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Abstract: This paper introduces the concept of a unit regular graph over an arbitrary ring. A unit regular
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1. Introduction

Each ring considered in this paper is finite and possesses an identity element. Let R be a ring with
an identity element. An element a € R is termed idempotent if a?> = a, and is called a Von-Neumann
regular element in R if there exists b € R such that aba = a. If there exists a unit element v € R satisfying
aua = a, then a is referred to as a unit regular element. The element u is called an inner inverse of a
(see [9]). It is evident that if R contains a unit, then the additive identity O is unit regular. Let U(R)
and U,(R) denote the sets of all units and all unit regular elements of R, respectively. Since z € U,(R)
if and only if —x € U,.(R), the set U,.(R) is inverse closed. Moreover, U,.(R) clearly contains U(R).

A ring R with identity 1y is considered a division ring if, for every a € R with a # Og, there exists
b € R such that ab = 1g, i.e., a has a multiplicative inverse. If every element x € R is idempotent, then
the ring R is called a Boolean ring. A ring R is termed a unit regular ring if every element € R is unit
regular. The characterization of unit regular rings is provided, for instance, in [9] and [6]. One of the
results given in [9] is as follows.
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Theorem 1.1. ([9]) Given a unit regular ring R. Then, R is either a Boolean ring or a division ring if
any nonzero element of R has a unique inner inverse.

This subsequent theorem gives a requirement for a ring to be unit regular as given in Theorem 1 in
[6].

Theorem 1.2. ([6]) The necessary and sufficient condition for a ring R to be unit regular is that for any
x € R, we can find an element e € R that is idempotent and an element u € R that is a unit satisfying
r=e+4+u and tRNeR = 0pg.

Recall that a ring R is considered to be clean if, for every x € R, there exists an idempotent e € R
and a unit v € R such that = e + u. From Theorem 1.2, we know that whenever a ring R is unit
regular, R is also clean.

Algebraic graphs have garnered significant attention in recent research. Following the introduction
of the concept of Cayley graphs, various new algebraic graphs have been introduced and thoroughly
examined in the context of different algebraic structures, including groups, rings, and semigroups. In
addition to Cayley graphs, some authors have shown interest in prime graphs, coprime graphs, commuting
graphs, and noncommuting graphs within the domain of groups, as demonstrated in references such as
[2, 5, 7, 15].

Another type of algebraic graph over a semigroup is the bipartite graph, where the vertex set consists
of the elements of the semigroup and all cosets of the semigroup, as introduced in [13]. A similar graph,
known as the bipartite graph over a ring, is defined as a graph whose vertex set consists of the ring’s
elements and subrings, as proposed in [11]. The concept of these two graphs is motivated by the idea of
a bipartite graph associated with elements and cosets of groups, as presented in [3]. Certain properties
of this graph for a particular group are given in [12].

In [14], the authors introduced the concept of the Von-Neumann regular graph of rings. For a given
ring R, the Von-Neumann regular graph T'y,,-(R) is defined as a simple graph whose vertex set is R,
and any two vertices a and b in R are adjacent if and only if a 4+ b is Von-Neumann regular. Later, in
[10], some properties of the graph were presented, including domination parameters. Another type of
algebraic graph associated with rings is the unit graph T',(R), proposed in [4] as a generalization of the
work presented in [8]. This unit graph is indeed a subgraph of the Von-Neumann regular graph T',,,,-(R).
In [1], some properties of the unit regular graph related to the eigensharp property are discussed.

In this manuscript, we propose a new notion of the unit reqular graph of rings. For any ring R, the
unit regular graph of R, denoted by T'y,.(R), is defined as the simple graph with R as the vertex set,
where any two vertices a and b in the graph are connected by an edge if and only if a + b is unit regular.
The graph I',,.(R) is obviously a spanning subgraph of I',,,,.(R) and is a supergraph of I, (R).

In this research, we explore various aspects of the graph, including vertex degrees, Eulerian and
Hamiltonian properties, girth, matching number, clique number, and independence number. Moreover,
for some particular rings, we present specific properties of these graphs, including chromatic number,
planarity, domination number, and some topological indices such as the first Zagreb and the Wiener
indices, as well as the subgraph induced by the unit regular elements.

Some terminologies used in this paper are adopted from [16]. For any graph G, we use the symbols
V(G) and E(G) to indicate the vertex set and the edge set of G, respectively. The degree of any vertex
a in G is denoted by deg(a). A |V(G)|-tuple of all vertex degrees in graph G, such that each term is
greater than or equal to the previous term, is known as the degree sequence of G. Any subgraph K of G is
said to be induced if E(K) is equal to the set of all edges of G connecting two vertices of K. The distance
between a vertex a and a vertex b in G, denoted by dg(a,b), is the number of edges in the shortest path
connecting a and b. The diameter of G is defined as the maximum distance between any two vertices of
G, and the girth of G is defined as the number of edges in the shortest cycle in G. A graph G is called
Eulerian if it contains an Eulerian trail, i.e., a closed trail that contains every edge of G. It is well-known
that G is Eulerian if and only if the degree of each vertex in G is even. If there exists a cycle containing
all vertices of G, then G is considered to be Hamiltonian. For arbitrary graphs G and H, any bijection
f:V(G) = V(H) satisfying zy € E(G) if and only if f(z)f(y) € E(H) is called an isomorphism from
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G to H. Specifically, whenever G = H, f is known as an automorphism. A graph G is considered vertex
transitive if, for any vertices  and y within G, there exists an automorphism f on G such that y = f(z).
A subset A C V(G) such that for each x € V(G) \ A, there exists y € A that is adjacent to x, is called
a dominating set. The size of the minimum dominating set of G is called the domination number of G,
denoted by v(G). On the other hand, a subset B C V(G) such that for any a,b € B, a is not connected
by any edge to b, is called an independent set. The size of the maximum independent set of G, denoted by
(@), is termed the independence number of G. Analogous to the independent set, a subset C' of E(G)
is called a matching if C' contains no two adjacent edges. The matching number of G is identified as the
size of a maximum matching, denoted by v(G). Any complete subgraph of G is known as a clique, and
the size of the maximum clique of G is termed the cligue number of G, denoted by w(G). The minimum
natural number k such that we can assign numbers in {1,2,...,k} to label the elements of V(G) in such
a way that any « € E(G) connects two vertices with different labels, denoted by x(G), is called the
chromatic number of G. A planar graph is a graph that can be drawn on a plane such that no edges
intersect except at their endpoints. According to Kuratowski’s theorem, a graph is planar if and only if
it does not contain a subgraph that is a subdivision of the complete graph K5 or the complete bipartite
graph K3 3. Clearly, any graph that contains K5 or K33 as a subgraph is not planar. The Wiener index
of a connected graph G is defined as

