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Abstract: In this paper, we investigate the Gray images of codes over chain rings, leading to the derivation of
infinite families of self-orthogonal linear codes over the residue field Fq. We determine the parameters
of optimal self-orthogonal and divisible linear codes. Additionally, we study the Gray images of quasi-
twisted codes, resulting in some self-orthogonal Griesmer quasi-cyclic codes. Finally, we employ the
CSS construction to derive some quantum codes based on self-orthogonal linear codes.
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1. Introduction

In recent decades, codes over rings have gathered considerable attention, enriching classical coding
theory traditionally defined over finite fields. One of the groundbreaking work in this direction was [9],
where Hammons et al. defined the Gray map φ : Z4 → F2

2 by φ(x0 + 2x1) = (x1, x0 + x1), a mapping
that preserves distance when Z4 is equipped with the Lee metric and F2

2 with the Hamming metric. They
showed that some well-known non-linear binary codes, such as Kerdock and Preparata codes, can be
obtained as the Gary images of linear codes over Z4.

The idea of defining a Gray map over a ring was generalized in subsequent works by many different
researchers. For example, Carlet extended the above Gray map to an isometry between Z2k and a subset
of F2k−1

2 ; see [3]. Using the tensor product, Greferath and Schmidt generalized the mentioned Gray map
to an arbitrary finite chain ring; see [8]. They also constructed a ternary non-linear code as the Gray
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image of a linear code over Z9. Ling and Blackford introduced a Gray map for Zpk+1 with an algebraic
structure, generalizing Carlet’s definition; see [13]. Subsequently, Jitman and Udomkavanich generalized
this idea to all finite chain rings; see [10].

All the Gray maps defined in [3, 8, 10, 13] have two common properties. The first property is
that, under a specific condition, the Gray image of the mentioned rings corresponds to the first-order
generalized Reed-Muller codes. The second property is that these Gray maps are distance-preserving
mappings from the ring with the homogeneous distance to the field with the Hamming distance. The
homogeneous weight, which generalizes the weight used in the aforementioned works, was first introduced
by Constantinescu and Heise over the ring Zm in [5], and it was further studied over chain rings in [8].
It was also described over Frobenius rings in [6]. The homogeneous weight over rings is an alternative to
the Hamming weight over finite fields. Primitive generalized Reed-Muller codes over the field Fq, which
is equivalent to Reed-Muller codes in the special case when q = 2, were first introduced by Kasami et al.
in [11], These codes were also extensively examined by Assmus and Key in [1].

Let R be an arbitrary chain ring with the maximal ideal 〈γ〉, nilpotency index e, and residue field
Fq. In this work, we prove that the Gray image of Rn is a self-orthogonal linear code if either e > 4 in the
case q = 2 or e > 3 in the case q > 3. Moreover, for the special chain ring Fq[γ]/〈γe〉, the Gray image of
any R-linear code is a self-orthogonal linear code. This presents a significant advantage in constructing
self-orthogonal codes over Fq by just taking the Gray image of linear codes over the ring extension. A
linear [n, k] code is optimal if it has the highest minimum distance among all [n, k] linear codes. In
section 3, some optimal self-orthogonal linear codes are tabulated. A code is divisible if the weights of
all its codewords are divisible by an integer δ > 1. A significant property of codes equipped with the
homogeneous weight is that they are divisible. This makes the tabulated codes in Section 3 more special
because they are not only optimal and self-orthogonal but also divisible.

We describe the Gray images of quasi-twisted codes over chain rings and present some theoretical
results. Subsequently, by applying these theoretical results, we construct many self-orthogonal Griesmer
quasi-cyclic codes. These codes are obtained as the Gray images of a particular class of quasi-twisted
codes over a chain ring, offering a construction for codes that might otherwise be challenging to build.

Quantum error-correcting codes were first introduced by Shor and independently by Stean; see
[16, 18]. Later, Calderbank, Shor and Stean presented a method to construct quantum error-correcting
codes from classical linear codes, known as the CSS construction; see [2, 17]. The CSS construction allows
the derivation of quantum error-correcting codes from self-orthogonal codes over finite fields.

