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Abstract: Let R be a commutative ring with unity. The essential ideal graph ER of R, is a graph with a vertex
set consisting of all nonzero proper ideals of R and two vertices I and K are adjacent if and only
if I + K is an essential ideal. In this paper, we study the adjacency spectrum of the essential ideal
graph of the finite commutative ring Zn, for n = {pm, pm1qm2}, where p, q are distinct primes, and
m,m1,m2 ∈ N. We show that 0 is an eigenvalue of the adjacency matrix of EZn if and only if either
n = p2 or n is not a product of distinct primes. We also determine all the eigenvalues of the adjacency
matrix of EZn whenever n is a product of three or four distinct primes. Moreover, we calculate the
topological indices, namely the Wiener index and hyper-Wiener index of the essential ideal graph of
Zn for different forms of n.
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1. Introduction

In recent decades, researchers have been exploring algebraic structures using graph theory properties.
The notion of a graph connected to the zero divisors of a commutative ring was put forward by Beck [6]
in 1998. However, the current definition and term for the zero-divisor graph were initially presented by
Anderson and Livingston [3] in 1999. Following this, various studies were pursued on graphs defined on
commutative rings by taking the ideals as vertices. Another graph, namely the comaximal ideal graph
was introduced in [20] as a graph with vertices as the proper ideals of the ring R, and a pair of vertices
I and K are adjacent if and only if I +K = R. Interested readers may refer to the papers [1, 7, 17] for
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more details. In 2018, J. Amjadi [2] introduced the essential ideal graph of a commutative ring, which is
denoted as ER. The graph ER has all nonzero proper ideals of R as the vertex set, and any two vertices I
and K are adjacent if and only if I +K is an essential ideal. It is worth mentioning that a proper ideal I
of a ring R is said to be an essential ideal if it has a nonzero intersection with every other non-zero ideal
of R.

In mathematical chemistry, molecular descriptors like the topological indices play a vital role. A
topological index is an invariant of molecular graphs that can be used to study the properties of their
constituent molecules. Among this, the Wiener index introduced by H. Wiener [19] is a well-known
molecular descriptor, which, in particular, is used for the preliminary testing of drug molecules. A
generalization of the Wiener index known as the hyper-Wiener index was introduced by M. Randic [15],
and is widely used in biochemistry. Determining various topological indices of graphs associated with
different algebraic structures has been an interesting area of research in the past few years. To get a
better understanding of this, refer [5, 16]. Being motivated by the previous works, in this paper, we
determine the Wiener and the hyper-Wiener index of EZn , where Zn is the ring of integers modulo n.

Let G be a simple graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G). The degree of
a vertex v, denoted by deg(v), is defined as the number of edges that occur in v. In G, a vertex v is said
to be universal, if it is adjacent to all other vertices. The complete graph Kn, is a graph in which any
two vertices are adjacent. A graph G is a k − partite graph if V (G) can be partitioned into k subsets
V1, V2, · · · , Vk (named partite sets) such that the vertices u and v form an edge in G if they belong
to different partite sets. If, in addition, there exists an edge between every two vertices belonging to
different partite sets, then graph G can be classified as complete k-partite graph. The graph denoted as
Km,n represents a complete bipartite graph consisting of two sets with sizes m and n respectively. The
induced subgraph, G[S], is formed by taking the subset S of vertices from G, along with all the edges
that connect vertices solely within S. The complement of a graph G is denoted by G. A set of vertices
in a graph G is independent if any two vertices in the set are nonadjacent. The join of two graphs,
G1 and G2, represented as G1 ∨ G2, is formed by adding edges between any two vertices v1 and v2,
where v1 ∈ G1 and v2 ∈ G2. The adjacency matrix A(G) of a graph G of order n is the n × n matrix
A(G) = (aij), where ai,j = 1, if vi is adjacent to vj in G and aij = 0 otherwise. The eigenvalues of
a graph G are defined to be the eigenvalues of its adjacency matrix. The collection of all eigenvalues
of G is called the spectrum(adjacency spectrum) of G. The energy of a graph G, denoted by E(G), is

defined as the sum of the absolute values of the eigenvalues of A(G). That is, E(G) =

n∑
i=1

|λi|, where

λ1, λ2, · · · , λn are the eigenvalues of G. A graph with energy greater than a complete graph is called
hyperenergetic. Otherwise, it is called non-hyperenergetic. To delve into more definitions and results in
ring, graph, and spectral graph theories, one can refer [4, 8, 11, 12, 18, 22].

The paper is organized as follows. In Section 2, we state the results that are needed for the subsequent
sections. In Section 3, we find the eigenvalues of EZn for n = pm,m > 1, and n = pm1qm2 , where p and
q are distinct primes with p < q and m1,m2 are positive integers. We also prove that for the essential
ideal graph of Zn, 0 is not an eigenvalue if and only if either n = pm, m > 2 or n is a product of distinct
primes. In Section 4, we calculate the Wiener index and the hyper-Wiener index of the essential ideal
graph of Zn for different values of n.

2. Preliminaries

The results shown below are beneficial for the parts that follow.