W(G) = > dala,b).
a,beV(QG)
The first Zagreb index of G is defined as the sum
M (G)= ) (degg(a))®.

a€V(G)

2. Results

Let us start with this subsequent description.

Definition 2.1. Given a ring R. The unit regular graph I'y.(R) of R, is a simple undirected graph which
vertex set is R and any two elements a and b in R are connected by an edge exactly when a +b is a unit
reqular.

Remark 2.2. For any ring R, Ogr is adjacent to any x € U, (R).
Remark 2.3. For any ring R, T'y,.(R) is a subgraph of Tynr(R).

Theorem 2.4. If R is a division ring or a Boolean ring, then U,.(R) and R coincide, so that Ty (R) is
a complete graph.

Proof. Tt is obvious. O

Nevertheless, in order R = U,(R), R is not necessarily a division ring nor a Boolean ring, as for
instance, we have Zg that is not division ring nor Boolean ring, but U,.(R) = R.

The following theorem presents a requirement for I',,,.(R) being complete.

Theorem 2.5. Given a ring R having an identity element. These three statements are equivalent.

(i) Tur(R) is complete.
(ii) U,(R) = R (ring R is unit regular).

(iii) For each x € R, we have an idempotent e and a unit u in R such that © can be expressed as x = e+u
and ctRNeR = 0g.
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Proof. (i)<(ii) Let a € R. As T'y.(R) is complete, x is adjacent to Og. Thus,  + 0g = = € U.(R).
Hence, R C U.(R) implying R = U,(R). Conversely, it is obvious that for any a,b € R we have
a+b € U.(R), meaning that I',,.(R) is complete.

(ii)<(iii) By Theorem 1.2 as given in [6]. O

Based on Theorem 2.5 and the property that every ring that is unit regular is clean, we can derive
the following corollary.
Corollary 2.6. For arbitrary ring R, in order T',,.(R) to be complete, R is necessarily clean.

Remark 2.7. Let a finite ring R be unit reqular. The necessary and sufficient for T'y,.(R) to be Eulerian
is R has odd number elements.

Theorem 2.8. Let R be a division ring and Ma(R) be the ring of all matrices of size 2 x 2 which entries
are in R. Then U,.(Mz(R)) = M3(R), and hence T'.(M2(R)) is a complete graph.

Proof. Let (Z Z) € M>(R) where <Z 2) is not a unit. Hence, det <<$ Z)) =ad —bc = 0 or

21 -1
ad =be. If a # 0,d # 0, then be # 0, so ¢ # 0. As R is a division ring, we have <a0 _Cd_1> € My(R).

a”l ¢! a”l ¢!
Therefore, det (( 0 d1>) = —(ad)~! # 0, so that ( 0 d1> is a unit. Thus,

(Co) (0 ) (En) (o) (0 =(0)

Therefore, (a b) is a unit regular. If a = 0,d # 0, we can find ((1) d_1> satisfying

LY6AEY-CDEY-LY

Since det <<(1) d01>) =d ' #0,s0 ((1) d01> is a unit. Hence, ( > is unit regular. If a # 0,d = 0,

there exists @ 0 such that

0 1
ab)fat 0\ faby (1 b\[ab), [ab
c 0 0 1/)\c0) \eca? 0/\c0) " \co0)"
Asdet ((C )Y a1 2050 (“ °) is o unit. | @ b 5o o unit regular. Tfa = 0,d = 0
s de 0 1 =a »80 (g q ) isaunit. Hence, { =g is a unit regular. If a = 0,d = 0,
—1 —1
L, c;éoandy:{b . b#0

o

o O
QU >

there exists (2 g), where x = It is obvious that (0 x) a unit in

1, c=0 1 b=0" y 0

)

COCHCH-(r -0

is a unit reguler. As all of non unit elements in M3(R) are unit regular, we come to a

M5(R). Thus, we get

0b
Thus, ¢ 0
conclusion that U,(Mz(R)) = Mz(R). By Theorem 2.5, I',.(M2(R)) is complete. O
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In the following figures we give several examples of unit regular graphs.

Figure 1. T.,(Z4)

Figure 2. T'..(Z¢)

Figure 3. T..(Z2 X Z2)

The following theorem describes all possible degrees of the unit regular graph vertices.

