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Abstract: In this article, we have studied the Zariski topology related to a submodule element of a le-module.
Obtained a base for the complement of the submodule spectrum and topological features, along
with some characterizations of the radical of a submodule element, are established. Several algebraic
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Noetherian, etc.
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1. Introduction

A novel approach to deal with abstract submodule theory has been introduced by Kumbhakar and
Bhuniya [4, 7, 8] as a le-module theory, which has some overlap with many other mathematical ideas
which deal with lattices.

In [3], Behboodi and Haddadi introduced and studied those modules whose classical Zariski topology
is respectively 77, Hausdorff or cofinite and several characterizations of such modules are obtained.

In [4], Kumbhakar and Bhuniya discussed algebraic properties of le-module and its relation with the
Zariski topology. They have introduced the concepts of pseudo-prime submodule element and pseudo-
prime spectrum and obtained equivalent characterizations of pseudo-prime spectrum to be irreducible.

Kumbhakar and Bhuniya [8] introduced and studied the prime spectrum, Spec(M) and extended
some important results from modules to le-modules. Also, characterized the connectedness of Spec(M)
in terms of quotient ring without idempotent elements other than 0 and 1.
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Several papers have recently addressed the idea of prime submodules of a module M and topology
on the set of all prime submodules of M, few of them are listed as [5, 6, 9-13]. Also, the analogous
study has been done for multiplicative lattices [15, 16], in [1, 2, 14] for lattice modules and in [4, 8] for
le-modules, a structure inspired by the study of lattice modules as well as multiplicative lattices. For
more details on le-modules, one may refer [7]. Here, we have extended several results of modules over
ring from [5, 12, 13] to le-modules.

An le-semigroup refers to a structure (M, +, <, e), where (M, <) is a complete lattice and (M, +) is
a commutative monoid with the zero element 0y;. For all m,m; € M and 7 € I, it satisfies m < e and
the condition:

m+ (\/ m¢> =\/(m+m;).

i€l i€l

Let R be a commutative ring with unity 1z and (M, +, <, e) be an le-semigroup. If there is a mapping
.: R x M — M which satisfies the following conditions, then rpM is called an le-module over R.
(M1) r(my+mg) =rmy + rma,
(M2) (r1+re)m < rim+rom,
(M3) (riroa)m = ri(rom),
(M4)

M4) 1gpm=m; Orm =10y =0y,

(M5) r (\/ mi> = \/(Tmz'),

iel il
for all 771,70 € R, m,m; € M, and i € I.

An element n of an le-module rM is called a submodule element if n +mn < n and rn < n, for all
r € R. The set of all submodule elements of pM is denoted by Sub(M). Observe that 0y = Ogn < n,
for every n € Sub(M).

A proper element m € Sub(M) is said to be prime if for r € R and x €y, rz < m implies z < m or
re <m,ie. r € (m:e), where (m:e) = {r € R:re < m}. We denote the set of all prime elements of
rM by Spec(M).

For an ideal I of R, we denote e = \/{>_!_, a;e :a; € I}. Also, the radical of I is denoted by
Rad(I) and is defined as Rad(I) = {a € R : a™ € I for some positive integer n}. For n € Sub(M), as
(n :e) is an ideal, we set Rad(n) = Rad(n : e).

If every n € Sub(M) can be expressed as n = Ie, for some ideal I of R, then the le-module M is
called a multiplication le-module.

We use the following definition: A topological space X is irreducible if X # () and the intersection
of any two non-empty open sets in X is always non-empty.

2. Topology associated with submodule element

In [8], Kumbhakar and Bhuniya introduced and studied Zariski topology on Spec(M) of an le-module
rM. They have defined V*(n) = {p € Spec(M)|(n:e) C (p:e)} for n € Sub(M) and showed that the
collection V*(M) = {V*(n) : n € Sub(M)} forms a topology on pM called the Zariski topology and is
denoted by T*(M). Also, for n € Sub(M), V(n) is defined as V(n) = {p € Spec(M)|n < p} and showed
that the collection V(M) = {V(n) : n € Sub(M)} forms the Zariski topology, denoted by T(M) if and
only if the finite union of subsets of V(M) is closed.