Lemma 2.1. [21] Let M,N,P,Q be matrices and let Q be non-singular. Let S =

(
M N
P Q

)
, then

detS = detQ× det(M −NQ−1P ). Here, (M −NQ−1P ) is known as the Schur complement of M in
S.
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Lemma 2.2. [21] Let S ∈Mn(F) be a partitioned 2× 2 block matrix S =

(
S11 S12

S21 S22

)
,where each matrix

Sii ∈ Mni(F), i = 1, 2 and n = n1 + n2. If S11, S22 and both Schur complements S11 − S12S
−1
22 S21 and

S22 − S21S
−1
11 S12 are all invertible, then

(
S11 S12

S21 S22

)−1
=

(
(S11 − S12S

−1
22 S21)−1 −S−111 S12(S22 − S21S

−1
11 S12)−1

−(S22 − S21S
−1
11 S12)−1S21S

−1
11 (S22 − S21S

−1
11 S12)−1

)
.

Proposition 2.3. [14] Let C(a,b,n) =


a b · · · · · · b
b a b · · · b
...

...
...

. . .
...

b b b · · · a

 be a circulant matrix of order n×n with entries

a, b ∈ R. Then its determinant, denoted by δ, is given by δ = (a+ (n− 1)b)(a− b)n−1.

Proposition 2.4. [14] If the circulant matrix C(a,b,n) is nonsingular, then its inverse is given by

C−1(a,b,n) = 1
δ


δn−1 ∆n−1 · · · ∆n−1
∆n−1 δn−1 · · · ∆n−1

...
...

. . .
...

∆n−1 · · · · · · δn−1

, where

δn−1 = (a+ (n− 2)b)(a− b)n−2 and ∆n−1 = −b(a− b)n−2.

Theorem 2.5. [10] If G is a regular graph of degree r with n vertices, then the characteristic polynomial
of G is PG(λ) = (−1)n λ−n+r+1

λ+r+1 PG(−λ− 1).

Theorem 2.6. [10] Let G1 and G2 be two graphs of order n1 and n2 respectively. Then the characteristic
polynomial of the join of G1 and G2 is given by

PG1∨G2
(λ) = (−1)n2PG1

(λ)PG2
(−λ− 1)+

(−1)n1PG2
(λ)PG1

(−λ− 1)− (−1)n1+n2PG1
(−λ− 1)PG2

(−λ− 1).

Observation 2.7. [2] Let R be a commutative ring with nonzero unity. Then every proper essential ideal
of R is a universal vertex in ER.

For any composite integer n > 1, let n = pα1
1 pα2

2 · · · p
αk
k , (k, αi) ∈ N, (k, α1) 6= (1, 1), pi’s are

distinct primes (1 ≤ i ≤ k).

Theorem 2.8. [13] For the essential ideal graph EZn , EZn ∼= H ∨Km, where H is a k-partite graph and

Km is a complete graph of order m =

k∏
i=1

αi − 1.

3. Adjacency spectrum of essential ideal graph of Zn

In this section, we study the adjacency spectrum of the essential ideal graph of Zn. We obtain the
spectrum for n = pm1 and n = pm1qm2 , where p and q are distinct primes with p < q, and m1,m2 are
positive integers. We also determine the adjacency spectrum of EZn , when n is a product of three distinct
primes and a product of four distinct primes. Throughout the section, by spectrum of E(Zn), we shall
mean the adjacency spectrum of E(Zn).

We first prove the following result which provides a necessary and sufficient condition for an ideal
to be an essential ideal of Zn.
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Theorem 3.1. Let n = pm1
1 pm2

2 · · · p
mk
k where p1 < p2 < · · · < pk are distinct primes, and mi is a

non-negative integer for 1 ≤ i ≤ k. Any nonzero ideal I = 〈pr11 p
r2
2 · · · p

rk
k 〉 of Zn is essential if and only

if ri 6= mi for any i.

Proof. Assume that I = 〈pr11 p
r2
2 · · · p

rk
k 〉 be a nonzero essential ideal of Zn. We need to prove

that ri 6= mi for any i, 1 ≤ i ≤ k. Suppose that ri = mi for some i; say 1. Then for the ideal
N = 〈pm2

2 pm3
3 · · · p

mk
k 〉, I ∩N = 〈0〉, contradicting the fact that I is essential.

Conversely, let ri 6= mi for any i. That is, I = 〈pr11 p
r2
2 · · · p

rk
k 〉, 0 ≤ ri ≤ mi − 1 for 1 ≤ i ≤ k be

a nonzero ideal. We need to prove that I is essential. If not, there is a nonzero ideal L 6= I such that
I ∩ L = 〈0〉. But all the ideals of Zn other than I will be in any one of the following sets.

Apm1
1

= {〈pm1
1 pr22 · · · p

rk
k 〉; 0 ≤ ri ≤ mi for 2 ≤ i ≤ k}

Apm2
2

= {〈pr11 p
m2
2 · · · p

rk
k 〉; 0 ≤ r1 ≤ m1 − 1 and 0 ≤ ri ≤ mi for 3 ≤ i ≤ k}.