The rest of the paper is organized as follows. In Section 2, the fundamental concepts of chain rings
and the Gray map defined on them are presented. Additionally, the section provides preliminaries on the
first-order generalized Reed-Muller codes. In Section 3, certain conditions are imposed on chain rings to
ensure that the Gray images defined on these chain rings are self-orthogonal. The section concludes with
a table presenting optimal self-orthogonal codes. In Section 4, a theoretical discussion on quasi-twisted
codes over chain rings and their Gray images is presented. In Section 5, some self-orthogonal Griesmer
quasi-cyclic codes as the Gray image of quasi-twisted codes are tabulated. In Section 6, employing the
CSS construction, some quantum codes are derived from the self-orthogonal Gray images of codes over
chain rings.

2. Preliminaries

A finite commutative ring R with identity 1 6= 0 is called a finite chain ring if its ideals are linearly
ordered by inclusion. Obviously, every chain ring has a unique maximal ideal, denoted by 〈γ〉. The
nilpotency index of a finite chain ring is the smallest positive integer e such that γe = 0. All ideals of R
can be expressed as

R = 〈γ0〉 ⊇ 〈γ1〉 ⊇ · · · ⊇ 〈γe−1〉 ⊇ 〈γe〉 = 0.

Assume that the residue field R/〈γ〉 is denoted by Fq, where q = pm, p is a prime number and m is
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a positive integer. Consider R× as the multiplicative group of units of R. There is an element ξ of R×
with multiplicative order q − 1 such that every element of x ∈ R can be written uniquely as

x = x0 + x1γ + x2γ
2 + · · ·+ xe−1γ

e−1,

where xi ∈ T and T = {0, 1, ξ, . . . , ξq−2} is the Teichmüller set of R. Clearly, x ∈ R× if and only if
x0 6= 0. So |〈γj〉| = qe−j for some j ∈ {0, 1, . . . , e− 1}. Galois rings, especially Zq, and the quasi-Galois
ring Fq[γ]/〈γe〉, are examples of chain rings.

A linear code of length n over R is an R-submodule of Rn. According to [14], any linear code C over
R is permutation equivalent to a code with the following generator matrix

G =


Ik0 B0,1 B0,2 B0,3 . . . B0,e−1 B0,e

0 γ1Ik1 γ1B1,2 γ1B1,3 . . . γ1B1,e−1 γ1B1,e

0 0 γ21Ik2 γ21B2,3 . . . γ21B2,e−1 γ21B2,e

...
...

...
...

...
...

...
0 0 0 0 . . . γe−11 Ike−1

γe−11 Be−1,e

 .

Immediately, a code C with the given generator matrix has cardinality

|C| = q
∑e−1

i=0 (e−i)ki .

Recall that a free linear code over R is a free R-submodule. The code C is free if and only if ki = 0
for all i = 2, 3, . . . , e− 1. Let¯: R→ Fq be the natural projection map, which can be extended naturally
to a projection from Rn onto Fnq . We define C = {x|x ∈ C}. The Hamming distance between x, y ∈ C,
denoted by d(C) or simply d, is the number of coordinates in which x and y differ from one another. If
C is a free linear code then d(C) = d(C); see [14].

2.1. Gray map

The definition of the Gray map over chain rings used in this paper is based on the approach introduced
in a recent paper [10], outlined as follows.

Let

ε = ξ0(ε) + ξ1(ε)p+ · · ·+ ξm−1(ε)pm−1

be the p-adic representation of ε ∈ Zpm , where ξi(ε) ∈ {0, 1, . . . , p− 1} for all i ∈ {0, . . . ,m− 1}. Let α
be a fixed primitive element of Fpm . Corresponding to every ε, consider αε as

αε = ξ0(ε) + ξ1(ε)α+ · · ·+ ξm−1(ε)αm−1.

Moreover, let

w = ξ̃0(w) + ξ̃1(w)pm + · · ·+ ξ̃e−2(w)pm(e−2)

be the p-adic representation of w ∈ Zpm(e−1) , where ξ̃i(w) ∈ {0, 1, . . . , pm − 1}. Now the Gray map
φ : R→ Fqe−1

q is defined as

φ(x) = (b0, b1, . . . , bqe−1−1)

for all x = x0 + x1γ + · · ·+ xe−1γ
e−1 ∈ R, where

bwpm+ε = αεx0 +

e−2∑
l=1

αξ̃l−1(w)xl + xe−1 (1)

for all w ∈ {0, . . . , pm(e−1) − 1} and ε ∈ {0, . . . , pm − 1}.
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Example 2.1.