Essentially, we need the following results to show that the finite union of subsets of V(M) is closed.

For n € Sub(M), we denote x, = Spec(M)\V(n) and for I € Sub(M), we notice that V*(I) =
V(D\V(n).
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Theorem 2.1 ([8]). Let gM be an le-module. Then for ny,ne,n; €Sub(M) and i € S, an indezed set.

1. V(0pr) = Spec(M)

2.V(e)=10
i€S i€S

4. V(nl) @] V(ng) - V(Tll A ng).
Theorem 2.2 ([7]). Let gM be an le-module. If {n;}ics C Sub(M), then (Aiesn; : €) = Mies(n; : e).

The following result characterises multiplication le-modules in terms of submodule elements.

Lemma 2.3. Let gM be an le-module. Then rM is a multiplication le-module if and only if n = (n : e)e
for every n € Sub(M).

Proof. Suppose that p M is a multiplication le-module and n € Sub(M). Then n = Ie, for some ideal I
of R. For 1 <4 < r, where r is a positive integer, let 2:; € (n : €). Then 2221 zie < n4n+--4n=rn < n.
Therefore (n : e)e < n. Now, asn = Ie, we have I C (n : €) and therefore n = I'e < (n : e)e. Consequntly,
(n:e)e=n.

The converse is obvious. O

Theorem 2.4 ( [7]). Let M be a multiplication le-module. If p €Spec(M), then (p : e) is a prime ideal
of R.

The following result shows that, the converse of Theorem 2.4 is true if g M is a multiplication
le-module.

Theorem 2.5. Let gM be a multiplication le-module and p € rM. Then p €Spec(M) if and only if
(p:e) is a prime ideal of R.

Proof. 1If part follows from Theorem 2.4.

Conversely, suppose that (p : e) is a prime ideal of R and p ¢ Spec(M). Then there exist r € R and
x € M such that x £ p and r & (p : €). Now consider n = Rz. Then n € Sub(M) and z < n. Therefore,
there exist r € R and n € Sub(M) such that rn <p, but n £ p and r & (p : e).

Now, since n £ p, by Lemma 2.3, we have (n : e)e £ (p : e)e. This implies (n : e) € (p : ). Therefore,
there exists r; € R such that r; € (n:e) but 1 & (p: e).

Thus rrie < rn < p, ie., rr; € (p: e), a contradiction to r,71 & (p : ) and to the hypothesis of the

ideal (p : ) to be prime. O
Theorem 2.6. Let g M be a multiplication le-module. Then V(n1) UV (ng) = V(ny Ang) for ny,ng €
Sub(M).
Proof. By Theorem 2.1(4), we have V(n1)UV (n2) C V(ny Ang). Now, let p € V(ni Ang). This implies
ny1 Ang < p. Therefore (ny Ang:e) C (p:e). (1)

By Theorem 2.2, we have (n; Ang :e) = (ny : €) N (n2 : e) and therefore equation (1) reduces to
(n1:e)N(ng:e) C (p:e). Again, since (p : e) is a prime ideal, by Theorem 2.4, we have, (ny :e) C (p:e)

or (ng:e) C (p:e).
Therefore (ny : e)e < (p:e)eor (nz : e)e < (p: e)e. Now as ny,ny € Sub(M), by Lemma 2.3, we
have n1 = (n1 :e)e < (p: e)e =porng =(ng: )e < (p:e)e=p. Hence p € V(n1) UV (nz).