In general, A
p
mj
j

= {〈pr11 p
r2
2 · · · p

rj−1

j−1 p
mj
j p

rj+1

j+1 · · · p
rk
k 〉; 0 ≤ ri ≤ mi − 1, for 1 ≤ i ≤ j − 1 and 0 ≤ ri ≤

mi for j + 1 ≤ i ≤ k}; 1 ≤ j ≤ k. Thus, L must be in any of the sets Apm1
1
, Apm2

2
, · · · , Apmkk so that its

intersection with I is nonzero. This contradiction proves the result.

Proposition 3.2. Let n = pm, m > 2 be a positive integer and p be any prime. Then the spectrum of

the essential ideal graph Zn is
(
m− 2 −1

1 m− 2

)
.

Proof. If n = pm, then all the nonzero proper ideals of Zn are essential by Theorem 3.1, and hence
EZn is a complete graph.

Corollary 3.3. Let n = pm, m > 2 be a positive integer and p be any prime. Then the energy of the
essential ideal graph of Zn is 2m− 4.

Theorem 3.4. Let n = pm1qm2 , where p and q are distinct primes with p < q and m1,m2 are positive
integers. Then the characteristic polynomial of EZn is given by PEZn (λ) = λm1+m2−2(λ+ 1)m1m2−2P (λ),
where P (λ) = λ3 + (2−m1m2)λ2 + [(1−m1m2)(m1 +m2)−m1m2]λ−m1

2m2
2.

Proof. We can partition the vertex of EZn as follows:

X = {〈prqs〉 : 0 ≤ r ≤ m1 − 1, 0 ≤ s ≤ m2 − 1 and (r, s) 6= (0, 0)}
V1 = {〈pm1qs〉 : 0 ≤ s ≤ m2 − 1} and
V2 = {〈prqm2〉 : 0 ≤ r ≤ m1 − 1} so that V (EZn) ' X ∪ V1 ∪ V2.

By Theorem 3.1 and Observation 2.7, EZn [X] ' Km1m2−1. And, since V1 and V2 consist of independent
vertices, EZn [V1, V2] ' Km2,m1

Thus, by Theorem 2.8, EZn ' Km1m2−1 ∨Km2,m1
.

To find the characteristic polynomial of EZn , we take G1 = Km1m2−1 and G2 = Km2,m1
. Then using

Theorems 2.5 and 2.6, we have,

PEZn (λ) = (−1)m1+m2PG1
(λ)PG2

(−λ− 1) + (−1)m1m2−1PG2(λ)PG1
(−λ− 1)

− (−1)m1m2−1+m1+m2PG1
(−λ− 1)PG2

(−λ− 1).

Here, G1 is the empty graph consisting of m1m2 − 1 vertices and G2 = Km2
∪Km1

. Hence,

PG1
(−λ− 1) = (−1)m1m2−1(λ+ 1)m1m2−1,

PG2
(−λ− 1) = (−1)m1+m2−2(λ+m1)(λ+m2)λm1+m2−2.

56



P. Jamsheena et. al. / J. Algebra Comb. Discrete Appl. 12(1) (2025) 53–66

Thus we have,

PEZn (λ) = (−1)m1+m2(λ−m1m2 + 2)(λ+ 1)m1m2−2(−1)m1+m2−2(λ+m1)

× (λ+m2)λm1+m2−2 + (−1)m1m2−1λm1+m2−2(λ2 −m1m2)(−1)m1m2−1

× (λ+ 1)m1m2−1 − (−1)m1m2−1+m1+m2(−1)m1m2−1(λ+ 1)m1m2−1

× (−1)m1+m2−2(λ+m1)(λ+m2)λm1+m2−2

= λm1+m2−2(λ+m1)(λ+m2)(λ+ 1)m1m2−2(λ−m1m2 + 2) + λm1+m2−2

× (λ2 −m1m2)(λ+ 1)m1m2−1 − λm1+m2−2(λ+ 1)m1m2−1(λ+m1)(λ+m2).

On simplifying, we obtain

PEZn (λ) = λm1+m2−2(λ+ 1)m1m2−2P (λ),

where

P (λ) = λ3 + (2−m1m2)λ2 + [(1−m1m2)(m1 +m2)−m1m2]λ−m1
2m2

2.

Corollary 3.5. Let n = pmqm,where p and q are distinct primes and m > 1. Then the spectrum of
E(Zn) is

(
k+
√
k2+4m3

2 0 −1 k−
√
k2+4m3

2 −m
1 2m− 2 m2 − 2 1 1

)
,where k = (m2 +m− 2).

Example 3.6. Let n = 36 = 2232. The vertex set of EZ36
(see Fig.1) is

V = {〈2〉, 〈3〉, 〈4〉, 〈6〉, 〈9〉, 〈12〉, 〈18〉}. It can be partitioned as V = X ∪X1 ∪X2, where

X = {〈2〉, 〈3〉, 〈6〉}, V1 = {〈4〉, 〈12〉)}, V2 = {〈9〉, 〈18〉}.

Since X contains all the proper essential ideals of Z36, the subgraph EZ36
[X] is K3. Now, EZ36

[V1, V2] =
K2,2 and hence EZ36

' K3 ∨K2,2. Then the spectrum of EZ36
is(

2 + 2
√

3 0 −1 2− 2
√

3 −2
1 2 2 1 1

)

Corollary 3.7. Let n = pmqm,where p and q are distinct primes and m > 1. Then the energy of the
essential ideal graph of Zn is k +

√
k2 + 4m3, k = (m2 +m− 2).

