ).

Proof. By Lemma 3.1 the essential ideal graph &z, is complete if n = p™ and hence

W) =5 3 de, (@),

(z)eV (€z,,)
where
de,, ((z)) = > d((z), (y)) = m — 2.
(x)eV(&z,,) (y)#(x)
Also,

we)=3("; ) g S B,
(z)

z)eV(Ez,)

where dZ, ((z)) is the sum of squares of distances between () and all other vertices of £z,. Hence,
WW (&, ) =3(" N+ 1m—1)(m—-2) = ("1). m

Theorem 4.4. Letn = p™q¢"™2, where p < q are distinct primes and my, ms are positive integers. Then
the Wiener index of the essential ideal graph of Z,, is

1
W((‘:Zn,) = *[mlmg(m1m2 - 1) + (m1 + mQ)(lemg — 4) + 2(1 + m? + mg)]

2

Proof. First we partition the vertex set of £z, as follows :

X {(pT > 0<r<m;—1,0<s<mg—1and (r,s)#(0,0)}

{{(p™¢q®):0<s<my—1} and
{(Tm2> 0<r<mp—1}

Then X is the set of all essential ideals of Z, and induces a complete subgraph K, ,m,—1. The ver-

tices of V7 and V; are independent and induce a complete bipartite graph K, m,. Thus &, ~

Kpyms—1 V Ky m,. For every (x) € X, the sum of the distances to any vertex (y) € V(&z,) can
be obtained a5 3 e 2y AN (1)) + Xpgpes Az, (5) + Sepyevs (), (9)
- Z<y>€X7y¢w 1+ Z(y)evl 1+ Z(y>6V2
= mimeo + my1 + Mo — 2.
For every (x) € Vi, the sum of the distances to any vertex (y) € V(&z,) can be determined as
S rex A )+ Xiyeva o) A )+ Xpevs dl), )
- Z( yex 1+ E >ev1,y;éz 2+ Z( YEV, 1
=mimeo +mi + m273
Similarly, for every (z) € V3, the sum of the distances to any vertex (y) € V(Ez,) is mima+2m; +mg —3.
Hence the Wiener index of the graph &, is given by W(&z,) = %[Zmex(mlmg +m1 +mg —2) +
Z{m)ev (mlmQ +mq + 2mg — 3)
+ Z(z)g% (mamz + 2mq + ma — 3)]
3l(mima — 1)((myma + my +mg — 2)) + ma(mymy +my + 2mg — 3)
—|—m1(m1m2 +2mq +ma — 3)]
= [mima(mima — 1) + (mq 4+ ma)(2mims — 4) + 2(1 + m? + m3)]. O
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Corollary 4.5. Let n = p™q™, where p and q are distinct primes and m > 1. Then the Wiener index
of the essential ideal graph of Z,, is

m* +4m3 + 3m? — 8m + 2
5 .

Theorem 4.6. Letn = p™'q¢™2, where p < q are distinct primes and my, ms are positive integers. Then
the hyper-Wiener index of the essential ideal graph of Z,, is

1
WW (&) = i[mlmg(mlmg — 1)+ (m1 +m2)(2mims — 5) + 3(m§ + m%) +2].

W(&z,) =

Proof. By definition,

where

dz, (@)=Y &), ()

(y)eV(€z,)

That is, the sum of squares of distances between the vertex (x) and all other vertices of £, . Now, take
the same partition of V(&z,) into X U V; U V4 described in the proof of Theorem 4.4.
Case 1: (z) € X
Since d({z),(y)) =1 for any (y) € X, Vi or Va , d(%zn(@}) =mymg +my +mg —2 Case 2: (z) e V}
@ ((x), (y)) = {i when (y) € X or Vo |

. when (y) € Vi and (y) # (z)
Thus d%zn ({x)) = mima + my + 4mg — 5.
Case 3: (z) € V5
(@), (y)) = {i when (y) € X or 3 .

» when (y) € V3 and (y) # (x)

Then, d?fzn ({x)) = mima + mg + 4m; — 5.
From Equation (3) and Theorem 4.4, we get the required result. O

Here, d?

Next, we calculate the Wiener and hyper-Wiener indices of £z, for n = pips - - - px, where p; < pa <
-+« < pi are distinct primes, using the idea of equitable partition of vertices.

Definition 4.7. [9] For a graph G, A partition of vertices V(G) = Vi U Vo U --- UV}, is said to be an
equitable partition if each vertex in V; has the same number of neighbors in'V; for anyi,j € {1,2,--- k}.

