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Abstract: In this paper, we investigate the Gray images of codes over chain rings, leading to the derivation of
infinite families of self-orthogonal linear codes over the residue field F,. We determine the parameters
of optimal self-orthogonal and divisible linear codes. Additionally, we study the Gray images of quasi-
twisted codes, resulting in some self-orthogonal Griesmer quasi-cyclic codes. Finally, we employ the
CSS construction to derive some quantum codes based on self-orthogonal linear codes.
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1. Introduction

In recent decades, codes over rings have gathered considerable attention, enriching classical coding
theory traditionally defined over finite fields. One of the groundbreaking work in this direction was [9],
where Hammons et al. defined the Gray map ¢ : Zy — F3 by ¢(xo + 221) = (21,70 + 1), a mapping
that preserves distance when Z, is equipped with the Lee metric and F3 with the Hamming metric. They
showed that some well-known non-linear binary codes, such as Kerdock and Preparata codes, can be
obtained as the Gary images of linear codes over Z,.

The idea of defining a Gray map over a ring was generalized in subsequent works by many different
researchers. For example, Carlet extended the above Gray map to an isometry between Z,. and a subset
of F%kil; see [3]. Using the tensor product, Greferath and Schmidt generalized the mentioned Gray map
to an arbitrary finite chain ring; see [8]. They also constructed a ternary non-linear code as the Gray
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image of a linear code over Zy. Ling and Blackford introduced a Gray map for Z,r+1 with an algebraic
structure, generalizing Carlet’s definition; see [13]. Subsequently, Jitman and Udomkavanich generalized
this idea to all finite chain rings; see [10].

All the Gray maps defined in [3, 8, 10, 13] have two common properties. The first property is
that, under a specific condition, the Gray image of the mentioned rings corresponds to the first-order
generalized Reed-Muller codes. The second property is that these Gray maps are distance-preserving
mappings from the ring with the homogeneous distance to the field with the Hamming distance. The
homogeneous weight, which generalizes the weight used in the aforementioned works, was first introduced
by Constantinescu and Heise over the ring Z,, in [5], and it was further studied over chain rings in [8].
It was also described over Frobenius rings in [6]. The homogeneous weight over rings is an alternative to
the Hamming weight over finite fields. Primitive generalized Reed-Muller codes over the field F,, which
is equivalent to Reed-Muller codes in the special case when g = 2, were first introduced by Kasami et al.
in [11], These codes were also extensively examined by Assmus and Key in [1].

Let R be an arbitrary chain ring with the maximal ideal (v), nilpotency index e, and residue field
Fy. In this work, we prove that the Gray image of R" is a self-orthogonal linear code if either e > 4 in the
case ¢ = 2 or e > 3 in the case ¢ > 3. Moreover, for the special chain ring F,[y]/{7°), the Gray image of
any R-linear code is a self-orthogonal linear code. This presents a significant advantage in constructing
self-orthogonal codes over F, by just taking the Gray image of linear codes over the ring extension. A
linear [n, k] code is optimal if it has the highest minimum distance among all [n, k] linear codes. In
section 3, some optimal self-orthogonal linear codes are tabulated. A code is divisible if the weights of
all its codewords are divisible by an integer § > 1. A significant property of codes equipped with the
homogeneous weight is that they are divisible. This makes the tabulated codes in Section 3 more special
because they are not only optimal and self-orthogonal but also divisible.

We describe the Gray images of quasi-twisted codes over chain rings and present some theoretical
results. Subsequently, by applying these theoretical results, we construct many self-orthogonal Griesmer
quasi-cyclic codes. These codes are obtained as the Gray images of a particular class of quasi-twisted
codes over a chain ring, offering a construction for codes that might otherwise be challenging to build.

Quantum error-correcting codes were first introduced by Shor and independently by Stean; see
[16, 18]. Later, Calderbank, Shor and Stean presented a method to construct quantum error-correcting
codes from classical linear codes, known as the CSS construction; see [2, 17]. The CSS construction allows
the derivation of quantum error-correcting codes from self-orthogonal codes over finite fields.