Lemma 3.8. Let n = p1p2 · · · pk, where p1, p2, · · · , pk are distinct primes. Then any two vertices 〈x〉 and
〈y〉 of the essential ideal graph of Zn are adjacent if and only if gcd(x, y) = 1, provided x is the product
of i distinct primes and y is the product of j distinct primes for 1 ≤ i, j ≤ k − 1.

Theorem 3.9. Let n = p1p2p3, pi be a distinct prime for 1 ≤ i ≤ 3. Then the spectrum of EZn is(
1 +
√

2 −1+
√
5

2 1−
√

2 −1−
√
5

2
1 2 1 2

)
.

Proof. The number of nonzero proper ideals of Zn is 23 − 2 = 6. Hence, the adjacency matrix is a
6× 6 symmetric matrix. Then the corresponding six vertices of EZn can be partitioned as follows.

V1 = {〈p1〉, 〈p2〉, 〈p3〉} and
V2 = {〈p2p3〉, 〈p1p3〉, 〈p1p2〉}.
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〈2〉

〈3〉

〈6〉

〈4〉

〈12〉

〈9〉

〈18〉

Figure 1. EZ36

By Lemma 3.8, we see that all vertices of V1 are adjacent and they form the block J − I of order
3, where J is a matrix having all entries 1, in the adjacency matrix of EZn . Also, the vertices of V2 are
nonadjacent and each vertex is adjacent exactly to one of the vertices of V1. Hence the vertices of V1
and V2 together form an identity block I of order 3 while the vertices of V2 form a zero block of order 3.
Then the adjacency matrix and characteristic polynomial of EZn are given by,

A =

(
J3×3 − I3×3 I3×3

I3×3 03×3

)
and

det(A− λI) = det

(
J − (λ+ 1)I I

I −λI

)
= det(J − (λ+ 1)I)× det(−λI − I(J − (λ+ 1)I)−1I),

where J − (λ + 1)I is the circulant matrix C(−λ,1,3). By Propositions 2.3 and 2.4, its determinant and
inverse are given by

δ = (2− λ)(λ+ 1)2

and

C−1(−λ,1,3) =
1

(2− λ)(λ+ 1)2

(λ2 − 1) (λ+ 1) (λ+ 1)
(λ+ 1) (λ2 − 1) (λ+ 1)
(λ+ 1) (λ+ 1) (λ2 − 1)


=

1

(2− λ)(λ+ 1)

(λ− 1) 1 1
1 (λ− 1) 1
1 1 (λ− 1)

 .

Also,

−λI − I(J − (λ+ 1)I)−1I =

−λ−
(λ−1)

(2−λ)(λ+1)
−1

(2−λ)(λ+1)
−1

(2−λ)(λ+1)
−1

(2−λ)(λ+1) −λ− (λ−1)
(2−λ)(λ+1)

−1
(2−λ)(λ+1)

−1
(2−λ)(λ+1)

−1
(2−λ)(λ+1) −λ− (λ−1)

(2−λ)(λ+1)

 ,
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is the circulant matrix C
(−λ− (λ−1)

(2−λ)(λ+1)
, −1
(2−λ)(λ+1)

,3)
.

Again by Proposition 2.3,

det(−λI − (J − (λ+ 1)I)−1) =
(−λ(2− λ)− 1)(−λ(λ+ 1) + 1)2

(2− λ)(λ+ 1)2
, and hence

det(A− λI) =
(2− λ)(λ+ 1)2(λ2 − 2λ− 1)(λ2 + λ− 1)2

(2− λ)(λ+ 1)2

= (λ2 − 2λ− 1)(λ2 + λ− 1)2.

By solving the two quadratic polynomials, we obtain the required spectrum.

Corollary 3.10. Let n = p1p2p3, pi be a distinct prime for 1 ≤ i ≤ 3. Then

1. The energy of the essential ideal graph of Zn is 2(
√

2 +
√

5).

2. The graph EZn is non-hyperenergetic.

Theorem 3.11. Let n = p1p2p3p4, pi be a distinct prime for 1 ≤ i ≤ 4. Then the spectrum of the
essential ideal graph of Zn is

(
5+
√
21

2 1 5−
√
21

2
−3+

√
5

2 −1 −3−
√
5

2
1 5 1 3 1 3

)
.

Proof. To find the adjacency matrix, we first partition the vertex set of EZn as follows.
V1 = {〈p1〉, 〈p2〉, 〈p3〉, 〈p4〉}
V2 = {〈p1p2〉, 〈p1p3〉, 〈p1p4〉, 〈p2p3〉, 〈p2p4〉, 〈p3p4〉}
V3 = {〈p1p2p3〉, 〈p1p2p4〉, (p1p3p4〉, 〈p2p3p4〉}.
Then by Lemma 3.8, we observe that all vertices of V1 form the block matrix J − I of order 4 and each
vertex of V2 is adjacent exactly to one of the vertices of V2, which will form the block matrix

C =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 . Also, each vertex of V1 is adjacent exactly to three vertices of V2 and one of the

vertices of V3, forming the blocks B =

0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0

 of order 4× 6 and I, identity matrix of order 4,

respectively. Finally, vertices of V2 together with vertices of V3 form zero block of order 6×4 and vertices
of V3 constitute zero blocks of order 4 to the adjacency matrix of EZn . Hence the adjacency matrix is

A =

(J − I)4×4 B4×6 I4×4
BT6×4 C6×6 06×4
I4×4 04×6 04×4

 .