Theorem 2.9. Let ring R be commutative and with a unit element. For every a € R, we have

(1) degFuT(R)(a) = ‘UT‘(R)| Zf 2a ¢ UT‘(R)
(ii) degr,,(r)(a) = |Up(R)| =1 if 2a € U.(R).

Proof. Take any a € R. Note that (R,+) is a group, so there exists a unique a, € R such that
a,, + a = u, for any u € U,.(R). We consider these two possibilities.

(i) Suppose that 2a ¢ U, (R). For any u € U,(R), it follows that a, # a. Clearly, a and a,, are adjacent
in I'y.(R). Hence, degr, (r)(a) = |U-(R)|.

(ii) Suppose that 2a € U,.(R). Then, as, = a. This implies a and as, are not adjacent in T'y,.(R). For
every u € U.(R) \ {2a}, we have a, # a. We have that a and a, are connected by an edge in
I (R). Hence, degr,, (ry(a) = |U.(R)| — 1.
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O

Theorem 2.10. Given a finite ring R with identity. Then T'y,.(R) is Eulerian if and only if |U,(R)| is
odd and Ty (R) is (JU-(R)| — 1)-regular, that is all elements of Ty (R) have degree |U,(R)| — 1.

Proof. Let I'y(R) be Eulerian. Then each vertex of I',.(R) has even degree. By Theorem 2.9, all
vertices in T'y.(R) are of degree |U.(R)| or all are of degree |U.(R)| — 1, as for otherwise there will a
vertex which degree is odd and a vertex which degree is even. Now, assume that all vertices of T'y,.(R)
have degree |U,.(R)|. For any = € R, let Nr, (r)(z) be the set of all vertices of I',,.(R) that are adjacent
to x. Then, by definition of unit regular graph, [Ny, (r)(0r) N Ur(R)| = |U,(R)| — 1. Thus, there exists
an element y € R\ U,(R) such that y is adjacent to Og, and hence y = y + Or € U,.(R). Hence, we have
a contradiction as y ¢ U,.(R). Therefore, all vertices of I'y,.(R) have degree |U,(R)| — 1. As T'y,-(R) is
Eulerian, |U,.(R)| must be odd. Conversely, it is clear as all vertices of I',,-(R) have even degree. O

Recall that Ore’s theorem states that if for any two different non-adjacent vertices v and v in graph
G, the sum of the degree of v and of the degree of v is less than or equal to the number of vertices in G,
then G is Hamiltonian. As a consequence of Ore’s theorem, we have the following result.

Theorem 2.11. Let finite ring R have at least 3 elements. If Ty, (R) is connected and |U.(R)| > |R|T+2,
then T',-(R) is Hamiltonian.

Proof. Let finite ring R has at least 3 elements and |U,.(R)| > ‘R‘Tﬂ. By Theorem 2.9, degr,, (r)(z) =
|Ur(R)| or degr,, (r)(x) = |Up(R)|—1. Thus, for arbitrary x,y € R, degr,, (r)(x) +degr,, (r)(y) is at least

21U, (R)| — 2. As 2|U,(R)|—2>2 ('R'T“) — 2= |R|, then by Ore’s theorem, Iy, (R) is Hamiltonian. O

In the next property, we show that the unit regular element graph of a ring with identity is contain
a cycle of length 3.

Theorem 2.12. For any ring R containing nonzero unit reqular element, the graph Ty, (R) has girth 3.

Proof. Clearly, Og is unit regular. Let u be a nonzero unit regular element. We have —u is also a unit
regular element. Thus, we have a cycle of length 3 connecting u,0g and —u. O

As a consequence, we have this subsequently theorem.

Theorem 2.13. Let R be any ring containing nonzero unit reqular element. The Von Neumann reqular
graph Ty (R) associated with R has girth 3.

Proof. This is as I',,.(R) is a spanning subgraph of I',,,,.(R) and by Theorem 2.12. O

Theorem 2.14. If ring R is not a field and has a nonzero unit reqular element and x +y € U,.(R), for
any © € R\ U.(R) and Og # y € U.(R), then diam(T'.(R)) < 3.

Proof. As R is not a field, consequently diam(T',,(R)) > 1. Now, let take arbitrary two vertices u and
vin R. If u,v € U,(R), then we obtain a path v — 0g — v of length 2. If u,v € R\ U,.(R), then take
a nonzero unit regular element a € R. Then we obtain a path u —a — v of length 2. If v € U,(R) and
v € R\ U,(R), then u and v are connected by an edge or we have a path u — Og — a — v of length 3 for
some nonzero unit regular element a € R. Hence, diam(T,,(R)) < 3. O

The next result shows the lower bound of the matching number of 'y, (R).

Theorem 2.15. Let R be a finite ring and Re 1 = {x € R|2x # Or}. The matching number of Ty, (R)

“%2—’”. Particularly, if ring R is unit reqular with even number elements, then the
matching number of Ty, (R) is @.

s greater or equal to
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Proof. Observe that z € Rp 4 is equivalent to —x € Ry 4, implying that |Ry 4| is even. Let x € Ry 4,
that is * # —x. Let —x = y. Hence, x + y = Ogr € U.(R). Thus, we have independent edge set
{{z,—z}|x € Ry +} comprising precisely % elements. Hence, the matching number of T',,.(R) must

[R2,+|
5.

be greater or equal to Particularly, if R is a unit regular ring such that |R| is even, then by
IR

Theorem 2.5, T'y,-(R) is complete. Thus, the matching number of I',.(R) is 5. O

Recall that any graph that is isomorphic to a graph with vertex set {c,z;,y;|i = 1,2,...,r} and
edge set {cz;, cy;, ziyi|t = 1,2,...,r} is called as a friendship graph F,.. The following theorem gives a
sufficient condition for the graph T',,-(R) to contain a friendship graph.

