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Abstract: In this article, we have studied the Zariski topology related to a submodule element of a le-module.
Obtained a base for the complement of the submodule spectrum and topological features, along
with some characterizations of the radical of a submodule element, are established. Several algebraic
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Noetherian, etc.
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1. Introduction

A novel approach to deal with abstract submodule theory has been introduced by Kumbhakar and
Bhuniya [4, 7, 8] as a le-module theory, which has some overlap with many other mathematical ideas
which deal with lattices.

In [3], Behboodi and Haddadi introduced and studied those modules whose classical Zariski topology
is respectively T1, Hausdorff or cofinite and several characterizations of such modules are obtained.

In [4], Kumbhakar and Bhuniya discussed algebraic properties of le-module and its relation with the
Zariski topology. They have introduced the concepts of pseudo-prime submodule element and pseudo-
prime spectrum and obtained equivalent characterizations of pseudo-prime spectrum to be irreducible.

Kumbhakar and Bhuniya [8] introduced and studied the prime spectrum, Spec(M) and extended
some important results from modules to le-modules. Also, characterized the connectedness of Spec(M)
in terms of quotient ring without idempotent elements other than 0 and 1.
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Several papers have recently addressed the idea of prime submodules of a module M and topology
on the set of all prime submodules of M , few of them are listed as [5, 6, 9–13]. Also, the analogous
study has been done for multiplicative lattices [15, 16], in [1, 2, 14] for lattice modules and in [4, 8] for
le-modules, a structure inspired by the study of lattice modules as well as multiplicative lattices. For
more details on le-modules, one may refer [7]. Here, we have extended several results of modules over
ring from [5, 12, 13] to le-modules.

An le-semigroup refers to a structure (M,+,≤, e), where (M,≤) is a complete lattice and (M,+) is
a commutative monoid with the zero element 0M . For all m,mi ∈ M and i ∈ I, it satisfies m ≤ e and
the condition:

m+

(∨
i∈I

mi

)
=
∨
i∈I

(m+mi).

Let R be a commutative ring with unity 1R and (M,+,≤, e) be an le-semigroup. If there is a mapping
. : R×M →M which satisfies the following conditions, then RM is called an le-module over R.

(M1) r(m1 +m2) = rm1 + rm2,

(M2) (r1 + r2)m ≤ r1m+ r2m,

(M3) (r1r2)m = r1(r2m),

(M4) 1Rm = m; 0Rm = r0M = 0M ,

(M5) r

(∨
i∈I

mi

)
=
∨
i∈I

(rmi),

for all r, r1, r2 ∈ R, m,mi ∈M , and i ∈ I.
An element n of an le-module RM is called a submodule element if n + n ≤ n and rn ≤ n, for all

r ∈ R. The set of all submodule elements of RM is denoted by Sub(M). Observe that 0M = 0Rn ≤ n,
for every n ∈ Sub(M).

A proper element m ∈ Sub(M) is said to be prime if for r ∈ R and x ∈M , rx ≤ m implies x ≤ m or
re ≤ m, i.e. r ∈ (m : e), where (m : e) = {r ∈ R : re ≤ m}. We denote the set of all prime elements of
RM by Spec(M).

For an ideal I of R, we denote Ie =
∨
{
∑r

i=1 aie : ai ∈ I}. Also, the radical of I is denoted by
Rad(I) and is defined as Rad(I) = {a ∈ R : an ∈ I for some positive integer n}. For n ∈ Sub(M), as
(n : e) is an ideal, we set Rad(n) = Rad(n : e).

If every n ∈ Sub(M) can be expressed as n = Ie, for some ideal I of R, then the le-module RM is
called a multiplication le-module.

We use the following definition: A topological space X is irreducible if X 6= ∅ and the intersection
of any two non-empty open sets in X is always non-empty.