Then

A− λI =

 J − (λ+ 1)I B I
BT C − λI 0

I 0 −λI

 =

(
M N

P Q

)
.
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By Lemma 2.1, if λ 6= 0,

det(A− λI) = detQ× det(M −NQ−1P ).

Now,

det(M −NQ−1P ) = det

(J − (λ+ 1)I +
1

λ
I)4×4 B4×6

BT D − λI6×6

 (1)

where D − λI6×6 =

(
−λI3×3 E3×3

E3×3 −λI3×3

)
, E =

0 0 1

0 1 0

1 0 0

 .

Applying Lemmas 2.1, 2.2 and Proposition 2.3, we have

det(D − λI) = det

(
−λI3×3 E3×3

E3×3 −λI3×3

)
= (λ2 − 1)3

and for λ 6= ±1,

(D − λI)−1 =

(
λ

1−λ2 I
1

1−λ2E
1

1−λ2E
λ

1−λ2 I

)

and B(D − λI)−1BT =


3λ

1−λ2
2+λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

3λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

3λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

2+λ
1−λ2

3λ
1−λ2

 = C( 3λ
1−λ2

, 2+λ

1−λ2
,4).

And, Equation (1) is,

det(M −NQ−1P ) = (λ2 − 1)3 × detC
(λ

4−5λ2+1

λ(1−λ2)
,−λ

2−λ−1

1−λ2
,4)

= (λ2 − 1)3
(
λ4 − 3λ3 − 8λ2 − 3λ+ 1

λ(1− λ2)

) (
λ4 + λ3 − 4λ2 + λ+ 1

λ(1− λ2)

)3

.

Hence,

det(A− λI) = λ4 × (λ2 − 1)3
(
λ4 − 3λ3 − 8λ2 − 3λ+ 1

λ(1− λ2)

) (
λ4 + λ3 − 4λ2 + λ+ 1

λ(1− λ2)

)3

= (λ8 − 9λ7 + 26λ6 − 29λ5 + 29λ3 − 26λ2 + 9λ− 1)(λ2 + 3λ+ 1)3.

Corollary 3.12. Let n = p1p2p3p4, pi be a distinct prime for 1 ≤ i ≤ 4. Then

1. The energy of the essential ideal graph of Zn is 20.

2. The graph EZn is non-hyperenergetic.

Theorem 3.13. Let n = pm1
1 pm2

2 · · · p
mk
k , where p1, p2, · · · , pk are distinct primes and mi is a non

negative integer for 1 ≤ i ≤ k. Then 0 is not an eigenvalue of EZn if and only if either k = 1 and m1 > 2
or mi = 1 for 1 ≤ i ≤ k.
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Proof. Assume that 0 is not an eigenvalue of the adjacency matrix of EZn . If n = pm, m > 2, then
we are done. Suppose that n 6= pm, m > 2. Then we need to prove that mi = 1 for all i = 1, 2, · · · , k.
If possible, suppose mi > 1 for atleast one i, say m1. Without loss of generality, we assume that
n = pm1

1 p2 · · · pk. Then by Theorem 3.1, the set of all essential ideals of Zn is given by,
X = {〈p1〉, 〈p21〉, · · · , 〈p

m1−1
1 〉}. By Observation 2.7, these are the universal vertices of the essential ideal

graph of Zn. Now consider the vertices I = 〈pm1−1
1 p2 · · · pk〉 and L = 〈p2p3 · · · pk〉. In EZn , I and L are

nonadjacent and are adjacent to any other vertex K if and only if their sums I + K and L + K is an
element of the set X. By elementary number theory, K can be either an element of the set X or the
ideal 〈pm1

1 〉. In other words, the adjacency and non-adjacency of the two vertices I and L are the same.
Then the rows and columns corresponding to the vertices I and L in the adjacency matrix are the same.
Hence the matrix is singular and zero is an eigenvalue.

Conversely, by Proposition 3.2, the result is obvious when n = pm, m > 2. Now, let n =
p1p2p3 · · · pk−1pk. We shall index the rows and columns of the adjacency matrix of EZn in the following
way:

Let us consider the set S = {p1, p2, p3, . . . , pk−1, pk}. Clearly, S has k elements. We first list the
vertices of the form 〈p1〉, 〈p2〉, 〈p3〉, . . . , 〈pk−1〉, 〈pk〉. That is, we choose one element at a time from S.
Next, we shall consider the vertices of the form 〈p1p2〉, 〈p1p3〉, · · · , 〈p1pk〉, · · · , 〈pk−1pk〉. That is, we shall
choose two elements at a time from S. Clearly, we shall have

(
k
2

)
such vertices. This process continues

until we have exhausted all the vertices of EZn . Thus, in the end, we shall choose vertices of the form
〈p2p3 · · · pk−1pk〉, 〈p1p3 · · · pk−1pk〉, · · · , 〈p1p2 · · · pk−1〉. That is, we choose k− 1 elements at a time from
S making a total of

(
k
k−1
)
such vertices. Using the above indexing and Lemma 3.8, the adjacency matrix

of EZn will be of the following form:

. . . . . . . . . . . . . . . . . . Ik×k

. . . . . . . . . . . . . . . I(k2)×(k2)
0

. . . . . . . . . . . . I(k3)×(k3)
0 0

. . . . . . . . . . . . 0 0 0

. . . . . . . . . 0
...