Consequently, V(n1) UV (n2) = V(n1 Ang). O

ot
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Lemma 2.7 ([8]). Let gM be an le-module. Then V(Ie) UV (Je) =V (IJe) for ideals I and J of R.
Theorem 2.8 ([8]). Let g M be a multiplication le-module and n; € Sub(M), i € S. Then

1. V*(OM) = Xn

2.V*¥(n)=0
3. V(i) =V (Z ni>
€S €S

4. V*(n1) UV*(ng) = V*(IJe) = V*(n1 Anz), where ny = Ie and ny = Je.

From Theorem 2.8, we conclude that for multiplication le-module rM, there exists a topology,
denoted by T, (M), such that the family of its closed sets is V*(M).

Theorem 2.9. Let g M be a multiplication le-module and I be an ideal of R. ThenV(Ie) = (,c; V((a)e),
where (a) denotes an ideal genereted by a € I.

Proof. Let p € V(Ie). Therefore Ie < p and which implies (a)e < p for all « € I. Thus, p €
Nacr V((a)e). Now, suppose that p € (,.; V((a)e). This implies (a)e < p for all a € I. Therefore by
the definition of /e, we have Ie < p and hence p € V(Ie). Consequently, V(Ie) =[,.; V((a)e). O

Corollary 2.10. Let gM be a multiplication le-module and I be an ideal in R. Then V*(Ie) =
Nacr V¥ ((a)e), where (a) denotes an ideal genereted by a € I.

Theorem 2.11. Let pM be a multiplication le-module and n = Ie € Sub(M), where I is an ideal of R.
If (xn)" = xn — V*((r)e), where r € R, then B = {(x»)" : € R} forms a basis for the topology (M)
on Xn.-

Proof. 1If x, =0, then (x,)" = 0 and the result holds trivialy.

Now, suppose that y, # 0. Let U be an open set in x,. Therefore U = x,, — V*(I) for some [ €
Sub(M) and hence U = x,, —V*(Je), where | = Je for some ideal J of R. Then U = x,, —(,,c; V" ((ai)e)

by Lemma 2.9 and hence U (xn — V*((a;)e)) = U (xn)"
a;€J a;€J

Consequently, B = {(x»)" : € R} forms a basis for the topology %% (M). O

Theorem 2.12. Let gM be a multiplication le-module and n = Ie € Sub(M), for some ideal I of R.
Then

(Xn)l = Spec(M) —V(IJe), where I=Je € Sub(M).

Proof.  (xn)' =xn = V*() = xn — V*(Je) = (Spec(M) — V(Ie)) — (V(Je) — V(Ie))
= Spec(M) — (V(Ie) UV (Je)) = Spec(M) — V(I Je).

The following result shows that the finite intersection of basis elements is again a basis element.

Theorem 2.13. Let gM be a multiplication le-module. Then for ideals J1, Jy of R, (xn)”** ) (xn)”?¢ =
()"

Proof. Let Ji,J; be two ideals of R. Then (xn)”** ) (xn)”?¢ = (xn — V*(J1e))
Nt = V7 (126)) = () = (V- (1e) UV () = X = (V7 (T2 T26)) = (o)
Consequently, (x»)""“ N (xn)"? = (xn)"" ¢ O

56
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The following result characterizes the radical of a submodule element in a multiplication le-module.

Theorem 2.14. Let pM be a multiplication le-module and n € Sub(M). Then

Rad(n) = ({(p: €)lp € Spec(M),p > n}

Proof. Let r € Rad(n). This implies re < p for all p € Spec(M) with p > n.

Therefore, 7 € (p : €). Since p € Spec(M), by Theorem 2.4, we have (p : e) is a prime ideal and
which implies r € (p : €). Therefore, Rad(n) C ({(p: e)|p € Spec(M),p > n}.

Now, suppose that r ¢ Rad(n).

Let > = {(z:¢€)|lz € Sub(M),x >n and r* € (z : €),k > 1}. Note that Y # (), since (n:e) € 3
By Zorn’s lemma, there exists maximal element, say (¢ : e) € Y. We now prove that the ideal (q : €)
is prime ideal of R. On contrary, suppose that (¢ : €) is not a prime ideal of R. Therefore their exist
z,y € (q:e) but zy € (¢: e).