2. Topology associated with submodule element

In [8], Kumbhakar and Bhuniya introduced and studied Zariski topology on Spec(M) of an le-module
RM . They have defined V ∗(n) = {p ∈ Spec(M)|(n : e) ⊆ (p : e)} for n ∈ Sub(M) and showed that the
collection V ∗(M) = {V ∗(n) : n ∈ Sub(M)} forms a topology on RM called the Zariski topology and is
denoted by T∗(M). Also, for n ∈ Sub(M), V (n) is defined as V (n) = {p ∈ Spec(M)|n ≤ p} and showed
that the collection V (M) = {V (n) : n ∈ Sub(M)} forms the Zariski topology, denoted by T(M) if and
only if the finite union of subsets of V (M) is closed.

Essentially, we need the following results to show that the finite union of subsets of V (M) is closed.

For n ∈ Sub(M), we denote χn = Spec(M)\V (n) and for l ∈ Sub(M), we notice that V ∗(l) =
V (l)\V (n).
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Theorem 2.1 ([8]). Let RM be an le-module. Then for n1, n2, ni ∈Sub(M) and i ∈ S, an indexed set.

1. V (0M ) = Spec(M)

2. V (e) = ∅

3.
⋂
i∈S

V (ni) = V

(∑
i∈S

ni

)

4. V (n1) ∪ V (n2) ⊆ V (n1 ∧ n2).

Theorem 2.2 ([7]). Let RM be an le-module. If {ni}i∈S ⊆ Sub(M), then (∧i∈Sni : e) = ∩i∈S(ni : e).

The following result characterises multiplication le-modules in terms of submodule elements.

Lemma 2.3. Let RM be an le-module. Then RM is a multiplication le-module if and only if n = (n : e)e
for every n ∈ Sub(M).

Proof. Suppose that RM is a multiplication le-module and n ∈ Sub(M). Then n = Ie, for some ideal I
of R. For 1 ≤ i ≤ r, where r is a positive integer, let xi ∈ (n : e). Then

∑r
i=1 xie ≤ n+n+· · ·+n = rn ≤ n.

Therefore (n : e)e ≤ n. Now, as n = Ie, we have I ⊆ (n : e) and therefore n = Ie ≤ (n : e)e. Consequntly,
(n : e)e = n.

The converse is obvious.

Theorem 2.4 ( [7]). Let RM be a multiplication le-module. If p ∈Spec(M), then (p : e) is a prime ideal
of R.

The following result shows that, the converse of Theorem 2.4 is true if RM is a multiplication
le-module.

Theorem 2.5. Let RM be a multiplication le-module and p ∈ RM . Then p ∈Spec(M) if and only if
(p : e) is a prime ideal of R.

Proof. If part follows from Theorem 2.4.

Conversely, suppose that (p : e) is a prime ideal of R and p /∈ Spec(M). Then there exist r ∈ R and
x ∈M such that x 6≤ p and r 6∈ (p : e). Now consider n = Rx. Then n ∈ Sub(M) and x ≤ n. Therefore,
there exist r ∈ R and n ∈ Sub(M) such that rn ≤ p, but n 6≤ p and r 6∈ (p : e).

Now, since n 6≤ p, by Lemma 2.3, we have (n : e)e 6≤ (p : e)e. This implies (n : e) 6⊆ (p : e). Therefore,
there exists r1 ∈ R such that r1 ∈ (n : e) but r1 6∈ (p : e).

Thus rr1e ≤ rn ≤ p, i.e., rr1 ∈ (p : e), a contradiction to r, r1 6∈ (p : e) and to the hypothesis of the
ideal (p : e) to be prime.

Theorem 2.6. Let RM be a multiplication le-module. Then V (n1) ∪ V (n2) = V (n1 ∧ n2) for n1, n2 ∈
Sub(M).

Proof. By Theorem 2.1(4), we have V (n1)∪V (n2) ⊆ V (n1∧n2). Now, let p ∈ V (n1∧n2). This implies
n1 ∧ n2 ≤ p. Therefore (n1 ∧ n2 : e) ⊆ (p : e). (1)

By Theorem 2.2, we have (n1 ∧ n2 : e) = (n1 : e) ∩ (n2 : e) and therefore equation (1) reduces to
(n1 : e)∩(n2 : e) ⊆ (p : e). Again, since (p : e) is a prime ideal, by Theorem 2.4, we have, (n1 : e) ⊆ (p : e)
or (n2 : e) ⊆ (p : e).