For this, consider the set S = {p1,p2,p3,...,Pk—1,Pr}. Then going through the same process as in
the proof of Theorem 3.13, we can exhaust all the vertices of £z, . Also, we can see that the vertices of
&z, can be partitioned into an equitable partition. That is,

V= {(p):1<i< k)
Vo={(pipj) :1<i<k—landi+1<j <k}
Va={{pipjp):1<i<k-2 i+1<j<k—landj+1<1<Fk}

V(kfl) = {<p1p2p3 " 'pk—1>, (P1p2p3 - Pr—2DPk), "+ 5 <p2p3 e 'pk—lpk>}~
Clearly [Vi| = (1), [Vl = (5). -+ and [Vieoyy| = (1)

By Lemma 3.8, we can see that any vertex in Vi has (kzl) neighbors in V7, (kgl) neighbors in
Vo, -+, (2:}) neighbors in Vi_1. In general, any vertex of the set V; has (k;t) neighbors in V7, (k;t)
neighbors in Vo,--- | (’;:i) neighbors in Vj_; respectively. Hence this makes an equitable partition of

V(&z, ) into sets Vi, Vi, -+, Vie_1.
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Theorem 4.8. Let n = pips---pr where p1,pa,- -+ ,px are distinct primes. Then the Wiener index of
the essential ideal graph &z, is
=
5 ( ) 2k}+1+2t_2k—t_7].
t=1

Proof. By definition,

W)=y Y de, (@)

(z)eV(&z,)

where dg, ((x)) is the sum of distances between the vertex (z) and all other vertices of &, .

Let (x) € V¢, for 1 <t <k — 1. Then,

de,, ((x) = Y d({ Z a(( Y d(a), ()

(yyewr y)eVa (y)EVE, (y)#(z)
> d((=),( + > > d((z), W)+
(y)eVit1 Y)EVi—¢ < YEVR—t41
Y d((e), () (4)
() EVi—1

By Lemma 3.8, if (y) € V; for 1 < s < k — ¢ then,

d((z), (y)) = {1 ifged(@,y) =

adf € Vi—iys for 1 < s <t —1 then,
2 ifged(z,y) £1 T W E Ve for LS e S !

3 ifged(z,y) = product of s distinct primes

5 =) (1)

(y)EVS

d , =
(@), {v) {2 otherwise
Then, for 1 <s < k—t; s #t,

and for 1 <s<t-—1,

ST d((@), () = Q(k _’Z+s) * (Z)

(YYEVI—t4s

Hence by Equation (4),

= S ) (Te)- () Bl )+ ()

k—1 k—t t—1
=2 <) ( >+ <> = okl ot _ok=t 7
s=1 s=1 s=1 §
Hence,
1
W(Ez) =5l Y de, Z de,, (1)) +--+ > dg, (2))]
(z)eVr z)eV; (z)EVi_1
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k

|
—

1 k
5 (t> [2k‘+1 _|_ 2t _ 2k7t _ 7]
i

1

O

Theorem 4.9. Letn = pips - - - pr, where p1 < pa < --- < pg are distinct primes. Then the hyper- Wiener
index of the essential ideal graph £z, is

k

|
—

1 k
V[/W(ezn):5 (t)[g><2’“—2><2’“—t+3><2f—13].
t

Il
—

Proof. By definition,
1 1
WW(E,)=5W(E)+7 > d&, (@) (5)
(x)eV (&z,)

where dZ, ((z)) is the sum of squares distances between (z) and all other vertices of &z, .
Let (z) be a vertex of V;, for 1 <t <k —1. For {y) € Vi, 1 <s < k —t,

1, if ged(z,y) =1

2 T =
d (< >a<y>) {4, ifgcd(xay) #1

and for (y) € Vik—tqs, 1 <s <t —1,

9 if ged(x,y) = product of s distinct primes
4 otherwise ’

d*((z), (y)) = {
Then,

dz, (@)=Y S )+ Y @) ) +-+ Y ) )+

(y)eVa (y)eVa () eV, (y)#(x)

et YD P )+ > AP (@), ()

(Y)EVi—t (Y)EVi—1

For1<s<k-—t;s#t,

<y>€Vs
and for 1 <s<t-—1,
k t
2 —
> e =1(,_},,)+5(0).
(Y)EVi—t4s
Finally, for (y) € V,
k k—t
> e =a(y)-3("7 ) -a
(y)EV:

Hence by Equations (5) and (6) and Theorem 4.8, we get the required result. O

65
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5. Conclusion

In this paper, the adjacency spectrum of the essential ideal graph of finite commutative ring Z,,, for
n = {p™, p™ ¢}, where p, q are distinct primes, and m,m;, ms € N is determined. All the eigenvalues
of &, whenever n is a product of three or four distinct primes are computed. Further, we have established
a characterization of the ring Z,, for which 0 is an eigenvalue of £, . In addition, the topological indices,
namely the Wiener index and hyper-Wiener index of the essential ideal graph of Z,, for different forms
of n are calculated.
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