Consider I = {z € R|zz € (¢ : e)}. Note that, I is an ideal of R. If a € (g : €), then za € (g : e) and
this implies @ € I. Also y & (¢ : e), but zy € (q : e) and hence y € I. Therefore, (¢ : ¢) C I. Again,
n <q=(q:e)e < Ieand we have I = (Ie : e). Therefore, by the maximality of (g : €),7® € I for some
s> 1.

Now, let J = {z € Rlr°z € (¢:e)}. Note that, J is an ideal and (¢ : ¢) C J since z € J and
x & (q: ). Therefore by the maximality of (g : €), ' € J for some [ > 1. Therefore by the definition of
an ideal J, we have r**! € (¢ : €), a contradiction. Thus the (g : €) is prime ideal and by Theorem 2.5,
q € Spec(M). Consequently, Rad(n) = ({(p: e)|lp € Spec(M),p > n}. O

Corollary 2.15. Let gM be a multiplication le-module. Then Rad(Opr) = m (p:e).
peSpec(M)

Theorem 2.16. Let M be a multiplication le-module and n,l € Sub(M). Then (x»)' = 0 if and only
if Rad(IJe) C Rad(0pr), where n =1Ie,l = Je and I,J are ideals of R.

Proof. Suppose that (y,)' = 0 for [ = Je € Sub(M) and fix » € Rad(IJe) = Rad(IJe : €). This

implies
rfe < IJe for some k > 1. (1)

Since (xn)' = 0, we have, (Spec(M) —V(n)) — V*(I) = 0. Therefore (Spec(M) — (V(I) UV (n)) = 0,
i.e., Spec(M) =V ())UV(n). Thus p € V(Ie)UV (Je) = V(I Je), for all p € Spec(M) and which implies,
IJe < p, for all p € Spec(M).
Therefore the inequality (1) reduces to, 7%e < I.Je < p, i.e., r¥ € (p: e), for all p € Spec(M). Now, since
(p : e) is a prime ideal, then by Theorem 2.14, we have r € ﬂ (p:e) = Rad (0pr). Therefore
peSpec(M)

Rad(IJe) C Rad(0ps).

Conversely, suppose that, Rad(IJe) C Rad(0p) and (x,)' # 0. Let p € (xa)' = (x10)7¢ =
Spec(M) — V(IJe). This implies p € V(IJe), i.e., IJe £ p and therefore IJ € (p: e).
Then there exists r € I.J but r & (p: e). As r € IJ, we have, re < I Je.
Hence r € (IJe:e) C Rad(lJe:e) = Rad(IJe). But as r & (p : €), we have,

r¢ ﬂ (p:e) = Rad(0),

pESpec(OM)

a contradiction to the fact that, Rad(IJe) C Rad(0p). O
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o)

Theorem 2.17. Let g M be a multiplication le-module and l1,ls,n € Sub(M). Then the following are
equivalent:

1. V() = V()

2. (xn)" = (xn)"
3. Rad(ly) = Rad(ly).

Proof. (1) = (2) Suppose that V(I1) = V(lz). This implies V(1) — V(n) = V(l2) — V(n), ie.,
V*(lh) = V*(Iz). Therefore (x,)" = xn = V(1) = xn = V*(I2) = (xa)".

(2) = (3) Suppose that (xn)" = (xn)". This implies xn — V*(I1) = xn — V*(l2).

Thus (Spec(M) =V (n)) — (V(In) = V(n)) = (Spec(M) = V(n)) — (V(l2) = V(n)).

Therefore Spec(M) — (V(I1) UV (n)) = Spec(M) — (V(l2) UV (n)) and which implies V(I1) = V(I2).