Theorem 2.16. Let R be a finite ring. If Ro + = {x € R|2z # Or} and U,(R) N Re,+ = {Or}, then the
subgraph of T',.(R) induced by U,(R) contains the friendship graph Fu,(r) -1 .
2

Proof. Obviously, U,(R) is inverse closed, i.e. —z € U,(R) if x € U,(R). Let U,.(R) N Ra,+ = {Ogr}.
Then |U,(R)| = 2k + 1 for some k > 1. Moreover, for all nonzero z € U,(R), x is adjacent to —x, and
also to Og. Therefore, if E = {{z, —2},|0g # z € U,(R)} U{0Og,2}|0g # x € U.(R)}, then U,.(R) and F
defines the subgraph of I, (R) induced by U,(R) and is a friendship graph Fy, with k = % O

Theorem 2.17. Let R’ be a finite division ring for any i =1,2,...,n. f R=R'x R? x ... x R", then
U,(R) = R and thus T,,.(R) is complete. If there is i such that |R'| is even, then T'y,.(R) is not Eulerian.

Proof. Let R = R! x R?> x ... x R™ for some division rings R'’s, i = 1,2,...,n. Then @ =
(ai,as,...,a,) € R is unit regular exactly when a; is unit regular for all i = 1,2,...,n. As U.(R') = R’
by Theorem 2.4, hence U,(R) = R. And thus by Theorem 2.5, T;,,-(R) is complete and moreover each
vertex of I',,.(R) has degree |R| — 1. Therefore, if |R!| is even for some i, then |R| — 1 is odd implying
I (R) is not Eulerian. O

Theorem 2.18. For any ring R, if U.(R) is closed under addition, then the independence number
a(Tyr(R)) is at most |R\ U,.(R)| + 1.

Proof. Clearly, if a+b € U,.(R) for any a,b € U,(R), then any independent set in I',,.(R) cannot include
two elements from U, (R). Additionally, if « + b € R\ U,(R) for any a,b € R\ U,(R), then R\ U,(R)
is an independent set. And hence to maintain its independence, adding & elements to R\ U,.(R) is only
possible for k = 1. Thus, a(T'y-(R)) < |[R\ U.(R)| + 1. O

Theorem 2.19. Let R be any finite ring. If U.(R) is closed under addition, then the clique number of
Tur(R) is at least |Up(R)|.

Proof. For any ring R, let U,(R) be additively closed. Then, any elements  and y in U,.(R) will be
adjacent. Thus U,.(R) induces a complete subgraph meaning that U,.(R) is a clique. Therefore, the clique
number is greater than or equal to |U,(R)]|. O

Remember that for any ring R, the characteristic of R is the smallest positive integer k such that
kx = Og for arbitrary x € R. In the next theorem, we give a sufficient condition for the unit graph
I (R) to be vertex transitive, in connection with the characteristic of the ring.

Theorem 2.20. Let ring R have an identity and have characteristic 2. Then Ty, (R) is vertex transitive.

Proof. Let o, € R. Construct a function ¢ : R — R with ¥(a) = a + 8 — « for every a € R. By
the definition of ¢, we have ¥(«) = 8 and moreover, 1 is a bijection as (R,+) is a group. Furthermore,
for any a,b € R, we have that a is adjacent to b, i.e. a+ b € U.(R) if and only if ¢(a) + ¥(b) =
a+pf—a+b+pf—a=a+beU.(R),ie. t(a) and ¢(b) are adjacent. Therefore, ¢ is an isomorphism
and hence I'y,-(R) is vertex transitive. O

0]
ot
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3. Unit regular graph over some particular rings

Throughout this section we present some more detail properties of the unit regular graph of ring of
integers modulo n for some particular n.

Theorem 3.1. Let Z, be the ring of all integer classes modulo n. If n = pips...pr, where p;’s,
i=1,2,...,k, are distinct prime numbers, then U.(Zy) = Zr, and hence T -(Z,,) is complete.

Proof. Let n = pips...p, for some different primes p;’s, i = 1,2,...,k. By Chinese Remainder
theorem, clearly we have Z,, = Z,, X Z,, X ... X Zyp,. As Z,, is a field, by Theorem 2.17, U,(Z,,) = Z,,
and thus T, (Z,,) is complete. O

Theorem 3.2. Given ring Z,, with n = 4p for some prime number p > 3.

(i) U(Zy) =Zp \ {4t +2 |0 <t < p} and thus |U.(Z,)| = 3p.

(ii) For any T € Zy, degr,, (z,)(T) = 3p — 1 if v is even and degr,, (z,)(T) = 3p if x is odd.

Proof. (i) Let a be a unit regular element. There exists a unit u € Z,, satisfying aua = a. As u
is a unit, we have ged{u,n} = 1 so that u = 1 mod4 or u = 3 mod4. Let assume that a is of the
form a = 4t + 2 for some 0 < t < p. Then a = 2 mod4. For u = 1 mod4 or u = 3 mod4, we have
uau = 0 mod4 and hence is not equal to a. Therefore, a € Z, \ {4t +2 | 0 < ¢t < p}. Now, let
@€ Z,\{4t+2]0<t<p} Then, eithera =0 or a =1 modd or a = 3 mod4. If a = 0, then
a is a unit regular element. If @ = mod4 or a = 3 mod4, then ged{a,n} = 1 so that @ is a unit.
Consequently, @ is a unit regular element.