The rest of the paper is organized as follows. In Section 2, the fundamental concepts of chain rings
and the Gray map defined on them are presented. Additionally, the section provides preliminaries on the
first-order generalized Reed-Muller codes. In Section 3, certain conditions are imposed on chain rings to
ensure that the Gray images defined on these chain rings are self-orthogonal. The section concludes with
a table presenting optimal self-orthogonal codes. In Section 4, a theoretical discussion on quasi-twisted
codes over chain rings and their Gray images is presented. In Section 5, some self-orthogonal Griesmer
quasi-cyclic codes as the Gray image of quasi-twisted codes are tabulated. In Section 6, employing the
CSS construction, some quantum codes are derived from the self-orthogonal Gray images of codes over
chain rings.

2. Preliminaries

A finite commutative ring R with identity 1 # 0 is called a finite chain ring if its ideals are linearly
ordered by inclusion. Obviously, every chain ring has a unique maximal ideal, denoted by (7). The
nilpotency index of a finite chain ring is the smallest positive integer e such that v¢ = 0. All ideals of R
can be expressed as

R=("2(H2--2( )20 =0

Assume that the residue field R/(y) is denoted by F,, where ¢ = p™, p is a prime number and m is
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a positive integer. Consider R* as the multiplicative group of units of R. There is an element £ of R*
with multiplicative order ¢ — 1 such that every element of x € R can be written uniquely as

z=x0+ 21y + 227+ Ty,

where z; € 7 and T = {0,1,¢,... , €972} is the Teichmiiller set of R. Clearly, x € R* if and only if
xo # 0. So [{(7?)| = ¢¢~7 for some j € {0,1,...,e — 1}. Galois rings, especially Z,, and the quasi-Galois
ring F,[v]/(7°), are examples of chain rings.

A linear code of length n over R is an R-submodule of R™. According to [14], any linear code C over
R is permutation equivalent to a code with the following generator matrix

I, Boix Boo Boz ... Bpe-1 Bye
0 vy, Bi2 iBis ... 71Bie-1 Y1B1,e
G=10 0 Al B2z ... 7iBoe1 ViBae
0 0 0 0 o L, Y ' Belie
Immediately, a code C with the given generator matrix has cardinality

0| = qXi=o (e= ki

Recall that a free linear code over R is a free R-submodule. The code C is free if and only if k; =0
foralli=2,3,...,e—1. Let": R — F, be the natural projection map, which can be extended naturally
to a projection from R™ onto Fy. We define C = {Z|r € C}. The Hamming distance between z,y € C,
denoted by d(C) or simply d, is the number of coordinates in which z and y differ from one another. If

C is a free linear code then d(C) = d(C); see [14].

2.1. Gray map

The definition of the Gray map over chain rings used in this paper is based on the approach introduced
in a recent paper [10], outlined as follows.

Let
e=&(e)+&@Ep+ -+ Enor(e)p™ !

be the p-adic representation of € € Z,m, where §;(¢) € {0,1,...,p—1} for all i € {0,...,m — 1}. Let «
be a fixed primitive element of F,m. Corresponding to every €, consider a. as

ac =&oe) +&i(e)at -+ Enoi(e)a™
Moreover, let
w = Eo(w) + & (w)p™ + -+ + € o (w)p™ T
be the p-adic representation of w € Zjm-1), where gl(w) e {0,1,...,p™ — 1}. Now the Gray map
¢:R— ngl is defined as
d(x) = (bo, b1, ..., bge—1_1)
for all x = 29 + 217 + - + 217" € R, where

e—2

bupm e = QT + Z G, ()Tl + Te1 (1)
=1

for all w € {0,...,p™ ) — 1} and € € {0,...,p" — 1}.
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Example 2.1.