Therefore (n1 : e)e ≤ (p : e)e or (n2 : e)e ≤ (p : e)e. Now as n1, n2 ∈ Sub(M), by Lemma 2.3, we
have n1 = (n1 : e)e ≤ (p : e)e = p or n2 = (n2 : e)e ≤ (p : e)e = p. Hence p ∈ V (n1) ∪ V (n2).

Consequently, V (n1) ∪ V (n2) = V (n1 ∧ n2).
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Lemma 2.7 ([8]). Let RM be an le-module. Then V (Ie) ∪ V (Je) = V (IJe) for ideals I and J of R.

Theorem 2.8 ([8]). Let RM be a multiplication le-module and ni ∈ Sub(M), i ∈ S. Then

1. V ∗(0M ) = χn

2. V ∗(n) = ∅

3.
⋂
i∈S

V ∗(ni) = V ∗

(∑
i∈S

ni

)

4. V ∗(n1) ∪ V ∗(n2) = V ∗(IJe) = V ∗(n1 ∧ n2), where n1 = Ie and n2 = Je.

From Theorem 2.8, we conclude that for multiplication le-module RM, there exists a topology,
denoted by Tn

∗(M), such that the family of its closed sets is V ∗(M).

Theorem 2.9. Let RM be a multiplication le-module and I be an ideal of R. Then V (Ie) =
⋂

a∈I V ((a)e),
where (a) denotes an ideal genereted by a ∈ I.

Proof. Let p ∈ V (Ie). Therefore Ie ≤ p and which implies (a)e ≤ p for all a ∈ I. Thus, p ∈⋂
a∈I V ((a)e). Now, suppose that p ∈

⋂
a∈I V ((a)e). This implies (a)e ≤ p for all a ∈ I. Therefore by

the definition of Ie, we have Ie ≤ p and hence p ∈ V (Ie). Consequently, V (Ie) =
⋂

a∈I V ((a)e).

Corollary 2.10. Let RM be a multiplication le-module and I be an ideal in R. Then V ∗(Ie) =⋂
a∈I V

∗((a)e), where (a) denotes an ideal genereted by a ∈ I.

Theorem 2.11. Let RM be a multiplication le-module and n = Ie ∈ Sub(M), where I is an ideal of R.
If (χn)r = χn − V ∗((r)e), where r ∈ R, then B = {(χn)r : r ∈ R} forms a basis for the topology T∗n(M)
on χn.

Proof. If χn = ∅, then (χn)r = ∅ and the result holds trivialy.

Now, suppose that χn 6= ∅. Let U be an open set in χn. Therefore U = χn − V ∗(l) for some l ∈
Sub(M) and hence U = χn−V ∗(Je), where l = Je for some ideal J of R. Then U = χn−

⋂
ai∈J V

∗((ai)e)

by Lemma 2.9 and hence
⋃
ai∈J

(χn − V ∗((ai)e)) =
⋃
ai∈J

(χn)
ai

Consequently, B = {(χn)r : r ∈ R} forms a basis for the topology T∗n(M).

Theorem 2.12. Let RM be a multiplication le-module and n = Ie ∈ Sub(M), for some ideal I of R.
Then

(χn)
l

= Spec(M)− V (IJe), where l=Je ∈ Sub(M).

Proof. (χn)l = χn − V ∗(l) = χn − V ∗(Je) = (Spec(M)− V (Ie))− (V (Je)− V (Ie))
= Spec(M)− (V (Ie) ∪ V (Je)) = Spec(M)− V (IJe).

The following result shows that the finite intersection of basis elements is again a basis element.

Theorem 2.13. Let RM be a multiplication le-module. Then for ideals J1, J2 of R, (χn)
J1e⋂ (χn)

J2e =

(χn)
J1J2e.