1. For R = Z4, the Gray map φ : R → F2
2 coincides with the classical Gray map φ(x0 + 2x1) =

(x1, x0 + x1).

2. For the quasi-Galois ring R = F2[γ]/〈γ3〉, the Gray map φ : R → F4
2 is φ(x0 + x1γ + x2γ

2) =
(x2, x0 + x2, x1 + x2, x0 + x1 + x2).

The Gray map described above can be extended to Rn in a coordinate-wise manner. In [8], the
homogeneous weight of an element x ∈ R , denoted by whom(x), is defined as follows:

whom(x) =

 qe−1 x ∈ γe−1R\{0},
qe−2(q − 1) x ∈ R\γe−1R,
0 x = 0.

The homogeneous weight can naturally extend to Rn in a coordinate-wise manner. The homogeneous
distance between two vectors x, y in Rn is defined by whom(x− y). The minimum homogeneous distance
of a code C, denoted by dhom(C) or simply dhom, is the minimum value of whom(x−y) for any two distinct
x, y ∈ C. A code is called divisible if all its codewords have weights that are divisible by an integer δ > 1.
Clearly, codes over chain rings equipped with the homogeneous weight are divisible by δ = qe−2 for all
e > 3.

Proposition 2.2. [8] The Gray map φ is an isometry from (Rn, dhom) to (Fnqe−1

q , d), where d denotes
the Hamming distance on Fnqe−1

q .

2.2. 1st order generalized Reed-Muller codes

Our description of 1st order generalized Reed-Muller (1st GRM) codes is based on [11]. Let α be a
primitive element of Fqm , m(q − 1) > 1 and n = qm − 1. Let G′ be the matrix

G′ =


a00 a01 a02 . . . a0,n−1
a10 a11 a12 . . . a1,n−1
...

...
...

...
...

am−1,0 am−1,1 am−1,2 . . . am−1,n−1

 ,

where 0 6 j 6 qm−2, aij ∈ Fq and αj =
m−1∑
i=0

aijα
i. The 1st GRM (or extended 1st GRM), denoted by

Rq(1,m), has a generator matrix obtained from G′ by adding a column of 0s and a row of 1s. In fact,
the generator matrix of Rq(1,m) can be viewed as a matrix with the following structure: the first row is
all one vector and the other rows construct a matrix with all possible q-ary m-tuples as the columns. It
is proved that the dimension of the code Rq(1,m) is k = m+ 1 and the minimum Hamming distance is
d = qm−1(q − 1). Moreover, the minimum distance of the dual code for the 1st GRM code, denoted by
d⊥, is given by d⊥ = (R+ 1)qQ, where R is the remainder and Q the quotient from dividing 2 by q − 1;
see [1, 11].

3. The Gray image of codes over chain rings

In this section, we study the properties of the Gray image of a linear code C over the chain ring
R. In the following, C will always denote φ(C). Note that C is a divisible code of length nqe−1 over
the alphabet Fq. Let C⊥ denote the dual code of C concerning the standard inner product. We say C is
self-orthogonal if C ⊆ C⊥.
The next theorem gives an upper and lower bound on the minimum Hamming distance for C.
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Theorem 3.1. Let C be a free linear code over R with the minimum Hamming distance d(C). Then

qe−2(q − 1)d(C) 6 dhom(C) = d(C) 6 qe−1d(C).

Proof. Since d(C) = d(C), there exists x ∈ C such that d(x) = d(C). So x has exactly d(C) unit
coordinates, meaning d(C) coordinates of γe−1x ∈ C are in γe−1R and the rest are zero. Therefore
whom(γe−1x) = qe−1d(C), giving the upper bound. On the other hand, for every codeword x ∈ C we
have d(x) > d(C) = d(C), which means x has at least d(C) unit coordinates. Thus, the homogeneous
weight of C is at least d(C)qe−2(q − 1), giving the left-hand side inequality.

Define the matrix A in such a way that the coefficients of x0, x1, ..., xe−1 in the definition of bi in (1)
form its ith column, i.e.

A =


αε0 αε1 αε2 . . . αεqe−1−1

αξ̃0(w0) αξ̃0(w1) αξ̃0(w2) . . . αξ̃0(wqe−1−1)
...

...
...

. . .
...