1. For R = Zy, the Gray map ¢ : R — F3 coincides with the classical Gray map ¢(zo + 2x1)
(71,20 + 21).

2. For the quasi-Galois ring R = Fa[y]/(¥3), the Gray map ¢ : R — F5 is ¢(wg + 217 + 227%) =
(@2, o + T2, 21 + X2, X0 + T1 + T2).

The Gray map described above can be extended to R™ in a coordinate-wise manner. In [§], the
homogeneous weight of an element = € R , denoted by whom (), is defined as follows:

¢! v €y R\{0},
whom(x) = qe_2(q - 1) T € R\’YE_]-R’
0 z=0.

The homogeneous weight can naturally extend to R™ in a coordinate-wise manner. The homogeneous
distance between two vectors x,y in R™ is defined by whom (2 — y). The minimum homogeneous distance
of a code C, denoted by dpom(C) or simply dpom, is the minimum value of wyom (x —y) for any two distinct
x,y € C. A code is called divisible if all its codewords have weights that are divisible by an integer § > 1.
Clearly, codes over chain rings equipped with the homogeneous weight are divisible by § = ¢¢~2 for all
e > 3.

Proposition 2.2. [8] The Gray map ¢ is an isometry from (R™, dpom) to (F?qefl,d), where d denotes
the Hamming distance on F;‘qe_l.

2.2. 1% order generalized Reed-Muller codes

Our description of 1°¢ order generalized Reed-Muller (158 GRM) codes is based on [11]. Let a be a
primitive element of Fym, m(qg — 1) > 1 and n = ¢™ — 1. Let G’ be the matrix

aoo ao1 ap2 <o Qon—1
, a10 a1 a12 cee Q1p-—1
G = ;
aAm—-1,0 dm—-1,1 Am—-1,2 --- Cm—1,n—1

m—1
where 0 < j < ¢™ 2, a;; € Fy and o = 3 a;50°. The 158 GRM (or extended 15 GRM), denoted by
i=0
Rq(1,m), has a generator matrix obtained from G’ by adding a column of Os and a row of 1s. In fact,
the generator matrix of R4(1,m) can be viewed as a matrix with the following structure: the first row is
all one vector and the other rows construct a matrix with all possible g-ary m-tuples as the columns. It
is proved that the dimension of the code R,(1,m) is k = m + 1 and the minimum Hamming distance is
d = q™ (g — 1). Moreover, the minimum distance of the dual code for the 15* GRM code, denoted by
d*, is given by d+ = (R + 1)¢9, where R is the remainder and @Q the quotient from dividing 2 by ¢ — 1;
see [1, 11].

3. The Gray image of codes over chain rings

In this section, we study the properties of the Gray image of a linear code C over the chain ring
R. In the following, C will always denote ¢(C). Note that C is a divisible code of length ng®~! over
the alphabet F,. Let C1 denote the dual code of C concerning the standard inner product. We say C is
self-orthogonal if C C C+.
The next theorem gives an upper and lower bound on the minimum Hamming distance for C.
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Theorem 3.1. Let C be a free linear code over R with the minimum Hamming distance d(C). Then

¢°*(q = 1)d(C) < dpom(C) = d(C) < ¢°*d(C).
Proof. Since d(C) = d(C), there exists + € C such that d(Z) = d(C). So z has exactly d(C) unit
coordinates, meaning d(C) coordinates of v*~ !z € C are in v* 'R and the rest are zero. Therefore
Whom (V¢ 1z) = ¢°~1d(C), giving the upper bound. On the other hand, for every codeword x € C we
have d(z) > d(C) = d(C), Wthh means x has at least d(C) unit coordlnates Thus, the homogeneous
weight of C'is at least d(C)q°~2(q — 1), giving the left-hand side inequality. O

Define the matrix A in such a way that the coefficients of Ty, T1, ..., Te—1 in the definition of b; in (1)
form its 3" column, i.c.