Proof. Let J1, J2 be two ideals of R. Then (χn)
J1e⋂ (χn)

J2e = (χn − V ∗(J1e))⋂
(χn − V ∗(J2e)) = (χn)− (V ∗(J1e)

⋃
V ∗(J2e)) = χn − (V ∗(J1J2e)) = (χn)

J1J2e.
Consequently, (χn)

J1e⋂ (χn)
J2e = (χn)

J1J2e.
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The following result characterizes the radical of a submodule element in a multiplication le-module.

Theorem 2.14. Let RM be a multiplication le-module and n ∈ Sub(M). Then

Rad(n) =
⋂
{(p : e)|p ∈ Spec(M), p ≥ n}

.

Proof. Let r ∈ Rad(n). This implies re ≤ p for all p ∈ Spec(M) with p ≥ n.
Therefore, r ∈ (p : e). Since p ∈ Spec(M), by Theorem 2.4, we have (p : e) is a prime ideal and

which implies r ∈ (p : e). Therefore, Rad(n) ⊆
⋂
{(p : e)|p ∈ Spec(M), p ≥ n}.

Now, suppose that r 6∈ Rad(n).

Let
∑

=
{

(x : e)|x ∈ Sub(M), x ≥ n and rk 6∈ (x : e), k ≥ 1
}
. Note that

∑
6= ∅, since (n : e) ∈

∑
.

By Zorn’s lemma, there exists maximal element, say (q : e) ∈
∑

. We now prove that the ideal (q : e)
is prime ideal of R. On contrary, suppose that (q : e) is not a prime ideal of R. Therefore their exist
x, y 6∈ (q : e) but xy ∈ (q : e).

Consider I = {z ∈ R|xz ∈ (q : e)}. Note that, I is an ideal of R. If a ∈ (q : e), then xa ∈ (q : e) and
this implies a ∈ I. Also y 6∈ (q : e), but xy ∈ (q : e) and hence y ∈ I. Therefore, (q : e) ( I. Again,
n ≤ q = (q : e)e < Ie and we have I = (Ie : e). Therefore, by the maximality of (q : e), rs ∈ I for some
s ≥ 1.

Now, let J = {z ∈ R|rsz ∈ (q : e)}. Note that, J is an ideal and (q : e) ( J since x ∈ J and
x 6∈ (q : e). Therefore by the maximality of (q : e), rl ∈ J for some l ≥ 1. Therefore by the definition of
an ideal J , we have rs+l ∈ (q : e), a contradiction. Thus the (q : e) is prime ideal and by Theorem 2.5,
q ∈ Spec(M). Consequently, Rad(n) =

⋂
{(p : e)|p ∈ Spec(M), p ≥ n}.

Corollary 2.15. Let RM be a multiplication le-module. Then Rad(0M ) =
⋂

p∈Spec(M)

(p : e).

Theorem 2.16. Let RM be a multiplication le-module and n, l ∈ Sub(M). Then (χn)
l

= ∅ if and only
if Rad(IJe) ⊆ Rad(0M ), where n = Ie, l = Je and I, J are ideals of R.

Proof. Suppose that (χn)
l

= ∅ for l = Je ∈ Sub(M) and fix r ∈ Rad(IJe) = Rad(IJe : e). This
implies

rke ≤ IJe for some k ≥ 1. (1)

Since (χn)
l

= ∅, we have, (Spec(M)− V (n)) − V ∗(l) = ∅. Therefore (Spec(M) − (V (l) ∪ V (n)) = ∅,
i.e., Spec(M) = V (l)∪V (n). Thus p ∈ V (Ie)∪V (Je) = V (IJe), for all p ∈ Spec(M) and which implies,
IJe ≤ p, for all p ∈ Spec(M).
Therefore the inequality (1) reduces to, rke ≤ IJe ≤ p, i.e., rk ∈ (p : e), for all p ∈ Spec(M). Now, since
(p : e) is a prime ideal, then by Theorem 2.14, we have r ∈

⋂
p∈Spec(M)

(p : e) = Rad (0M ). Therefore

Rad(IJe) ⊆ Rad(0M ).