αξ̃e−3
(w0) αξ̃e−3

(w1) αξ̃e−3
(w2) . . . αξ̃e−3

(wqe−1−1)

1 1 1 . . . 1

 .

For example, if R = F3[γ]/〈γ3〉 is a quasi-Galois ring, then the matrix A is given by

A =

0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1

 ,

and if R = F4[γ]/〈γ3〉 is a quasi-Galois ring, then the matrix A is given by

A =

0 1 α 1 + α 0 1 α 1 + α 0 1 α 1 + α 0 1 α 1 + α
0 0 0 0 1 1 1 1 α α α α 1 + α 1 + α 1 + α 1 + α
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 .

Let e > 3 in the case q = 2, e > 2 in the case q = 3, and e is arbitrary in other cases. In all cases,
we have m(q − 1) > 1, where m = e− 1. From the definition of the 1st GRM codes, it is evident that A
is equivalent to the generator matrix of the code Rq(1,m). For x = x0 + x1γ + · · · + xe−1γ

e−1 ∈ R, we
have φ(x) = (x0, x1, ..., xe−1)A, which means φ(x) can be expressed as a linear combination of the rows
A. Hence, the Gray image φ : R→ Fqe−1

q is the 1st GRM in all cases.

Remark 3.2. The map φ is not linear in general. For example, in the case of R = Zpm , the assumption
of linearity implies that

0 =

p times︷ ︸︸ ︷
φ(1) + · · ·+ φ(1) = φ(p) = (0, 1, 0, . . . , 0)A 6= 0,

which is a contradiction. However, it is clear that φ is linear over the quasi-Galois ring R = Fq[γ]/〈γe〉,
which implies C = φ(R) is always linear.

3.1. Self-orthogonal codes

Theorem 3.3. Suppose that R = Fq[γ]/〈γe〉 is a quasi-Galois ring with one of the following conditions:

1. q = 2 and e > 4.

2. q > 3 and e > 3.
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Then C = φ(R) is a self-orthogonal code with parameters [qe−1, e, qe−2(q − 1)].

Proof. The preceding discussion precisely gives the parameters of C. Assume that 1 6 i 6 e − 1 and
Ai denotes the rows of A. It is easily seen that

• for all i such that i 6= e− 1 we have
AiAi = qe−1

q (α2
ε0 + α2

ε1 + · · ·+ α2
εq−1

),

• for all i, j such that i 6= j and i, j 6= e− 1 we have
AiAj = qe−1

q2 (αε0 + αε1 + · · ·+ αεq−1
)2,

• for all i, j such that i 6= j and either i = e− 1 or j = e− 1 we have
AiAj = qe−1

q (αε0 + αε1 + · · ·+ αεq−1
),

• Ae−1Ae−1 = qe−1.

Hence, if one of the conditions (1) or (2) holds, we get AAt = 0, where t denotes the transpose of the
matrix A. Let x = x0 + x1γ + · · ·+ xe−1γ

e−1 ∈ R. Then, for each y = y0 + y1γ + · · ·+ ye−1γ
e−1 ∈ R we

have

φ(x)φ(y) = ((x0, . . . , xe−1)A)((y0, . . . , ye−1)A)t

= (x0, . . . , xe−1)AAt(y0, . . . , ye−1)t

= 0,

implying that φ(x) ∈ (φ(R))⊥. We have proved that C ⊆ C⊥.

Corollary 3.4. Under the conditions of the previous theorem, C = φ(Rn) is a self-orthogonal code with
parameters [nqe−1, e, nqe−2(q − 1)].

From now on, we denote the quasi-Galois ring R = Fq[γ]/〈γe〉 by Rγ,e,q when q and e satisfy one of
the following conditions:

1. q = 2 and e > 4.

2. q > 3 and e > 3.

Theorem 3.5. Let the linear code C of length p over the quasi-Galois ring R = Rγ,e,q be generated by
vectors

{(1, 1, . . . , 1), (0, γe−1, 2γe−1, . . . , (p− 1)γe−1)},

where q = pm, p is a prime number and m is a positive integer. Then, C = φ(C) is a self-orthogonal
linear code with parameters [pqe−1, e+ 1, (p− 1)qe−1].

Proof. Every codeword of C has a homogeneous weight equal to either pqe−2(q − 1) or (p − 1)qe−1.
We have

pqe−2(q − 1) > pm(e−1)(p− 1) = qe−1(p− 1).