Qe Qe Qe e ey,
ag, (wo) ag (w1) ag (w2) ... ag (wge-1-1)
A= : : :
ag,_(wo) ag _ (w1) ag  (w2) ... ag  (wge-1-1)
1 1 1 ... 1

For example, if R = F3[y]/(y3) is a quasi-Galois ring, then the matrix A is given by
012012012
A=1000111222
111111111
and if R = Fy[v]/(73) is a quasi-Galois ring, then the matrix A is given by
lal+a 01l al+a 01 al+a 0 1 a l1+a
00 0 111 1l aaa a l14+al4+al4+al+ta
11 1 111 1 111 1 1 1 1 1

gl
0
A=10
1

Let e > 3 in the case ¢ = 2, e > 2 in the case ¢ = 3, and e is arbitrary in other cases. In all cases,
we have m(q —1) > 1, where m = e — 1. From the deﬁmtlon of the 1°* GRM codes, it is evident that A
is equivalent to the generator matrix of the code Ry(1,m). For x = zg + 217 + -+ + z_17*" ' € R, we
have ¢(z) = (To, T1, ..., Te—1)A, which means ¢(z) can be expressed as a linear combination of the rows

A. Hence, the Gray image ¢ : R — IFZF1 is the 15 GRM in all cases.

Remark 3.2. The map ¢ is not linear in general. For example, in the case of R = Zym, the assumption
of linearity implies that

p times
— N
0=0¢1)+ -+ ¢(1) =o(p) =(0,1,0,...,0)4A # 0,

which is a contradiction. However, it is clear that ¢ is linear over the quasi-Galois ring R = F4[v]/{(7°),
which implies C = ¢(R) is always linear.

3.1. Self-orthogonal codes
Theorem 3.3. Suppose that R = F,[v]/(v¢) is a quasi-Galois ring with one of the following conditions:

1. ¢g=2 and e > 4.
2.q>3 and e > 3.

143
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Then C = ¢(R) is a self-orthogonal code with parameters [¢°~1,e,q* 2(q — 1)].

Proof. The preceding discussion precisely gives the parameters of C. Assume that 1 < i < e — 1 and
A; denotes the rows of A. It is easily seen that

e for all 7 such that i # e — 1 we have
Aidi = T (02, a2 e, ),

e for all 4, j such that i # j and i,j # e — 1 we have
AiAj = (Zz%l(afo T Qg+t a€q71)27

e for all 4, j such that ¢ # j and either i = e —1 or j = e — 1 we have
e—1
AiAj = qT(afo + e e aeq_l)v

L4 Ae—lAe—l = qeil'
Hence, if one of the conditions (1) or (2) holds, we get AA* = 0, where ¢ denotes the transpose of the

matrix A. Let ¢ = 29 + 217+ -+ + Ze—17*" ! € R. Then, for each y = yo + 17+ -+ + Ye—17*" ! € R we
have

$(@)p(y) = (o, - -, Te—1) A) (o> - -1 Te1)A)'
= (507 v afefl)AAt(y07 te ’ye—l)t
=0,
implying that ¢(x) € (¢(R))*. We have proved that C C C*t. O

Corollary 3.4. Under the conditions of the previous theorem, C = ¢(R™) is a self-orthogonal code with
parameters [ng®~ 1, e,ng*"2(q — 1)].

From now on, we denote the quasi-Galois ring R = F,[v]/(7°) by R+ ¢, when ¢ and e satisfy one of
the following conditions:

1. ¢g=2and e > 4.
2.q>3and e > 3.

Theorem 3.5. Let the linear code C of length p over the quasi-Galois ring R = R, . 4 be generated by
vectors

{(1’ ]‘7 Tt 1)a (0776_17 2’76_1, ey (p - 1)’76_1)}a
where ¢ = p™, p is a prime number and m is a positive integer. Then, C = ¢(C) is a self-orthogonal

linear code with parameters [pg®~ ', e +1,(p — 1)g® 1.