Conversely, suppose that, Rad(IJe) ⊆ Rad(0M ) and (χn)l 6= ∅. Let p ∈ (χn)l = (χIe)
Je =

Spec(M)− V (IJe). This implies p 6∈ V (IJe), i.e., IJe 6≤ p and therefore IJ 6⊆ (p : e).
Then there exists r ∈ IJ but r 6∈ (p : e). As r ∈ IJ, we have, re ≤ IJe.
Hence r ∈ (IJe : e) ⊆ Rad(IJe : e) = Rad(IJe). But as r 6∈ (p : e), we have,

r 6∈
⋂

p∈Spec(0M )

(p : e) = Rad(0M ),

a contradiction to the fact that, Rad(IJe) ⊆ Rad(0M ).
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Theorem 2.17. Let RM be a multiplication le-module and l1, l2, n ∈ Sub(M). Then the following are
equivalent:

1. V (l1) = V (l2)

2. (χn)
l1 = (χn)

l2

3. Rad(l1) = Rad(l2).

Proof. (1) ⇒ (2) Suppose that V (l1) = V (l2). This implies V (l1) − V (n) = V (l2) − V (n), i.e.,
V ∗(l1) = V ∗(l2). Therefore (χn)

l1 = χn − V ∗(l1) = χn − V ∗(l2) = (χn)
l2 .

(2)⇒ (3) Suppose that (χn)
l1 = (χn)

l2 . This implies χn − V ∗(l1) = χn − V ∗(l2).
Thus (Spec(M)− V (n))− (V (l1)− V (n)) = (Spec(M)− V (n))− (V (l2)− V (n)).
Therefore Spec(M)− (V (l1) ∪ V (n)) = Spec(M)− (V (l2) ∪ V (n)) and which implies V (l1) = V (l2).

Now, Rad(l1) =
⋂

l1≤p∈Spec(M)

(p : e), by Theorem 2.14

=
⋂

p∈V (l1)

(p : e) =
⋂

p∈V (l2)

(p : e) = Rad(l2).

(3)⇒ (1) Suppose that Rad(l1) = Rad(l2). If p ∈ V (l1), then l1 ≤ p and hence
(l1 : e) ⊆ (p : e). Therefore, Rad(l1 : e) ⊆ Rad(p : e) = (p : e), but Rad(l1) = Rad(l2).
Thus Rad(l2 : e) = Rad(l1 : e) ⊆ (p : e) and which implies (l2 : e) ⊆ Rad(l2 : e) ⊆ (p : e).
Therefore l2 = (l2 : e)e ≤ p = (p : e)e, hence p ∈ V (l2). Thus V (l1) ⊆ V (l2).

Simillarly, V (l2) ⊆ V (l1) and consequently, V (l1) = V (l2).

Corollary 2.18. Let RM be a multiplication le-module and l1, l2 ∈ RM . If (l1 : e) = (l2 : e), then
(χn)l1 = (χn)

l2 . The converse is true if l1, l2 ∈ Spec(M).

Proof. Suppose that (l1 : e) = (l2 : e). By Lemma 2.13, we have l1 = (l1 : e)e = (l2 : e)e = l2 and
hence V (l1) = V (l2). Therefore by Theorem 2.17, we have (χn)

l1 = (χn)
l2 .

Conversely, let l1, l2 ∈ Spec(M) and (χn)
l1 = (χn)

l2 . Therefore by Theorem 2.17, Rad(l1) = Rad(l2).
Since (l1 : e), (l2 : e) are prime ideals of R and therefore, (l1 : e) = Rad(l1 : e) = Rad(l1) = Rad(l2) =
Rad(l2 : e) = (l2 : e).

Theorem 2.19. Let RM be a multiplication le-module. Then (χn)
l

= χn if and only if Rad(IJe) =
Rad(Ie), where l = Je, n = Ie ∈ Sub(M).