Now, Rad(l;) = (p: e), by Theorem 2.14
I, <peSpec(M)
= ﬂ (pre) = ﬂ (p:e) = Rad(la).
peV (ly) peV (l2)

(3) = (1) Suppose that Rad(l;) = Rad(l3). If p € V(I1), then I3 < p and hence

(I : €) C (p:e). Therefore, Rad(ly : ) CRad(p:e) = (p: e), but Rad(l1) = Rad(lz).
Thus Rad(ly : ¢) = Rad(ly : €) C (p: e) and which implies (I : ¢) C Rad(lz : e) C (p:e).
Therefore Iy = (Iz: e)e <p = (p: e)e, hence p € V(lz). Thus V(1) C V(I2).

Simillarly, V(I2) C V(I1) and consequently, V(I1) = V(l2). O

Corollary 2.18. Let g M be a multiplication le-module and l1,lo € gM. If (Iy : e) = (l2 : e), then
(xn)lt = (Xn)lz. The converse is true if l1,la € Spec(M).

Proof. Suppose that (I; : €) = (I3 : €). By Lemma 2.13, we have [; = (I; : e)e = (l2 : e)e = I and
hence V (I;) = V(). Therefore by Theorem 2.17, we have (xn)" = (xn)".

Conversely, let I1,l5 € Spec(M) and (xn)" = (xn)". Therefore by Theorem 2.17, Rad(l;) = Rad(ly).
Since (I1 : €), (I3 : e) are prime ideals of R and therefore, (I; : ¢) = Rad(ly : ¢) = Rad(l;) = Rad(ly) =
Rad(lz : e) = (I3 : €). O

Theorem 2.19. Let g M be a multiplication le-module. Then (Xn)l = Xn if and only if Rad(IJe) =
Rad(Ie), wherel = Je,n =1Ie e Sub(M).

Proof. Note that, (xn)' = (x») if and only if Spec(M) — (V(n) UV (1)) = Spec(M) — V(n),

if and only if V(n) U V() = V(n), ie,V({le) U V(Je) = V({IJe) = V(Ie). Therefore,
(xn)' = (xn) ifand only if V(IJe) = V(Ie). Now, by Theorem 2.17, we have, V(IJe) =
V(Ie) if and only if Rad(IJe) = Rad(le). O

Definition 2.20. Let g M be an le-module and n,m; € Sub(M),i € A. We say that n satisfies condition

(%) if there is a finite subset A of A such that Rad(Z mi) = Rad (Z mj), whenever Rad(n) C

ieA jeA
Rad (Z ml> .

iE€EA

Theorem 2.21. Let gM be an le-module and n,m; € Sub(M),i € A. Then the following statements
hold:

1. (xn)! is compact for every | € Sub(M).
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2. If n satisfies condition (x), then X, is compact.

3. If xn is compact, then Rad(n) C Rad(Z mi> for a finite subset A of A.
i€EA

Proof. 1. For [ € Sub(M), (x»)' being a basis element for the topology ¥ (M), it is compact.

2. Suppose that, n € Sub(M) satisfies condition (*). Let x,, = U (xn)™. Therefore, x, =

€A
U (Xn)mi = U (X - V*(mz <m V* mz > = Xn — V*(Z mz)
€A i€EA i€EA I€EA

Thus, we have, V(V*(Z m;) C V(n) and this implies Rad(n) C Rad (Z m1> .
i€EA €A

But by the condition (), we have, Rad (Z mi> = Rad (Z mi> for some finite subset A of A.
i€A icA

Therefore, Rad(n) C Rad (Z mz> and this implies V' (Z mi> CVin)

1€EA 1EA
Hence V* (Z ml-) =V (Z m; | —V(n)=0.
i€A i€A
Thus xn = Xn — V" (Z mi) = Xn — (ﬂ V*(mi)> = (U (xn)””> and
i€A i€A i€eA

consequently, x,, is compact.