...
...

. . . . . . . . .
...

...
...

...

. . . I( k
k−2)×( k

k−2)
...

...
...

...
...

I( k
k−1)×( k

k−1)
0 0 0 0 0 0


. (2)

Note that the matrix in (2) is non-singular. Therefore, 0 is not an eigenvalue of the adjacency matrix of
E(Zn). This proves the result.

4. The Wiener and hyper-Wiener index of the essential ideal
graph of Zn

In this section, we compute the Wiener index and the hyper-Wiener index of E(Zn) for various n.

Definition 4.1. The Wiener index of a graph G is the sum of all distances between any pair of vertices
of G. That is,

W (G) =
∑

u,v∈V (G)

d(u, v) =
1

2

∑
u∈V (G)

dG(u),

where dG(u) is the sum of distances between u and all other vertices of V (G).
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Definition 4.2. The hyper-Wiener index of a graph G is defined as

WW (G) =
1

2
W (G) +

1

2

∑
u,v∈V (G)

d2(u, v).

Proposition 4.3. Let n = pm, m > 1 is a positive integer. Then

W (EZn) = WW (EZn) =

(
m− 1

2

)
.

Proof. By Lemma 3.1 the essential ideal graph EZn is complete if n = pm and hence

W (EZn) =
1

2

∑
〈x〉∈V (EZn )

dEZn (〈x〉),

where

dEZn (〈x〉) =
∑

〈x〉∈V (EZn ) 〈y〉6=〈x〉

d(〈x〉, 〈y〉) = m− 2.

Also,

WW (EZn) =
1

2

(
m− 1

2

)
+

1

4

∑
〈x〉∈V (EZn )

d2EZn (〈x〉),

where d2EZn (〈x〉) is the sum of squares of distances between 〈x〉 and all other vertices of EZn . Hence,
WW (EZn) = 1

2

(
m−1
2

)
+ 1

4 (m− 1)(m− 2) =
(
m−1
2

)
.

Theorem 4.4. Let n = pm1qm2 , where p < q are distinct primes and m1, m2 are positive integers. Then
the Wiener index of the essential ideal graph of Zn is

W (EZn) =
1

2
[m1m2(m1m2 − 1) + (m1 +m2)(2m1m2 − 4) + 2(1 +m2

1 +m2
2)].

Proof. First we partition the vertex set of EZn as follows :

X = {〈prqs〉 : 0 ≤ r ≤ m1 − 1, 0 ≤ s ≤ m2 − 1 and (r, s) 6= (0, 0)}
V1 = {〈pm1qs〉 : 0 ≤ s ≤ m2 − 1} and
V2 = {〈prqm2〉 : 0 ≤ r ≤ m1 − 1}.

Then X is the set of all essential ideals of Zn and induces a complete subgraph Km1m2−1. The ver-
tices of V1 and V2 are independent and induce a complete bipartite graph Km2,m1

. Thus EZn '
Km1m2−1 ∨ Km2,m1

. For every 〈x〉 ∈ X, the sum of the distances to any vertex 〈y〉 ∈ V (EZn) can
be obtained as

∑
〈y〉∈X,〈y〉6=〈x〉 d(〈x〉, 〈y〉) +

∑
〈y〉∈V1

d(〈x〉, 〈y〉) +
∑
〈y〉∈V2

d(〈x〉, 〈y〉)
=
∑
〈y〉∈X,y 6=x 1 +

∑
〈y〉∈V1

1 +
∑
〈y〉∈V2

1
= m1m2 +m1 +m2 − 2.

For every 〈x〉 ∈ V1, the sum of the distances to any vertex 〈y〉 ∈ V (EZn) can be determined as∑
〈y〉∈X d(〈x〉, 〈y〉) +

∑
〈y〉∈V1,〈y〉6=〈x〉 d(〈x〉, 〈y〉) +

∑
〈y〉∈V2

d(〈x〉, 〈y〉)
=
∑
〈y〉∈X 1 +

∑
〈y〉∈V1,y 6=x 2 +

∑
〈y〉∈V2

1
= m1m2 +m1 + 2m2 − 3.

Similarly, for every 〈x〉 ∈ V2, the sum of the distances to any vertex 〈y〉 ∈ V (EZn) is m1m2+2m1+m2−3.
Hence the Wiener index of the graph EZn is given by W (EZn) = 1

2 [
∑
〈x〉∈X(m1m2 + m1 + m2 − 2) +∑

〈x〉∈V1
(m1m2 +m1 + 2m2 − 3)

+
∑
〈x〉∈V2

(m1m2 + 2m1 +m2 − 3)]

= 1
2 [(m1m2 − 1)((m1m2 +m1 +m2 − 2)) +m2(m1m2 +m1 + 2m2 − 3)

+m1(m1m2 + 2m1 +m2 − 3)]
= 1

2 [m1m2(m1m2 − 1) + (m1 +m2)(2m1m2 − 4) + 2(1 +m2
1 +m2

2)].
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Corollary 4.5. Let n = pmqm, where p and q are distinct primes and m > 1. Then the Wiener index
of the essential ideal graph of Zn is

W (EZn) =
m4 + 4m3 + 3m2 − 8m+ 2

2
.