Proof. Note that, (χn)
l

= (χn) if and only if Spec(M)− (V (n) ∪ V (l)) = Spec(M)− V (n),
if and only if V (n) ∪ V (l) = V (n), i.e., V (Ie) ∪ V (Je) = V (IJe) = V (Ie). Therefore,
(χn)

l
= (χn) if and only if V (IJe) = V (Ie). Now, by Theorem 2.17, we have, V (IJe) =

V (Ie) if and only if Rad(IJe) = Rad(Ie).

Definition 2.20. Let RM be an le-module and n,mi ∈ Sub(M), i ∈ Λ. We say that n satisfies condition

(∗) if there is a finite subset ∆ of Λ such that Rad

(∑
i∈Λ

mi

)
= Rad

∑
j∈∆

mj

, whenever Rad(n) ⊆

Rad

(∑
i∈Λ

mi

)
.

Theorem 2.21. Let RM be an le-module and n,mi ∈ Sub(M), i ∈ Λ. Then the following statements
hold:

1. (χn)l is compact for every l ∈ Sub(M).
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2. If n satisfies condition (∗), then χn is compact.

3. If χn is compact, then Rad(n) ⊆ Rad

(∑
i∈∆

mi

)
for a finite subset ∆ of Λ.

Proof. 1. For l ∈ Sub(M), (χn)l being a basis element for the topology T∗n(M), it is compact.

2. Suppose that, n ∈ Sub(M) satisfies condition (∗). Let χn =
⋃
i∈Λ

(χn)
mi . Therefore, χn =

⋃
i∈Λ

(χn)
mi =

⋃
i∈Λ

(χn − V ∗(mi)) = χn −

(⋂
i∈Λ

V ∗(mi)

)
= χn − V ∗(

∑
i∈∆

mi).

Thus, we have, V (V ∗(
∑
i∈∆

mi) ⊆ V (n) and this implies Rad(n) ⊆ Rad

(∑
i∈Λ

mi

)
.

But by the condition (∗), we have, Rad

(∑
i∈Λ

mi

)
= Rad

(∑
i∈∆

mi

)
for some finite subset ∆ of Λ.

Therefore, Rad(n) ⊆ Rad

(∑
i∈∆

mi

)
and this implies V

(∑
i∈∆

mi

)
⊆ V (n).

Hence V ∗
(∑

i∈∆

mi

)
= V

(∑
i∈∆

mi

)
− V (n) = ∅.

Thus χn = χn − V ∗
(∑

i∈∆

mi

)
= χn −

(⋂
i∈∆

V ∗(mi)

)
=

(⋃
i∈∆

(χn)mi

)
and

consequently, χn is compact.

3. Suppose that χn is compact and n =

(∑
i∈Λ

mi

)
. Then V (n) = V

(∑
i∈Λ

mi

)
.

Hence V ∗
(∑

i∈Λ

mi

)
= V

(∑
i∈Λ

mi

)
− V (n) = ∅. Therefore

χn = χn − ∅ = χn − V ∗
(∑

i∈Λ

mi

)
= χn −

⋂
i∈Λ

V ∗ (mi) =
⋃
i∈Λ

(χn − V ∗(mi)). But χn is compact,

therefore there exists a finite subset ∆ ⊂ Λ such that χn =
⋃
i∈∆

(χn − V ∗(mi)) =
⋃
i∈∆

(χn)
mi .

Therefore, χn =
⋃
i∈∆

(χn − V ∗(mi)) = χn −
⋂
i∈∆

V ∗(mi) = χn − V ∗(
∑
i∈∆

mi) and which implies

V
(∑

i∈∆ V ∗(mi)
)
⊆ V (n). Consequently, by Theorem 2.14, Rad(n) ⊆ Rad

(∑
i∈∆

mi

)
.

Theorem 2.22. Let RM be a multiplication le-module. Then the following holds:

1. Every open set in χ = Spec(M) is of the form χn for some n ∈ Sub(M).

2. χn = χl if and only if Rad(n) = Rad(l), where n, l ∈ Sub(M).

3. χn ∩ χl = χk if and only if Rad(n ∧ l)= Rad(k), where n, l, k ∈ Sub(M).