Now use Corollary 3.4.

In the next two theorems, let C ′ be an arbitrary code over Fq with parameters [n, k, d] and the
generator matrix [Ik|A]. We aim to construct some self-orthogonal codes over Fq by using the existing
code C ′.

Theorem 3.6. Let R = Rγ,e,q be a quasi-Galois ring. If C is a linear code of length n over R generated
by [γe−1Ik|γe−1A], then C = φ(C) is a self-orthogonal linear code with parameters [qe−1n, k, qe−1d].
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Proof. All codewords of C have the homogeneous weight qe−1d. Moreover, self-orthogonality follows
from Theorem 3.3.

Theorem 3.7. Let R = Rγ,e,q be a quasi-Galois ring. If C is a linear code generated by [Ik|B] such that
B is a matrix over R\〈γ〉 and B = A, then C = φ(C) is a self-orthogonal linear code with parameters
[qe−1n, ke, qe−2(q − 1)d].

Proof. Every codeword of C has the homogeneous weight equal to either qe−2(q− 1)d or qe−1d. Hence
dhom(C) = qe−2(q − 1)d. Moreover, self-orthogonality follows from Theorem 3.3.

Example 3.8. We applied the above theorems and corollary to present some optimal (see Marcus Grassl’s
table in [7]) self-orthogonal codes in Table 1. In Table I, [Ik|A] is considered as an arbitrary [n, k, d]-linear
code over Fq and C is the code constructed in Theorem 3.6. In Table II, C is the code constructed in
Theorem 3.5. Finally, Table III arises from Corollary 3.4.

Table 1. Optimal self-orthogonal linear codes

Table I Table II Table III
R [Ik|A] φ(C) R φ(C) R n φ(Rn)

Rγ,4,2 [16, 5, 8] [128, 5, 64] Rγ,8,2 [256, 9, 128] Rγ,4,2 1 ≤ n ≤ 6 [8n, 4, 4n]

Rγ,5,2 [3, 2, 2] [48, 2, 32] Rγ,7,2 [128, 8, 64] Rγ,5,2 1 ≤ n ≤ 6 [16n, 5, 8n]

Rγ,6,2 [7, 3, 4] [224, 3, 128] Rγ,3,3 [27, 4, 18] Rγ,6,2 1 ≤ n ≤ 8 [32n, 6, 16n]

Rγ,3,3 [3, 2, 2] [27, 2, 18] Rγ,4,3 [81, 5, 54] Rγ,3,3 1 ≤ n ≤ 6 [9n, 3, 6n]

Rγ,4,3 [4, 2, 3] [108, 2, 81] Rγ,5,3 [243, 6, 81] Rγ,4,3 1 ≤ n ≤ 9 [27n, 4, 18n]

Rγ,3,4 [5, 2, 4] [80, 2, 64] Rγ,3,5 [125, 4, 100] Rγ,3,4 1 ≤ n ≤ 8 [16n, 3, 12n]

4. Quasi-twisted codes and their images

Denote the standard right shift operator on Rn by T. For a unit λ ∈ R×, the λ-shift operator Tλ
on Rn is defined as Tλ(a0, . . . , an−1) = (λan−1, a0, a1, . . . , an−2). Recall that a linear code C of length n
over R is called cyclic if T (C) = C, and λ-constacyclic if Tλ(C) = C. Suppose that n = ml. A linear code
C of length n over R is called l-quasi-cyclic (l-QC) if T l(C) = C, and (λ, l)-quasi-twisted ((λ, l)-QT) if
T lλ(C) = C. Obviously QT-codes can be considered as a generalization of all cyclic, constacyclic and QC
codes.

Remark 4.1. Suppose that φ is the Gray map from Rn to Fqe−1

q and λ ∈ R×. Then φ has the following
properties:

1. φ ◦ T = T q
e−1 ◦ φ.

2. φ ◦ Tλ ∼= T q
e−1

λ ◦ φ, where ∼= denotes permutation equivalence.

Proof. Using the definitions yields the part (1)(similar to subsection 4.1 in [19]). It is well-known
that the unit element λ can be expressed as λ = λ0 + λ1γ, where λ0, λ1 ∈ Fq and λ0 6= 0. Hence,
a ∈ γe−1R\{0} if and only if λa ∈ γe−1R\{0}, meaning whom(a) = whom(λa). Therefore, for any element
a = (a0, . . . , an−1) ∈ Rn, φ(λa) is permutation equivalent to φ(a). So, we have φ ◦ Tλ ∼= T q

e−1

λ ◦ φ.