Theorem 4.6. Let n = pm1qm2 , where p < q are distinct primes and m1, m2 are positive integers. Then
the hyper-Wiener index of the essential ideal graph of Zn is

WW (EZn) =
1

2
[m1m2(m1m2 − 1) + (m1 +m2)(2m1m2 − 5) + 3(m2

1 +m2
2) + 2].

Proof. By definition,

WW (EZn) =
1

2
W (EZn) +

1

4

∑
〈x〉∈V (EZn )

d2EZn (〈x〉) (3)

where

d2EZn (〈x〉) =
∑

〈y〉∈V (EZn )

d2(〈x〉, 〈y〉)

That is, the sum of squares of distances between the vertex 〈x〉 and all other vertices of EZn . Now, take
the same partition of V (EZn) into X ∪ V1 ∪ V2 described in the proof of Theorem 4.4.
Case 1: 〈x〉 ∈ X
Since d(〈x〉, 〈y〉) = 1 for any 〈y〉 ∈ X, V1 or V2 , d2EZn (〈x〉) = m1m2 +m1 +m2 − 2 Case 2: 〈x〉 ∈ V1

d2(〈x〉, 〈y〉) =

{
1, when 〈y〉 ∈ X or V2

4, when 〈y〉 ∈ V1 and 〈y〉 6= 〈x〉
.

Thus d2EZn (〈x〉) = m1m2 +m1 + 4m2 − 5.
Case 3: 〈x〉 ∈ V2

Here, d2(〈x〉, 〈y〉) =

{
1, when 〈y〉 ∈ X or V1

4, when 〈y〉 ∈ V2 and 〈y〉 6= 〈x〉
.

Then, d2EZn (〈x〉) = m1m2 +m2 + 4m1 − 5.
From Equation (3) and Theorem 4.4, we get the required result.

Next, we calculate the Wiener and hyper-Wiener indices of EZn for n = p1p2 · · · pk, where p1 < p2 <
· · · < pk are distinct primes, using the idea of equitable partition of vertices.

Definition 4.7. [9] For a graph G, A partition of vertices V (G) = V1 ∪ V2 ∪ · · · ∪ Vk is said to be an
equitable partition if each vertex in Vi has the same number of neighbors in Vj for any i, j ∈ {1, 2, · · · , k}.

For this, consider the set S = {p1, p2, p3, . . . , pk−1, pk}. Then going through the same process as in
the proof of Theorem 3.13, we can exhaust all the vertices of EZn . Also, we can see that the vertices of
EZn can be partitioned into an equitable partition. That is,
V1 = {〈pi〉 : 1 ≤ i ≤ k}
V2 = {〈pipj〉 : 1 ≤ i ≤ k − 1and i+ 1 ≤ j ≤ k}
V3 = {〈pipjpl〉 : 1 ≤ i ≤ k − 2, i+ 1 ≤ j ≤ k − 1and j + 1 ≤ l ≤ k}
...
V(k−1) = {〈p1p2p3 · · · pk−1〉, 〈p1p2p3 · · · pk−2pk〉, · · · , 〈p2p3 · · · pk−1pk〉}.
Clearly |V1| =

(
k
1

)
, |V2| =

(
k
2

)
, · · · , and |V(k−1)| =

(
k
k−1
)
.

By Lemma 3.8, we can see that any vertex in V1 has
(
k−1
1

)
neighbors in V1,

(
k−1
2

)
neighbors in

V2, · · · ,
(
k−1
k−1
)
neighbors in Vk−1. In general, any vertex of the set Vt has

(
k−t
1

)
neighbors in V1,

(
k−t
2

)
neighbors in V2, · · · ,

(
k−t
k−1
)
neighbors in Vk−1 respectively. Hence this makes an equitable partition of

V (EZn) into sets V1, V2, · · · , Vk−1.
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Theorem 4.8. Let n = p1p2 · · · pk where p1, p2, · · · , pk are distinct primes. Then the Wiener index of
the essential ideal graph EZn is

W (EZn) =
1

2

k−1∑
t=1

(
k

t

)
[2k+1 + 2t − 2k−t − 7].