Proof. 1. Let U be an open set in χ. This implies, U ′ = χ − U is closed in χ and by definition
U ′ = V (n), for some n ∈ Sub (M). Therefore, U = Spec(M)− V (n) = χn.
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2. Suppose that, χn = χl. Then Spec(M) − V (n) = Spec(M) − V (l) if and only if V (n) = V (l),
therefore χn = χl if and only if V (n) = V (l).
If χn = χl, then Rad(n) =

⋂
p∈V (n)

(p : e) =
⋂

p∈V (l)

(p : e) = Rad(l).

Now, suppose that, Rad(n) = Rad(l) and p ∈ V (n). This implies n ≤ p and therefore (n : e) ⊆ (p :
e). Therefore, Rad(n) = Rad(n : e) ⊆ (p : e).
Thus Rad(n) = Rad(l) ⊆ (p : e) and which implies that (l : e) ⊆ (p : e). Therefore, by Lemma 2.3,
we have, l = (l : e)e ≤ p = (p : e)e. Thus p ∈ V (l).
Simillarly, V (l) ⊆ V (n). Consequently, V (n) = V (l), and hence χn = χl.

3. For n, l, k ∈ Sub(M), χn∩χl = χk if and only if (Spec(M)−V (n))∩(Spec(M)−V (l)) = Spec(M)−
V (k) if and only if Spec(M)− (V (n) ∪ V (l)) = Spec(M)− V (k) if and only if V (n) ∪ V (l) = V (k)
if and only if V (n ∧ l) = V (k) if and only if Rad(n ∧ l) = Rad(k).

Corollary 2.23. Let RM be a multiplication le-module and n, l ∈ Sub(M).
Then χn ∩ χl = ∅ if and only if Rad(n ∧ l)= Rad(0M ).

Following result characterises the denseness of open set χn in χ = Spec(M).

Theorem 2.24. Let RM be a multiplication le-module and n, l ∈ Sub(M) with Rad(l) 6⊆ Rad(0M ). Then
χn is dense in χ = Spec(M) if and only if Rad(n ∧ l) 6= Rad(0M ).

Proof. Suppose that, χn is dense in Spec(M) and l ∈ Sub(M) with Rad(l) 6⊆ Rad(0M ).
Therefore by Theorem 2.22(2), we have χl 6⊆ χ0M

= ∅. This implies, χl is non-empty, open in the Zariski
topology T∗n(M) over χ = Spec(M). Since χn is dense in Spec(M), we have, χn ∩ χl 6= ∅ and therefore,
by Corollary 2.23, Rad(n ∧ l) 6= Rad(0M ).
Conversely, suppose that, Rad(n ∧ l) 6= Rad(0M ) for every l ∈ Sub(M) with Rad(l) 6⊆ Rad(0M ). By
Corollary 2.23, we have, χn ∩ χl 6= ∅ and therefore χn is dense in Spce(M).

Definition 2.25. Let RM be a le-module and n ∈ Sub(M). We define
Nn(k) = ∧{p ∈ Spec(M) : k ≤ p, n 6≤ p}.

Note that Nn(k) ∈ Sub(M) and Ne(k) = Rad(k).

Theorem 2.26. Let RM be a multiplication le-module and n ∈ Sub(M). Then Nn(0M ) ∈ Spec(M) if
and only if χn is irreducible.

Proof. Let Nn(0M ) ∈ Spec(M) and K be any non-empty open subset in χn. This implies, K =
χn − V ∗(l) = Spec(M)− (V (l) ∪ V (n)) for some l ∈ Sub(M).
Let p ∈ K. Then p 6∈ V (n) and p 6∈ V (l). Hence p ∈ {pi : pi ≥ 0M , pi 6≥ n, pi 6≥ l}. Therefore
l 6≤ Nn(0M ), otherwise if l ≤ Nn(0M ), we have l ≤ p, a contradiction. Thus Nn(0M ) 6∈ V (n) ∪ V (l) and
hence Nn(0M ) ∈ K.
Therefore, any open set of χn contains Nn(0M ), hence χn is irreducible.