Applying Lemma 4.1, the following theorem is straightforward.
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Theorem 4.2.

1. If C is a cyclic code of length n over R, then φ(C) is a qe−1-QC code of length qe−1n.

2. If C is a l-QC code of length n over R, then φ(C) is a qe−1l-QC code of length qe−1n.

3. If C is a λ-constacyclic code of length n over R, then φ(C) is equivalent to a qe−1-QC code of length
qe−1n.

4. If C is a (λ, l)-QT code of length n over R, then φ(C) is equivalent to a qe−1l-QC code of length
qe−1n.

4.1. One-generator QT codes

By the correspondence between vectors in Rm and polynomials of degree m, it is well-known that a
cyclic code of length m over R can be considered as an ideal in Rm = R[x]/〈xm−1〉, a λ-constacyclic code
of length m as an ideal in Rm,λ = R[x]/〈xm − λ〉, an l-QC code of length n = ml as an Rm-submodule
in Rlm, and finally, a (λ, l)-QT code of length n = ml as an Rm,λ-submodule in Rlm,λ. We know that
Rm and Rm,λ are both principal ideal rings. Therefore, any λ-constacylic code (and any cyclic code as a
particular case) is generated by a polynomial, namely a(x) = a0 + a1x + . . . + am−1x

m−1 ∈ Rm,λ, and
has a generator matrix in the following form

G =


a0 a1 a2 . . . am−1

λam−1 a0 a1 . . . am−2
λam−2 λam−1 a0 . . . am−3

...
...

... . . .
...

λa1 λa2 λa3 . . . a0

 .

In some contexts, this matrix is called λ-twistulant or λ-circulant. Generally„ Rlm and Rlm,λ are not prin-
cipal ideal rings. This complicates the study of QT-codes (and QC codes as particular cases), prompting
most literature to focus on a special case, namely the one-generator QT codes. A QT code C is called one-
generator if it is generated by a single element a(x) = (a(1)(x), . . . , a(l)(x)) ∈ Rlm,λ as an Rm,λ-submodule
of Rlm,λ, i.e.,

C = 〈a(x)〉 = {(a(1)(x)g(x), . . . , a(l)(x)g(x)) | g(x) ∈ Rm,λ}.

As a result, the generator matrix of C is in the form [G1|G2| . . . Gl], where each Gi is an λ-twistulant
matrix of size m×m related to the polynomial a(i)(x).

The following theorem, which has a cyclic version in [15], can be easily obtained.

Theorem 4.3. Let C = 〈g(x)〉 be a λ-constacyclic code of length m over the chain ring R, where g(x)
is a monic polynomial with deg g(x) = m− k. Then C is a free code of rank k if and only if g(x)|xm− λ.

By Theorem 4.3, the following theorem can be proven similarly to Theorem 4.12 in [19].

Theorem 4.4. Suppose that C is a one-generator QT-code generated by the polynomial a(x) =
(a(1)(x)g(x), . . . , a(l)(x)g(x)), where g(x) is a monic polynomial in Rm,λ such that xm−λ = g(x)h(x) for
some monic polynomial h(x) in Rm,λ, and a(i)(x) is relatively prime to h(x) for all i = 1, . . . , l. Then C
is a free code of rank m− deg g(x) and φ(C) is of rank e(m− deg g(x)).

By Theorem 3.1, the following theorem can be proven similarly to Corollary 4.14. in [19].

Theorem 4.5. Let C be a (λ, l)-QT code of length n = ml over the chain ring R with a generator
a(x) = (a(1)(x), . . . , a(l)(x)). If the number of unit coefficients of a(i)(x) is di for i = 1, . . . , l, then
dhom(C) 6 qe−1(d1 + · · ·+ dl).
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5. Griesmer codes

Let C be a linear code over Fq with the parameters [n, k, d]. The Griesmer bound, a lower bound on
the length, is defined as n >

∑k−1
i=0 d

d
qi e, where dxe denotes the ceiling function, i.e., the smallest integer

greater than or equal to x. Linear codes meeting this bound are called Griesmer codes.