Proof. By definition,

W (EZn) =
1

2

∑
〈x〉∈V (EZn )

dEZn (〈x〉),

where dEZn (〈x〉) is the sum of distances between the vertex 〈x〉 and all other vertices of EZn .
Let 〈x〉 ∈ Vt, for 1 ≤ t ≤ k − 1. Then,

dEZn (〈x〉) =
∑
〈y〉∈V1

d(〈x〉, 〈y〉) +
∑
〈y〉∈V2

d(〈x〉, 〈y〉) + · · ·+
∑

〈y〉∈Vt, 〈y〉6=〈x〉

d(〈x〉, 〈y〉)

∑
〈y〉∈Vt+1

d(〈x〉, 〈y〉) + · · ·+
∑

(y)∈Vk−t

d(〈x〉, 〈y〉) +
∑

〈y〉∈Vk−t+1

d(〈x〉, 〈y〉)+

· · ·+
∑

〈y〉∈Vk−1

d(〈x〉, 〈y〉) (4)

By Lemma 3.8, if 〈y〉 ∈ Vs for 1 ≤ s ≤ k − t then,

d(〈x〉, 〈y〉) =

{
1 ifgcd(x, y) = 1

2 ifgcd(x, y) 6= 1
and if 〈y〉 ∈ Vk−t+s for 1 ≤ s ≤ t− 1 then,

d(〈x〉, 〈y〉) =

{
3 ifgcd(x, y) = product of s distinct primes
2 otherwise

.

Then, for 1 ≤ s ≤ k − t; s 6= t, ∑
〈y〉∈Vs

d(〈x〉, 〈y〉) = 2

(
k

s

)
−
(
k − t
s

)
and for 1 ≤ s ≤ t− 1, ∑

〈y〉∈Vk−t+s

d(〈x〉, 〈y〉) = 2

(
k

k − t+ s

)
+

(
t

s

)
.

Hence by Equation (4),

dEZn (〈x〉) =

k−t∑
s=1s6=t

[2

(
k

s

)
−
(
k − t
s

)
] + [2

(
k

t

)
−
(
k − t
t

)
− 2] +

t−1∑
s=1

[2

(
k

k − t+ s

)
+

(
t

s

)
]

= 2

k−1∑
s=1

(
k

s

)
−
k−t∑
s=1

(
k − t
s

)
+

t−1∑
s=1

(
t

s

)
− 2 = 2k+1 + 2t − 2k−t − 7.

Hence,

W (EZn) =
1

2
[
∑
〈x〉∈V1

dEZn (〈x〉) +
∑
〈x〉∈V2

dEZn (〈x〉) + · · ·+
∑

〈x〉∈Vk−1

dEZn (〈x〉)]

64



P. Jamsheena et. al. / J. Algebra Comb. Discrete Appl. 12(1) (2025) 53–66

=
1

2

k−1∑
t=1

(
k

t

)
[2k+1 + 2t − 2k−t − 7].

Theorem 4.9. Let n = p1p2 · · · pk where p1 < p2 < · · · < pk are distinct primes. Then the hyper-Wiener
index of the essential ideal graph EZn is

WW (EZn) =
1

2

k−1∑
t=1

(
k

t

)
[3× 2k − 2× 2k−t + 3× 2t − 13].

Proof. By definition,

WW (EZn) =
1

2
W (EZn) +

1

4

∑
〈x〉∈V (EZn )

d2EZn (〈x〉) (5)

where d2EZn (〈x〉) is the sum of squares distances between 〈x〉 and all other vertices of EZn .
Let 〈x〉 be a vertex of Vt, for 1 ≤ t ≤ k − 1. For 〈y〉 ∈ Vs, 1 ≤ s ≤ k − t,

d2(〈x〉, 〈y〉) =

{
1, if gcd(x, y) = 1

4, if gcd(x, y) 6= 1

and for 〈y〉 ∈ Vk−t+s, 1 ≤ s ≤ t− 1,

d2(〈x〉, 〈y〉) =

{
9 if gcd(x, y) = product of s distinct primes
4 otherwise

.

Then,

d2EZn (〈x〉) =
∑
〈y〉∈V1

d2(〈x〉, 〈y〉) +
∑
〈y〉∈V2

d2((x), (y)) + · · ·+
∑

〈y〉∈Vt, (y)6=(x)

d2(〈x〉, 〈y〉)+

· · ·+
∑

〈y〉∈Vk−t

d2(〈x〉, 〈y〉) + · · ·+
∑

〈y〉∈Vk−1

d2(〈x〉, 〈y〉)
(6)

For 1 ≤ s ≤ k − t; s 6= t, ∑
〈y〉∈Vs

d2(〈x〉, 〈y〉) = 4

(
k

s

)
− 3

(
k − t
s

)
and for 1 ≤ s ≤ t− 1, ∑

〈y〉∈Vk−t+s

d2(〈x〉, 〈y〉) = 4

(
k

k − t+ s

)
+ 5

(
t

s

)
.

Finally, for 〈y〉 ∈ Vt, ∑
〈y〉∈Vt

d2(〈x〉, 〈y〉) = 4

(
k

t

)
− 3

(
k − t
t

)
− 4.

Hence by Equations (5) and (6) and Theorem 4.8, we get the required result.

65



P. Jamsheena et. al. / J. Algebra Comb. Discrete Appl. 12(1) (2025) 53–66

5. Conclusion

In this paper, the adjacency spectrum of the essential ideal graph of finite commutative ring Zn, for
n = {pm, pm1qm2}, where p, q are distinct primes, and m,m1,m2 ∈ N is determined. All the eigenvalues
of EZn whenever n is a product of three or four distinct primes are computed. Further, we have established
a characterization of the ring Zn for which 0 is an eigenvalue of EZn . In addition, the topological indices,
namely the Wiener index and hyper-Wiener index of the essential ideal graph of Zn for different forms
of n are calculated.
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