3. Suppose that x,, is compact and n = (Z m,) Then V(n <Z m1>

iEA 1€EA
Hence V* (Z ml> = (Z mZ> - = (). Therefore
i€A ieA
Xn =Xn—0=xn—V* (Z mi> = Xn — m VvV (m;) = U (xn — V*(m;)). But x, is compact,
i€A ieA ieA
therefore there exists a finite subset A C A such that y, = U (xn —V*(m;)) = U (xn)™".
iEA i€A
Therefore, y, = U (Xn = V*(my)) = xn — ﬂ V*(m;) = xn — V*(Z m;) and which implies
€A ieA i€eA

1% (ZieA V*(mi)) C V(n). Consequently, by Theorem 2.14, Rad(n) C Rad (Z mz>

IEA
O
Theorem 2.22. Let M be a multiplication le-module. Then the following holds:
1. Every open set in x = Spec(M) is of the form x, for some n € Sub(M).
2. xn = x1 if and only if Rad(n) = Rad(l), where n,l € Sub(M).
3. xn N x1 = xx if and only if Rad(n A1)= Rad(k), where n,l,k € Sub(M).
Proof. 1. Let U be an open set in x. This implies, U’ = x — U is closed in x and by definition

U’ = V(n), for some n € Sub (M). Therefore, U = Spec(M) — V(n) = xn.

15

[3 2>
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2. Suppose that, x, = x;. Then Spec(M) — V(n) = Spec(M) — V(1) if and only if V(n) = V(I),
therefore x,, = x; if and only if V(n) = V(I).

If x». = X1, then Rad(n) = ﬂ (p:e)= m (p:e) =Rad(l).

pEV(n) peV (1)
Now, suppose that, Rad(n) = Rad(l) and p € V(n). This implies n < p and therefore (n:e) C (p:
e). Therefore, Rad(n) = Rad(n:e) C (p:e).
Thus Rad(n) = Rad(l) C (p: e) and which implies that (I : e) C (p: e). Therefore, by Lemma 2.3,
we have, | = (I : e)e <p=(p:e)e. Thus p € V(I).
Simillarly, V(1) C V(n). Consequently, V(n) = V(I), and hence x,, = x;.

3. Forn,l,k € Sub(M), xnNx; = Xk if and only if (Spec(M)—V (n))N(Spec(M)—V (1)) = Spec(M)—
V (k) if and only if Spec(M) — (V(n) UV (1)) = Spec(M) — V (k) if and only if V(n) UV (l) = V (k)
if and only if V(n Al) = V(k) if and only if Rad(n Al) = Rad(k).

O

Corollary 2.23. Let gM be a multiplication le-module and n,l € Sub(M).
Then xn, Nx1 = 0 if and only if Rad(n Al)= Rad(0p;).

Following result characterises the denseness of open set x,, in x = Spec(M).

Theorem 2.24. Let g M be a multiplication le-module and n,l € Sub(M) with Rad(l) € Rad(Opr). Then
Xn s dense in x = Spec(M) if and only if Rad(n A1) # Rad(Opr).

Proof. Suppose that, x,, is dense in Spec(M) and | € Sub(M) with Rad(l) € Rad(0x).

Therefore by Theorem 2.22(2), we have x; € xo,, = 0. This implies, ; is non-empty, open in the Zariski
topology ¥ (M) over x = Spec(M). Since x,, is dense in Spec(M), we have, x, N x; # 0 and therefore,
by Corollary 2.23, Rad(n Al) # Rad(0xr).

Conversely, suppose that, Rad(n A1) # Rad(05r) for every | € Sub(M) with Rad(l) € Rad(0xr). By
Corollary 2.23, we have, x,, N x; # 0 and therefore x,, is dense in Spce(M). O

Definition 2.25. Let RM be a le-module and n € Sub(M). We define
Nn(k) = N{p € Spec(M) : k < p,n £ p}.

Note that N, (k) € Sub(M) and N.(k) = Rad(k).

Theorem 2.26. Let pM be a multiplication le-module and n € Sub(M). Then N, (0pr) € Spec(M) if
and only if xn is irreducible.