Proof. Every codeword of C has a homogeneous weight equal to either pg®=2(¢ — 1) or (p — 1)¢°~ .
We have

pa* 2(g—1) = pmV(p-1) =g (p—1).
Now use Corollary 3.4. O

In the next two theorems, let C’ be an arbitrary code over F, with parameters [n,k,d] and the

generator matrix [Ix]A]. We aim to construct some self-orthogonal codes over F, by using the existing
code C'.

Theorem 3.6. Let R = R, .4 be a quasi-Galois ring. If C is a linear code of length n over R generated
by [y L |ye L A], then C = ¢(C) is a self-orthogonal linear code with parameters [¢° 1n, k,q®'d].
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Proof. All codewords of C' have the homogeneous weight ¢°~'d. Moreover, self-orthogonality follows
from Theorem 3.3. 0

Theorem 3.7. Let R = R, . 4 be a quasi-Galois ring. If C is a linear code generated by [I;|B] such that

B is a matriz over R\(y) and B = A, then C = ¢(C) is a self-orthogonal linear code with parameters
[¢°"tn, ke, q®2%(q — 1)d].

Proof. Every codeword of C has the homogeneous weight equal to either ¢¢~2(¢ — 1)d or ¢°~'d. Hence
dhom(C) = ¢°2(q — 1)d. Moreover, self-orthogonality follows from Theorem 3.3. O

Example 3.8. We applied the above theorems and corollary to present some optimal (see Marcus Grassl’s
table in [7]) self-orthogonal codes in Table 1. In Table I, [I|A] is considered as an arbitrary [n, k, d]-linear
code over F, and C is the code constructed in Theorem 3.6. In Table II, C is the code constructed in
Theorem 3.5. Finally, Table III arises from Corollary 3.4.

Table 1. Optimal self-orthogonal linear codes

Table I Table 11 Table III
R [Zk|A] #(C) R ?(C) R n P(R")
Ryap [16,5, 8] [128, 5, 64] Ry 5,2 [256,9, 128] Ry 42 1<n<6 [8n,4,4n]
Ry5,2 [3,2,2] [48,2, 32] Ry [128, 8, 64] Ry52 1<n<6 [16n, 5, 8n]
Ry 6,2 [7,3,4] [224, 3,128] Ry 3,3 [27,4,18] Ry 6,2 1<n<8 [32n, 6, 16n]
Ry 3,3 [3,2,2] [27,2,18] Ry [81, 5, 54] Ry33 1<n<6 [9n, 3, 6n]
Rya3 [4,2,3] [108, 2, 81] Ry5,3 [243, 6, 81] Rya3 1<n<9 [27n,4,18n)]
Ry3.4 [5,2,4] [80, 2, 64] Ry35 [125, 4, 100] Ry 3.4 1<n<8 [16n,3,12n)]

4. Quasi-twisted codes and their images

Denote the standard right shift operator on R™ by T. For a unit A € R*, the A-shift operator T
on R™ is defined as T (ag,...,an-1) = (Aan—1,00,a1,...,a,—2). Recall that a linear code C of length n
over R is called cyclic if T(C') = C, and A-constacyclic if T)(C') = C. Suppose that n = ml. A linear code
C of length n over R is called I-quasi-cyclic (I-QC) if T'(C) = C, and (\,[)-quasi-twisted ((\,1)-QT) if
T{(C) = C. Obviously QT-codes can be considered as a generalization of all cyclic, constacyclic and QC
codes.

Remark 4.1. Suppose that ¢ is the Gray map from R™ to Fgﬁl and A € R*. Then ¢ has the following
properties:

1. poT=T9"" o¢.
2. poT\ = T)‘\f_1 o ¢, where = denotes permutation equivalence.
Proof. Using the definitions yields the part (1)(similar to subsection 4.1 in [19]). It is well-known

that the unit element A can be expressed as A = Ao + A1y, where Ao, \1 € F; and A9 # 0. Hence,
a € v 1R\{0} if and only if Aa € ¥*"1 R\ {0}, meaning wyom (@) = whnom(Aa). Therefore, for any element

a = (ag,...,an—1) € R™, ¢(Aa) is permutation equivalent to ¢(a). So, we have ¢ o T = Tfﬁ_l o ¢. O

Applying Lemma 4.1, the following theorem is straightforward.
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a(z) = (a 6(gvg .