(ii) Let T € Z,, be arbitrary. If x is even, then 22 = 0 mod4 and thus 27 is a unit regular element. By
Theorem 2.9, the degree of T is |U,(Z,)| — 1 = 3p — 1. Let now z be odd, say = 2r + 1 for some
r. We have 2z is of the form 4t 4+ 2 for some 0 < ¢t < p. Hence 27 is not a unit regular element. By
Theorem 2.9, the degree of T is |U,.(Z,,)| = 3p.

O

Theorem 3.3. Given ring Z,, with n = 4p for some prime number p > 3.

(i) The degree sequence of unit reqular graph Ty (Zy,) is
(Ur(Zn)| =1, .., |Un(Zn)| = 1, |Up(Zn)|, - - ., |Ur(Zn))-

2p 2p

ur(Zy) is connected with diameter 2.

(ii
(il) Tur(Zy) is Hamiltonian but not Eulerian.
(iv) The matching number of Ty (Z,) is 2p.
(v) The cliqgue number of Ty, (Z,,) is p + 2.
(vi) The independence number of Ty, (Z,) is p.
(vil) The domination number of Ty (Zy,) is 2.
(viii) The chromatic number of Ty (Zy) is p + 2.
(ix
(x) The first Zagreb index of Uy (Zy) is My (Tyur(Zy,)) = 36p° — 12p* + 2p.

wr(Zy,) is not planar.

)T
)T
)
)
)
)
)
)T
)
)

(xi) The Wiener index of Uy (Zy) is W(Lyr(Zy,)) = 8p* — p.
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(xii)

The subgraph of Ty (Zy,) induced by U,.(Zy,) is the union of the complete tripartite graph defined by
partition {So, S1,S3} and the complete subgraph induced by Sy, where S; = {4t + 1 € Z,|0 <t < p}
fori=20,1,3.

Proof. Consider S; = {4t +i € Z,|0 < t < p}, for any ¢ = 0,1,2,3. By Theorem 3.2, U,(Z,,) =
So U Sy USs.

(i)
(i)

(vi)

(vii)

(viii)

As a direct consequence of Theorem 3.2.

By Theorem 3.2, T',.(Zy,) is not complete. Hence, diam (T ,.(Zy)) > 2. Let T,y € Z,. If 7,7 €
U, (Zy,), then we have path T —0—7 of length 2. Now, let T € U,.(Z,,) and y ¢ U,.(Z,,). By Theorem
3.2,y isin Sy. If T € S; U S3, then T and 7 are connected by an edge. Hence, dr, (z,)(Z,7) = 1. If
7 € Sy, then we have a path T — 1 — g of length 2. Now, let 7,7y ¢ U,.(Z,), i.e. T,y € S2. We have
a path T — 1 — 7. Therefore, we conclude that I'y..(Z,) is connected with diameter 2.

By Theorem 2.11 and Theorem 3.2, the unit regular graph T'y,.(Z,) is Hamiltonian, but as the
parity of the degree of its vertices are not the same, I';,.(Z,) is not Eulerian.

Let for any ¢ =0,1,2,3, S; = {a;1,a:2,...,6ip}. We form

M ={{aor, a1}k =1,2,...,p} U{{azk,as s}k =1,2,...,p}.

Thus M has precisely 2p elements. Moreover, for any k, agx +a1x ¢ {4t +2 € Z,|0 <t < p}, ie.
aor + a1k € Up(Zy,). Similarly, for any k, as i + asp ¢ {4t +2Z,|0 < t < p}, i.e. asp +asy €
U.(Z,). This means that each element in M is an edge in I';,.(Z,). Thus M is a perfect matching
as it covers all vertices in T',,-(Z,,). Hence, the matching number of T, (Z,,) is 2p.

For any z,y € Sy, it follows that x +y € Sy C U,.(Z,). Hence the subgraph induced by Sy is
complete. Thus, the clique number of T',,.(Z,) is at least |Sg| = p. Now, let C' be a maximal
clique in 'y (Z,,). This implies C' cannot contains two vertices in S7, as for otherwise we have two
vertices that are not adjacent in C. Thus, |C'NS;| < 1. Similarly, |C N Ss| < 1. Observe that C
cannot contain simultaneously a vertex from Sy and and a vertex from S;. Thus, C' C Sy U {a,b}
or C C Sy U{c,d} for some a,c € S; and b,d € S3. Let C C Sy U {a,b}. Recall that a and b are
adjacent. Moreover, both a and b are adjacent to any x € Sy. By maximality of C', C' must be
equal to SoU{a,b}. If C C SyU{c,d}, by similar argument, C' and Se U{c, d} must coincide. Thus,
ICl=p+2.

We have S; and S3 are independent sets, as for ¢ = 1, 3, for any x,y € S; it follows that z +y € S,
ie. v +y ¢ U.(Zy,). Hence, the independence number of T',,,-(Z,,) is greater or equal to p. Let I
be the largest independent set. This implies I cannot include two elements from Sy. As for any
x,y € Sy, x and y are adjacent. Thus, |[ITNSy| < 1. Similarly, [INSs| < 1. Moreover, if INS; # 0 or
INS;# 0, then INSy=1INSy =0. Alsoif INS; # (), then INS3 = (). Hence, the largest possible
independent set is I = S; or I = S3, which has p vertices. We conclude that the independence
number of I'y,.(Z,,) is p.