Conversely, Suppose that χn is irreducible and Nn(0M ) /∈ Spec(M). Then there exist r ∈ R and m ∈
M with rm ≤ Nn(0M ) but m � Nn(0M ) and re � Nn(0M ). Therefore V ∗(Rm) 6= φ and V ∗(Rm) 6= χn,
which implies (χn)Rm 6= φ. Note that (χn)re is a non-empty open subset. Therefore, we have (χn)Rm ∩
(χn)re = (χn)Rm∧re ⊆ χn−V ∗(rm) ⊆ χn−V ∗(Nn(0M )) = Spec(M)−{V (Nn(0M ))∪−V (Nn(n))} = φ,
a contradiction to the irreducibility of χn. Consequently, Nn(0M ) ∈ Spec(M).

Corollary 2.27. The meet of all prime submodule elements of RM is prime if and only if χn is irre-
ducible.

Definition 2.28. An le-module RM is said to satisfy condition T if for every n ∈ Sub(M) and for
any chain Nn(I1e) ≤ Nn(I2e) ≤ Nn(I3e) ≤ . . ., where Ii is an ideal of R, there is integer m such that
Nn(Ime) = Nn(Im+ie) for all positive integers i.
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Theorem 2.29. Let RM be a multiplication le-module and n ∈ Sub(M). Then the following statements
are equivalent:

1. RM satisfies condition T for n ∈ Sub(M).

2. χn is a Noetherian topological space.

Proof. (1)⇒ (2) Assume that M satisfies condition T for n ∈ Sub(M). Consider the sequence

V ∗(I1e) ⊇ V ∗(I2e) ⊇ V ∗(I3e) ⊇ . . . This implies

V (I1e)− V (n) ⊇ V (I2e)− V (n) ⊇ V (I3e)− V (n) ⊇ . . . , Therefore, we have,

∧{p : I1e ≤ p, n 6≤ p} ≤ ∧{p : I2e ≤ p, n 6≤ p} ≤ ∧{p : I3e ≤ p, n 6≤ p} ≤ . . .

Hence by the definition of Nn(k), we have, Nn(I1e) ≤ Nn(I2e) ≤ Nn(I3e) ≤ . . ..
Since RM satisfies T − condition, there exists an integer m such that Nn(Ime) = Nn(Im+ie) for

all positive integers i. Let p ∈ V ∗(Ime). This implies Ime ≤ p, but n 6≤ p. Therefore, we have,
Nn(Ime) = ∧{q ∈ Spec(M) : Ime ≤ q, n 6≤ q} ≤ p.

Since Nn(Ime) = Nn(Im+ie), we have, Nn(Im+1e) ≤ p and hence, Im+ie ≤ p. Therefore, we have,
p ∈ V ∗(Im+ie). Consequently, V ∗(Im+ie) = V ∗(Ime). Hence χn is a Noetherian topological space.
(2)⇒ (1) Conversely, suppose χn is a Noetherian topological space. Let Nn(I1e) ≤ Nn(I2e) ≤ Nn(I3e) ≤
. . . be a sequence. If p ∈ V ∗(Ime) then Ime ≤ p and n 6≤ p. Therefore, we have, Nn(Ime) ≤ p and hence,
Nn(Im−1e) ≤ p. This implies Im−1e ≤ p and n 6≤ p. Therefore , we have, p ∈ V (Im−1e). Therefore, from
above sequence we get,

V ∗(I1e) ⊇ V ∗(I2e) ⊇ V ∗(I3e) ⊇ . . .

Since χn is Noetherian there exists an integer m such that V ∗(Im+ie) = V ∗(Ime) for all positive integers
i.

Therefore, we have, {q ∈ Spec(M) : Im+ie ≤ q, n 6≤ q} = {q ∈ Spec(M) : Ime ≤ q, n 6≤ q}. This
implies, Nn(Im+ie) = ∧{q ∈ Spec(M) : Im+ie ≤ q, n 6≤ q} = ∧{q ∈ Spec(M) : Ime ≤ q, n 6≤ q} =
Nn(Ime) for all positive integers i. Therefore M satisfies condition T .
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