Theorem 5.1. Suppose that R is a quasi-Galois ring and g(x) = 1 + x + x2 + · · · + xm−1 ∈ Rm,λ. Let
C be a one-generator QT-code of length n = ml generated by a(x) = (g(x), . . . , g(x)). Then

1. φ(C) is a qe−1l-QC code with parameters [qe−1n, e, qe−2(q − 1)n].

2. For all n < q, φ(C) is a Griesmer code.

Proof. We have xm − 1 = (x− 1)g(x). Then, by Theorem 4.4, the dimension of φ(C) is e. Since C is
the repetition code of length n, the minimum distance of φ(C) can be computed easily, which completes
the proof of the statement (1). To prove the statement (2), note that if n < q, we have d q−1q ne = n. So⌈

qe−2(q − 1)n

q0

⌉
+ · · ·+

⌈
qe−2(q − 1)n

qe−1

⌉
= (q − 1)n(qe−2 + qe−3 + · · ·+ q + 1) +

⌈
q − 1

q
n

⌉
= (q − 1)n

(
1− qe−1

1− q

)
+ n

= qe−1n,

and hence φ(C) meets the Griesmer bound (note that if n > q, then there are q, r such that n = kq + r,
and so d q−1q ne = n− k, and hence we do not have Griesmer code).

Corollary 5.2. Suppose that R = Rγ,e,q and g(x) = 1 + x + x2 + · · · + xm−1 ∈ Rm,λ. Let C be a
one-generator QT-code of length n = ml generated by a(x) = (g(x), . . . , g(x)). If n < q, then φ(C) is a
self-orthogonal Griesmer qe−1l-QC code with parameters [qe−1n, e, qe−2(q − 1)n].

Example 5.3. All codes in Table 2 are self-orthogonal Geriesmer qe−1l-QC codes, arising from Corollary
5.2. The code labelled with ∗ appears in Chen’s table; see [4].

Table 2. Self-orthogonal Geriesmer qe−1l-QC codes

q = 2, e = 4 q = 3, e = 3 q = 3, e = 4 q = 4, e = 3 q = 4, e = 4 q = 5, e = 3 q = 7, e = 3

[n, k, d] [8n, 4, 4n] [9n, 3, 6n] [27n, 4, 18n] [16n, 3, 12n] [64n, 4, 48n] [25n, 3, 20n] [49n, 3, 42n]

n = 1 [8, 4, 4] [9, 3, 6] [27, 4, 18] [16, 3, 12] [64, 4, 48] [25, 3, 20] [49, 3, 42]

n = 2 [18, 3, 12] [54, 4, 36] [32, 3, 24] [128, 4, 96] [50, 3, 40] [98, 3, 84]

n = 3 [48, 3, 36]∗ [192, 4, 144] [75, 3, 60] [147, 3, 126]

n = 4 [100, 3, 80] [196, 3, 168]

n = 5 [245, 3, 210]

n = 6 [294, 3, 252]

Theorem 5.4. Let q = p and C be the linear code over R = Rγ,e,q constructed in Theorem 3.5. Then
φ(C) is a self-orthogonal Griesmer code with parameters [qe, e+ 1, (q − 1)qe−1].
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Proof. We have⌈
(q − 1)qe−1

q0

⌉
+ · · ·+

⌈
(q − 1)qe−1

qe

⌉
= (q − 1)(qe−1 + qe−2 + · · ·+ q + 1) +

⌈
q − 1

q

⌉
= (q − 1)

(
1− qe

1− q

)
+ 1

= qe,

which gives the result.

Example 5.5. Self-orthogonal Geriesmer codes in Table 3 are constructed by Theorem 5.4.

Table 3. Self-orthogonal Geriesmer codes

q/e 3 4 5
2 [16, 5, 8] [32, 6, 16]

3 [27, 4, 18] [81, 5, 54] [243, 6, 162]

5 [125, 4, 100] [625, 5, 500]

6. Quantum codes

Let Cq be a q-dimensional vector space, representing the state of a quantum mechanical system. A
q-ary quantum error-correcting code of length n and dimension k is a k-dimensional subspace of the n-fold
tensor product Cq ⊗ . . .⊗ Cq. It is called an [[n, k, d]]-linear code if d = 2t+ 1, where t is the maximum
number of errors that the code can correct. For more information about quantum error-correcting codes,
readers may refer to [12].