Proof. Let N,(0p) € Spec(M) and K be any non-empty open subset in x,. This implies, K =
Xn — V*(1) = Spec(M) — (V(I) UV (n)) for some I € Sub(M).

Let p € K. Then p ¢ V(n) and p € V(I). Hence p € {p; : p; > Oar,p; # n,pi # l}. Therefore
I € N, (0pr), otherwise if I < N,,(057), we have [ < p, a contradiction. Thus N, (0x7) € V(n) UV () and
hence N, (0) € K.

Therefore, any open set of x, contains N, (057), hence x,, is irreducible.

Conversely, Suppose that x,, is irreducible and N,,(057) ¢ Spec(M). Then there exist » € R and m €
M with rm < N,,(057) but m £ N, (0a) and re £ N,,(0ar). Therefore V*(Rm) # ¢ and V*(Rm) # x»,
which implies (x,)®™ # ¢. Note that (x, )" is a non-empty open subset. Therefore, we have (x,)%™ N
(xn)" = ()7 C xn = V*(rm) € xn — V*(Nn(0a1)) = Spec(M) = {V (N, (0ar)) U=V (Nn(n))} = ¢,
a contradiction to the irreducibility of y,,. Consequently, N, (0x) € Spec(M). O

Corollary 2.27. The meet of all prime submodule elements of rRM is prime if and only if x, is irre-
ducible.

Definition 2.28. An le-module gM is said to satisfy condition T if for every n € Sub(M) and for
any chain Ny (I1e) < Np(Ize) < N,(Ize) < ..., where I; is an ideal of R, there is integer m such that
Ny (Ime) = Ny (Ipyi€) for all positive integers i.
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Theorem 2.29. Let g M be a multiplication le-module and n € Sub(M). Then the following statements
are equivalent:

1. pRM satisfies condition T for n € Sub(M).

2. Xn ts a Noetherian topological space.

Proof. (1) = (2) Assume that M satisfies condition 7 for n € Sub(M). Consider the sequence

V*(Iie) D V*(Ize) D V*(Ize) D ... This implies
V(Ie) = V(n) D V(Ise) —V(n) 2 V(Ize) — V(n) D ..., Therefore, we have,

Mp:he<pn&py<Mp:lhe<pngp<Mp:lze<pnLp}<...

Hence by the definition of N, (k), we have, N, (I1e) < N, (Ize) < N,(Ize) < ...

Since pM satisfies 7— condition, there exists an integer m such that N, (I,e) = N, (I;,1e) for
all positive integers i. Let p € V*(I,e). This implies I,e < p, but n € p. Therefore, we have,
Np(Ime) = Nq € Spec(M) : I,e < g,n £ q} <p.

Since N,,(Ine) = Ny, (I,4:€), we have, N,,(I;,+1€) < p and hence, I,,,+;e < p. Therefore, we have,
p € V*(I,,45e). Consequently, V*(I,,4.e) = V*(I,e). Hence x,, is a Noetherian topological space.
(2) = (1) Conversely, suppose X, is a Noetherian topological space. Let N,,(I1e) < N, (Ize) < N, (Ise) <
... be a sequence. If p € V*(I,,¢) then I,,e < p and n € p. Therefore, we have, N, (I,,e) < p and hence,
N, (I;n—1€e) < p. This implies I,,—1e < p and n £ p. Therefore , we have, p € V(I,,_1e). Therefore, from
above sequence we get,

V*(Ie) D V*(Ioe) D V*(I3¢) D ...

Since X, is Noetherian there exists an integer m such that V*(I,,1.¢) = V*(I,,e) for all positive integers
1.

Therefore, we have, {q € Spec(M) : I,yie < q¢,n £ q} = {q € Spec(M) : I,e < g,n £ q}. This
implies, Ny (Imyi€) = Nq € Spec(M) : Imtie < g,n £ q} = Nq € Spec(M) : Ine < ¢,n £ q} =
N, (Ie) for all positive integers i. Therefore M satisfies condition 7. O
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