If D is a dominating set, then necessarily D is not a singleton since there are no edges connecting
a vertex in Sy and a vertex in So and also by the fact that S; and S; are independent sets. Thus,
the domination number of T'y,.(Z,,) is greater or equal 2. Let a € Sy and b € Sy be arbitrary. For
each z € (Sp \ {a})US; USs, a and x are adjacent. For each y € S5\ {b}, y is adjacent to b. Thus
D = {a, b} is a dominating set. We conclude that the domination number of T, (Z,) is 2.

By (v), the chromatic number of T',.(Z,,) must be at least p + 2. Now, let us color the vertices in
So with p colors ¢i,cg, ..., ¢, such that each color ¢; appears once. And let also the vertices in Sy
be colored with ¢y, ca,. .., ¢, and each color appears once. Put color ¢, for all vertices in S; and
put color cpqo for all vertices in S3. Then, we find that all edges in T',,(Z,) connect two vertices
of different colors. We conclude that the chromatic number of Ty, (Z,,) is p + 2.

o)
~
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(ix) By (v), Tur(Zy,) contains the complete graph K5 implying T',,,-(Z,,) is not planar by the Kuratowski’s
theorem.

(x) Let Z¢ = {T € Zy,|x even} and let Z% = {T € Zy|z odd}. By Theorem 3.2, we have

M (Dur(Zn)) = Z (degl“w(Zn)(”))2

veV(G)
=Y (degr,, @z, ()’ + Y (degr,, @) ()
UEZp vEZO

=2p(3p — 1)* + 2p(3p)*
= 36p> — 12p* + 2p.

(xi) Let for any i,j € {0,1,2,3}, A;; = {{f U} CZy|T #75,{Z, 5} N S; #0,{z,5} NS; # 0}. We have
|4 = M if i = j and |A;;| = p? if i < j. Let {Z,y} € A;; be arbitrary. If i = j = 0 or
i=7=2, then dr,,z,)(@,y) =1 Ifi=j=1ori=j=23, then dpm(zn)(x y) = 0. For i < j, if
i=0and j =2, then dr, (z,)(T,7) =2 and dr, (z,)(T,7) = 1 for the remaining cases. Therefore,

Z Yo drpeo @D+ Y Y dr,e (@)

=0 {ZT,y}€A;; 0<i<j<3{z,y}€A;;
—1
= %(1+0+1+0)+2p2+5p2
=8p° —p.

(xii) As mentioned in the proof of (v) and (vi), Sp is a clique and both S; and S5 are independent sets.
Hence, Sy induces a complete subgraph. But for each i,j € {0,1,3}, with ¢ # j, the set S; U S;
altogether with all edges connecting a vertex in S; and a vertex in S; define a complete bipartite
graph with partition {S;,S;} and thus partition {Sy,S1, S35} defines a complete tripartite graph.
Altogether with the subgraph induced by Sy, the union of the tripartite graph and the complete
subgraph induced by Sy is indeed the subgraph of Ty, (Z,,) induced by U, (Zy,).
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Figure 4. The unit regular graph I',,(Z12)

Figure 5. The subgraph of I'y.(Z12) induced by U, (Z12)

Theorem 3.4. Let n = 2% for some positive integer k. We have
(i) Up(Zy,) ={Z € Zy, | x is 0odd} U {0}, so that |U.(Z,)| = 2F"1 + 1.

(ii) degr,, (2. (@) =21 +1if T € Zy \ {0,251} and degr,, (2, (T) =271 if T € {0,281},

Proof. (i) We have U,.(Z,) = {T € Z,|ged(z,n) = 1} U{0}. But, as n = 2*, then it follows that
ged(x,n) = 1 if and only if T is odd. Therefore, |U,.(Z,)| = 2~ + 1.

(i) Let T € Z, \ {0,2k-1}. For all w € U,(Z,), there exists a unique g, € Z, with g, # T such that
T + 7, = u. Hence, degr (7 (T) = |Up(Zy)| = 2"71 + 1. Let T € {0,2+1}. For all @ € U,(Zy)
with @ # 0, there exists a unique ¥,, € Z,, such that * + 7y, = . For w = 0, we have y,, = 7. Hence
degr, (z,)(@) = [Ur(Zn)| — 1 = 2kt

O
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Theorem 3.4 implies the following several results.
Theorem 3.5. Given ring Z, with n = 2F for some positive integer k.
(i) The degree sequence of T'(Zy,,) is

(|UT(ZTL)| -1, ‘UT(ZTLH -1, |Ur(Zn)|7 MR ‘UT‘(ZTL)D

2k —2

Tur(Zy,) is connected with diameter 2.

L (Zy,) is Hamiltonian but not Eulerian.
Tur(Zy,) is planar if and only if k < 2.

The clique number of Ty, (Zy,) is 4.

The independence number of Ty (Zy,) is 2872 + 1.

(viii) The matching number of Ty(Z,) is 281,

(ix

(x

The chromatic number of Ty (Zy) is 4.
The first Zagreb index of Uy (Zy) is My(Tyr(Zy)) = 23872 4228 2k 9,

The Wiener index of Uy (Zy,) is W (Tyup(Zy,)) = 2281 — 2k=1 4 1,

ii)
iii)
iv)
)
i)
(vil) The domination number of Tuy(Zy) is 2.
)
)
)
(xi)
)

(xii) The subgraph of Ty, (Z,) induced by U,.(Z,,) is the friendship graph For—.

Proof. Let n = 2 where k is a positive integer. Let Z¢ = {T € Z,|r even} and let Z2 = {7 €
Zy|x odd}.

(i) It is a direct consequence of Theorem 3.4.