Theorem 6.1. (CSS Construction; see [2, 17] ) Let C1 and C2 be two linear codes over the field Fq with
parameters [n, k1, d1] and [n, k2, d2], respectively, such that C2 ⊆ C1. Then, there exists a quantum code
with parameters [[n, k1− k2,min {d1, d⊥2 }]], where d⊥2 denotes the Hamming distance of the dual code C⊥2 .
Corollary 6.2. Let C be a self-orthogonal [n, k, d]-linear code over the field Fq. Then, there exists a
quantum error-correcting code with parameters [[n, n− 2k, d⊥]], where d⊥ denotes the Hamming distance
of C⊥.
Theorem 6.3. There exists a family of quantum error-correcting codes with parameters [[qe−1, qe−1 −
2e, d⊥]], where d⊥ = 4 in the case q = 2 and d⊥ = 3 in the case q > 3.

Proof. If R = Rγ,e,q, then according to Theorem 3.3, the codes C = φ(R) is self-orthogonal with
parameters [qe−1, e, qe−2(q − 1)]. On the other hand, C is a 1th GRM code. So d⊥ = (R + 1)qQ, where
2 = (q − 1)Q+R and 0 6 R < q − 1. Then, d⊥ = 4 in the case q = 2 and d⊥ = 3 in the case q > 3. Now
we apply Corollary 6.2.

Theorem 6.4. If n > 2, then there exists a family of quantum error-correcting codes with parameters
[[qe−1n, qe−1n− 2e, 2]].

Proof. If R = Rγ,e,q, then according to Corollary 3.4, C = φ(Rn) is a self-orthogonal code with
parameters [nqe−1, e, nqe−2(q − 1)]. Assume that d⊥ = 1. Without loss of generality, there exists 0 6=
x = (x0, 0, . . . , 0) ∈ φ(Rn)

⊥ with the Hamming weight 1. On the other hand, y = (1, 1, . . . , 1) ∈ φ(Rn)
because (0, 0, . . . , 1) ∈ Rn. Therefore, 0 = x · y = x0, which is a contradiction. So d⊥ > 2. Now, let
d⊥ > 3. Applying the sphere-packing bound on φ(Rn)

⊥
, we obtain 1 + qe−1n(q − 1) 6 qe. This implies

1
qe−1 + q 6 2, which is impossible with q > 2, e > 2 and n > 2. Therefore d⊥ = 2. Now, we apply
Corollary 6.2.
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Example 6.5. In Table 4 some examples of quantum codes with minimum distances 2, 3 and 4 are
presented. In Table I, quantum codes are constructed by Theorem 6.3 and in Table II, by Theorem 6.4.

Table 4. Some quantum codes from our constructions

Table I Table II
R φ(R) [[n, k, d]] R n φ(Rn) [[n, k, d]]

Rγ,3,7 [49, 3, 42] [[49, 43, 3]] Rγ,3,3 3 [27, 3, 18] [[27, 21, 2]]

Rγ,4,3 [27, 4, 18] [[27, 19, 3]] Rγ,3,5 2 [50, 3, 40] [50, 44, 2]

Rγ,4,4 [64, 4, 48] [[64, 56, 3]] Rγ,3,7 2 [98, 3, 84] [[98, 92, 2]]

Rγ,4,2 [8, 4, 4] [[8, 0, 4]] Rγ,4,3 2 [54, 4, 36] [[54, 46, 2]]

Rγ,5,2 [16, 5, 8] [[16, 6, 4]] Rγ,3,4 2 [32, 3, 24] [[32, 26, 2]]

Rγ,6,2 [32, 6, 16] [[32, 20, 4]] Rγ,4,2 2 [16, 4, 8] [[16, 8, 2]]

7. Conclusion

In this paper, we have focused on the study of the Gray image φ (introduced by Jitman; see [10]) of
codes over chain rings and its applications. We have presented a new interpretation of this Gray image
associated with 1st order generalized Reed-Muller codes. We have proved that the Gray image φ(R),
where R is a chain ring satisfying in Theorem 3.3, is a self-orthogonal linear code. As a result, we have
found a class of self-orthogonal linear codes over Fq with rather simple constructions. We have described
the Gray image of quasi-twisted codes over chain rings. Then, we have constructed self-orthogonal
Geriesmer quasi-cyclic codes as the Gray image of special quasi-twisted codes. Finally, we have derived
some quantum codes by the CSS construction.
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