Theorem 4.2.

1. If C is a cyclic code of length n over R, then ¢(C) is a ¢°~*-QC code of length q¢°~'n.
2. If C is a I-QC code of length n over R, then ¢(C) is a ¢°"11-QC code of length q¢~'n.

3. If C is a M\-constacyclic code of length n over R, then ¢(C) is equivalent to a ¢°~1-QC code of length
e—1
¢ n.

4. If C is a (\,1)-QT code of length n over R, then ¢(C) is equivalent to a ¢°~t1-QC code of length
e—1
g 'n.

4.1. One-generator QT codes

By the correspondence between vectors in R™ and polynomials of degree m, it is well-known that a
cyclic code of length m over R can be considered as an ideal in R,,, = R[x]/(x™ —1), a A-constacyclic code
of length m as an ideal in R,, » = R[z]/{(z™ — A), an I-QC code of length n = ml as an R,,-submodule
in B!, and finally, a (\,1)-QT code of length n = ml as an R,, -submodule in Rﬁn’)\. We know that
R, and R, » are both principal ideal rings. Therefore, any A-constacylic code (and any cyclic code as a
particular case) is generated by a polynomial, namely a(z) = ag + a1x + ... + Am_1z™™ 1 € Ry, and
has a generator matrix in the following form

ag a1 as ... Qm-—1

)\am_l ag a ... Gm-—-2

G=|Xm_o dam_1 ay ... aGm_3
)\(11 )\LLQ )\CL3 ‘e Qg

In some contexts, this matrix is called A-twistulant or A-circulant. Generally, R! and Rﬁn’ y are not prin-
cipal ideal rings. This complicates the study of QT-codes (and QC codes as particular cases), prompting
most literature to focus on a special case, namely the one-generator QT codes. A QT code C' is called one-
generator if it is generated by a single element a(z) = (V) (z),...,aV(x)) € Rﬁny)\ as an R, y-submodule
of Rm B!

C = (a()) = {(@(2)g(@),...,a" (@)g(2)) | g(x) € Rm}-

As a result, the generator matrix of C' is in the form [G1|G2|. .. Gi], where each G; is an A-twistulant
matrix of size m x m related to the polynomial (¥ (z).

The following theorem, which has a cyclic version in [15], can be easily obtained.

Theorem 4.3. Let C = (g(x)) be a A-constacyclic code of length m over the chain ring R, where g(x)
is a monic polynomial with deg g(x) = m —k. Then C is a free code of rank k if and only if g(z)|z™ — \.

By Theorem 4.3, the following theorem can be proven similarly to Theorem 4.12 in [19].

Theorem 4.4. Suppose that C is a one-generator QT-code generated by the polynomial a(x) =
(aM(2)g(x),...,aD(x)g(x)), where g(z) is a monic polynomial in R, x such that 2™ — X = g(z)h(z) for
some monic polynomial h(x) in Ry, x, and a\)(x) is relatively prime to h(x) for alli=1,...,1. Then C
is a free code of rank m — deg g(x) and ¢(C) is of rank e(m — deg g(x)).

By Theorem 3.1, the following theorem can be proven similarly to Corollary 4.14. in [19].

Theorem 4.5. Let C be a (A\1)-QT code of length n = ml over the chain ring R with a generator
,aD(x)). If the number of unit coefficients of aV(x) is d; for i = 1,...,1, then

dnom(C) < @ Mdy + - + du).
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5. Griesmer codes

Let C be a linear code over F, with the parameters [n, k, d]. The Griesmer bound, a lower bound on
the length, is defined as n > Zi:ol %W, where [2] denotes the ceiling function, i.e., the smallest integer
greater than or equal to x. Linear codes meeting this bound are called Griesmer codes.