(ii) Let x,y € Z,,. If T € Z5, and j € Z3,, then T and ¥ are adjacent, and hence dr, (z,)(T,7) = 1. Let
T,y € Z¢. Ify = —7, then T+7 = 0 and thus T and 7 are adjacent. If § # —T then for any z € Z2,
both T and 7 are adjacent to Z and thus we have a path T — Z — 5. Therefore, dFuT(Zn)(f, y) = 2.
Similarly, if 7,7 € Z3,, then dr,, (z,)(Z,%) is 1 or 2. We conclude that the diameter of I'y,.(Zy,) is 2.

(iii) By Theorem 3.4 and Ore’s theorem on Hamiltonicity of graphs, I',,.(Z,,) is Hamiltonian. By The-
orem 3.4, I, (Z,,) have some vertices of different parity. Hence, I'y,.(Z,,) is not Eulerian.

(iv) If k = 1, then I'y,.(Z,,) is isomorphic to the path graph P, with two vertices, which is planar. For
k = 2, then I'y,.(Z,) is also planar as illustrated on Figure 2. If k¥ > 3, then I',,(Z,) contains
complete bipartite graph K, 4 as each vertex T € Z¢ is adjacent to any vertex ¥ € Z. By the
Kuratowski’s theorem, I',.(Z,,) is not planar.

(v) Let C be the maximal clique of T'y,(Zy,). For any 7,7 € Z¢, T and 7 are adjacent if only if § = —7.
Also, for any T,y € Z¢, T and § are adjacent if only if § = —Z. Therefore, |CNZS| < 2 and |CNZE| <
2 impliying that the clique number of T'y,.(Z,) is at most 4. Consider C’ = {1,2k —1,2,2k — 2.
It is easy to check that C” induces a complete subgraph of 'y (Z,). Hence, the clique number of
Tur(Zn) is 4.
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(vi)

(vii)

(viii)

(xi)

Obviously, |Z¢| = |Z2| = 2=, Put I = {2a|0 < a < 2¥=2}. Then, [ is an independent set. Hence,
the independence number of T',,.(Z,) is at least 2¥=2 4- 1. Let I be the largest independence set
in ['y(Z,). Tt is easy to see that I NZ% # () implies I NZ¢ = (. Therefore, I C Z¢ or I C Z°.
Let I C Z¢. For any two different vertices Z,y € Z¢, T and y are adjacent if and only if § = —7.
Consider Z¢ \ {0,28-1}. From Z¢ \ {0,2%-1}, we have 2¥=2 — 1 edges of the form {z,y}, with
y = —x. Thus, |[IN(2Z¢\ {0,2F-1})| < 2¥=2 — 1. Hence, we can take a vertex from each of those
edges, so that we obtain 2¥~2 — 1 independent vertices. Let collect those vertices in A. Now put
B = AU{0,2¥-1}. Then B is independent and also the largest. Thus, I = B and I has 2¥72 + 1
elements. Now, let 7 C Z2. In the subgraph induced by Z2, we have 2¥~2 edges of the form {z, 7}
with 7 = —Z. Therefore, |I| < 2¥~2. We conclude that the independent set of T',.(Z,,) is 2872 + 1.

Observe that T is not adjacent to ¥ whenever 7,y € Z; or 7,y € Z;, and § # —. Hence, the
domination number of I'y,(Z,,) must be greater or equal 2. As {0,1} is a dominating set, we can
conclude that the domination number is 2.

The matching number of T',,.(Z,,) is at most 2¥~!. Let {Z,7} be an edge connecting vertex T and

vertex 7. Consider M = {{Z,7+1}|Z € Z¢}. Then, M contains 2*~! independent edges and covers
all vertices in Z,. Therefore, M is maximum so that the matching number of T, (Z,,) is k-1,

From (v), the chromatic number must be greater or equal to 4. We know that all vertices Z¢ are
adjacent to all vertices in Z?. Therefore, if T € Z¢ and § € Z2, then we must put different colors
for ¥ and for §. As for any 7,y € Z or T,y € Z¢, T and § are adjacent if and only § = —7,
then we can use two colors for vertices in € Z¢, let say ¢; and ca. Use ¢; for vertices in the set
X, = {2a|0 < a < 2¥72 —1} and use c; for vertices in the set Xy = {2a|2¥72 < a < 2F~1 —1}. Now,
let use c3 for all vertices in X3 = {2a+ 1|0 < a < 2872 — 1} and for the remaining vertices which
are in X4 = {2a + 1272 < a < 2¥=! — 1} use the fourth color ¢4. Then due to this coloring, all
edges will be connecting two vertices of different colors. We conclude that the chromatic number

of Tyr(Zy,) is exactly 4.

By Theorem 3.4, we obtain

My (DPur(Zn)) = Z (degl‘ur(Zn)(v))z

veV(G)
= Z (degr,,(z,)(v))* + Z (degr,, (z.,)(v))?
ve{0,2k—1} v€ZR\{0,2k—1}

=2(2F 12 4 (2F —2)(2F 1 4 1)2
=232 4 92 _ ok _ 9

Let Ay = Z2 and let Ay = Z¢. We have |A;] = |As| = 251, For any i,j € {1,2}, let 4;; =
({Z. 7} C Znlz # v, {77} N A; # 0,{Z, 7} N A; # 0}. We obtain [A;j] = Z—E =D ifj — j and
|A;j| =222 if i < j. For any T € A; and § € Ay, 7 is adjacent to § by Theorem 3.4. For any
Z,y € Ay, we have dp, (7,)(T,7) = 1ify = —7. If  # -7, then T+ 7 ¢ U,(Z,) and hence 7 is
not adjacent to 7. For any Z € Ay, we have path T —Z — 3. Hence, dr,, (z,)(T,7) =2 if § # —T.