Theorem 5.1. Suppose that R is a quasi-Galois ring and g(z) = 1+z + 2% + -+ 2™ € R, \. Let
C be a one-generator QT-code of length n = ml generated by a(x) = (g(x),...,g(x)). Then

1. ¢(C) is a ¢°"11-QC code with parameters [¢° 'n,e, ¢ 2(q — 1)n).
2. For alln < q, ¢(C) is a Griesmer code.
Proof. We have 2™ — 1 = (z — 1)g(x). Then, by Theorem 4.4, the dimension of ¢(C) is e. Since C is

the repetition code of length n, the minimum distance of ¢(C') can be computed easily, which completes
the proof of the statement (1). To prove the statement (2), note that if n < ¢, we have [q%qln] =n. So

{qu(go_l)nw 4t {qeqq(gjl)”w =(q-Dn(@ 2+ ¢ 2+ +q+ 1+ {qglnw

:(q—l)n(l_qe_l) +n

1—¢q

and hence ¢(C') meets the Griesmer bound (note that if n > g, then there are ¢, r such that n = kq + r,
and so [%n} =n — k, and hence we do not have Griesmer code). O

Corollary 5.2. Suppose that R = Ry .4 and g(x) = 1+ x4+ 2% + -+ 2™ ! € R, 5. Let C be a
one-generator QT-code of length n = ml generated by a(x) = (g(x),...,9(x)). If n < q, then ¢(C) is a
self-orthogonal Griesmer ¢°~*1-QC code with parameters [¢° 'n,e,¢*~2(q — 1)n].

Example 5.3. All codes in Table 2 are self-orthogonal Geriesmer ¢¢~11-QC codes, arising from Corollary
5.2. The code labelled with x appears in Chen’s table; see [4].

Table 2. Self-orthogonal Geriesmer ¢° !I-QC codes

q=2,e=4qg=3,e=3q=3,e=4q=4,e=3qg=4,e=4qg=5,e=3 qg=T7,e=3
[n,k,d]| [8n,4,4n] [9n,3,6n] [27n,4,18n] [16n,3,12n] [64n,4,48n] [25n,3,20n] [49n, 3,42n]
n= 8,4, 4] 9,3,6]  [27,4,18]  [16,3,12]  [64,4,48]  [25,3,20]  [49,3,42]
n= [18,3,12]  [54,4,36] [32,3,24] [128,4,96] [50,3,40] [98,3,84]
n= 48,3,36]" [192,4,144] [75,3,60] [147,3,126]
n—4 [100,3,80] [196, 3, 168]
n= 245, 3,210]
n=6 294, 3,252

Theorem 5.4. Let ¢ = p and C be the linear code over R = R, ., constructed in Theorem 5.5. Then
#(C) is a self-orthogonal Griesmer code with parameters [¢°,e + 1,(q — 1)g™1].



M. Bagalan et. al. / J. Algebra Comb. Discrete Appl. 11(2) (2024) 189-150

Proof. We have

[(q‘;}qeﬂ ot [(q—;e)qelw =(@-D)@ "+ P+ g+ )+ [q;ﬂ

which gives the result. O

Example 5.5. Self-orthogonal Geriesmer codes in Table 3 are constructed by Theorem 5.4.

Table 3. Self-orthogonal Geriesmer codes

q/e 3 4 5

2 [16,5,8]  [32,6,16]
3| [27,4,18] [81,5,54] [243,6,162]
5 |[125,4,100] [625,5, 500]

6. Quantum codes

Let C? be a g-dimensional vector space, representing the state of a quantum mechanical system. A
g-ary quantum error-correcting code of length n and dimension k is a k-dimensional subspace of the n-fold
tensor product C? ® ... ® C%. It is called an [[n, k, d]]-linear code if d = 2t + 1, where ¢ is the maximum
number of errors that the code can correct. For more information about quantum error-correcting codes,
readers may refer to [12].

Theorem 6.1. (CSS Construction; see [2, 17] ) Let C1 and Cy be two linear codes over the field F, with
parameters [n,ki,d1] and [n, ke, ds], respectively, such that Co C Cy. Then, there exists a quantum code
with parameters [[n, ki — kg, min {dy, ds }]], where dy denotes the Hamming distance of the dual code Cy .

Corollary 6.2. Let C be a self-orthogonal [n,k,d]-linear code over the field F,. Then, there exists a
quantum error-correcting code with parameters [[n,n — 2k, d*]], where d*+ denotes the Hamming distance

of C*.
e—1 e—1 __

Theorem 6.3. There exists a family of quantum error-correcting codes with parameters [[¢° ', q
2e,dt]], where dt = 4 in the case ¢ = 2 and d*- = 3 in the case q > 3.

Proof. If R = R,.q, then according to Theorem 3.3, the codes C = ¢(R) is self-orthogonal with
parameters [¢°"1,e,q° 2(q — 1)]. On the other hand, C is a 1" GRM code. So d*+ = (R + 1)¢?, where
2=(¢—1)Q+Rand 0 < R < q— 1. Then, d*- = 4 in the case ¢ = 2 and d* = 3 in the case ¢ > 3. Now
we apply Corollary 6.2. O

Theorem 6.4. If n > 2, then there exists a family of quantum error-correcting codes with parameters
[[¢¢tn,q* n — 2¢,2]].

Proof. If R = Ry.q, then according to Corollary 3.4, C = ¢(R"™) is a self-orthogonal code with
parameters [ng®~!, e,ng* (¢ — 1)]. Assume that d+ = 1. Without loss of generality, there exists 0 #
x = (20,0,...,0) € gi)(R")L with the Hamming weight 1. On the other hand, y = (1,1,...,1) € ¢(R"™)
because (0,0,...,1) € R". Therefore, 0 = x -y = g, which is a contradiction. So d*- > 2. Now, let

d+ > 3. Applying the sphere-packing bound on (b(R”)J‘7 we obtain 1+ ¢°~!'n(q — 1) < ¢°. This implies

qcl_l + ¢ < 2, which is impossible with ¢ > 2, ¢ > 2 and n > 2. Therefore d- = 2. Now, we apply

Corollary 6.2. O
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Example 6.5. In Table / some examples of quantum codes with minimum distances 2,3 and 4 are
presented. In Table I, quantum codes are constructed by Theorem 6.3 and in Table II, by Theorem 6.4.

Table 4. Some quantum codes from our constructions

Table I Table II
R o®) _ mkdl R _n o&)  [mhd
R,3,7 [49,3,42] [[49,43,3]] R,33 3 [27,3,18] [[27,21,2]]
R,43 [27,4,18] [[27,19,3]] R,35 2 [50,3,40] [50,44,2]
R4, [64,4,48] [[64,56,3]] Ry,37 2 [98,3,84] [[98,92,2]]
Rya2 [8,4,4] [[8,0,4]] Rya43 2 [54,4,36] [[54,46,2]]
R,52 [16,5,8] [[16,6,4]] R,34 2 [32,3,24] [[32,26,2]]
R,6,2 [32,6,16] [[32,20,4]] Rya2 2 [16,4,8] [[16,8,2]]

7. Conclusion

In this paper, we have focused on the study of the Gray image ¢ (introduced by Jitman; see [10]) of
codes over chain rings and its applications. We have presented a new interpretation of this Gray image
associated with 1%¢ order generalized Reed-Muller codes. We have proved that the Gray image ¢(R),
where R is a chain ring satisfying in Theorem 3.3, is a self-orthogonal linear code. As a result, we have
found a class of self-orthogonal linear codes over F, with rather simple constructions. We have described
the Gray image of quasi-twisted codes over chain rings. Then, we have constructed self-orthogonal
Geriesmer quasi-cyclic codes as the Gray image of special quasi-twisted codes. Finally, we have derived
some quantum codes by the CSS construction.
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