Now, let 7,7 € Ay. If 7,7 ¢ {0,281}, then if § = —7, T is adjacent to 7 and dr, (z,)(7,7) = 1
as a result. If 7 # —=, then dp, (z,)(Z,7) = 2 as T and y are not adjacent and T —Z — 7 is a

path for any z € A;. Thus, dr,, (z,)(T,7) = 2. Therefore, among 2’%1(27;7171) elements of Aq1, we

have 2"~2 elements of the form {Z, -7}, which is satisfying dr, (z,)(Z, —%) = 1. The remaining

k— k—
2T gk-2 — 92k=3 _ 9k~ clements of Ajq; are of the form {Z, 7} such that § # T satisfying

2
) _ 2/(:72

dr,.z.)(Z,¥) = 2. From all %;_171) elements of Asy, we have QkT — 1 elements of

_ N e — .. 2k—1(2k—1 1) k—2
the form {7, -7}, which is satisfying dr, (z,)(T, —T) = 1. The remaining ~—5— —2"7% + 1

elements of Asy are of the form {Z,%} such that y # Z satisfying dr, (z,)(7,7) = 2. For i < j, all

91
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22772 elements of A;; are of the form {Z,y} such that dr, (z,)(Z,7) = 1. Hence, we obtain the

Wiener index of T'y,.(Z,,) as the following:

W(Fur(Zn)) — 2k—2 + 2(22k—3 _ 2/{:—1) + 2k—2 -1 + 2(22k—3 _ 2k—1 + 1) + 22k—2
=3.22k=2  ok=1 _oktl 49

(xii) Observe that U,.(Z,) = Z% U{0} and for any = € Z%, T is adjacent to 0. Moreover, every 7,7 € Z,
7 and 7 are adjacent in I',.(Z,) if and only if § = —Z. As Z9 has 2¢~1 elements, then there are
precisely 2°~2 edges which end vertices are in Z¢. This means that Z° induces 22 different path
graphs of order 2. Since 0 is adjacent to any T € Z¢, then there are 282 different cycle subgraphs
C3’s, each of order 3, which has 0 as a common vertex. Therefore, the subgraph of I'y,(Z,) induced
by U,(Zy,) is a friendship graph Fyr-2.

Figure 6. The unit regular graph T, (Zs2)

As a closing of this section, we give characterization on I'y,.(Z,x) for some prime number p > 3 and
positive integer k > 2.

Theorem 3.6. Given ring Z, with n = p* for any prime number p > 3 and for any positive integer
k> 2.

() Up(Zy) = Zy \ {T € Zy|gcd(z,n) # 1} U {0}, so that |U.(Z,)| = p* — p*~1 + 1.
ii) degr. (7. (%) =p* — pF 1 + 1 if {T|x =0 mod p 0} and degr. (7 \(T) = p* — pF~1 otherwise.
ur(Zn) wr(Zn)

Proof. Let p > 3 be a prime number, k > 2 be a positive integer and let n = p”.

(i) Observe that U,(Z,) = Z, \ {T € Zy|gcd(z,n) # 1} U{0} = {T € Z,|z # 0 mod p} U {0}. As
HZ € Zn|z = 0 mod p}| = p*~1, then |U,.(Z,)| = p* — pF~1 + 1.
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(ii) Let T € Zy \ Up(Zyn). Then T = 7p for some 1 < 7 < p*~' —1. Then, 27 ¢ U,(Zy), and hence

degr,. (2., (@) = p* —p*~1 + 1. Let T € U,(Z,). If T = 0. Then, 2z = 0. Hence, degr,, (z,)(0) =

pF —pF=l IfZ = rp+iforsome 0 < 7 < p*~ ' —1and i € {1,2,...,p— 1}, as p > 3, then

2% € U, (Zy). And thus degr, (z,,)(@) = p* — p"L.

O

Theorem 3.7. Given any prime number p > 3 and any positive integer k > 2. If n = p*, then the
following assertions hold.

(i) The degree sequence of unit regular graph T'(Z,) is

(|Ur(Zn)| -1... ) |UT(Zn)| -1, ‘UT(ZR)L ERR |Ur(Zn)|)

pk,pk—1+1 pk’171

(i)
(iii)

Lur(Zy,) is connected with diameter 2.
Lwr(Zy,) is Hamiltonian but not Eulerian.
]'—‘U’I”

(Zy,) is not planar.

k—1_q
2

(vi) The clique number of Ty (Zy) is E5H(pF~1) + 2.

(v) The independence number of Ty, (Z,) is 2

(vil) The domination number of T'y(Zy,) is 2.

pF-1

(viii) The matching number of Ty, (Zy,) is P

(ix) The chromatic number of Ty (Zy,) is %(pkil) + 2.

(x) The first Zagreb index of Tyr(Zy) is My (TCyr(Zy)) = p3F — 2p3F—1 4 p3k=2 4 2p2k=1_9p2k=2_opk 4
3pF—1 — 1.

(xi) The Wiener index of Ty (Zy) is 3p** + $p* 1 —pk — IpF=1 4 1.
Proof. Leta= {7 € Z,|r = a mod p} for any a = 0,1,...,p — 1. This set is of size p*~L.

(i) By Theorem 3.6.

(ii) By Theorem 3.6, I',.(Z,,) is not complete, and hence its diameter is greater than 1. For any
a=01,....p—1let a= {7 € Zy|Jr = a mod p} = {ip+a € ZLy|i = 0,1,...,pF 1 —1}. Let
Z € aand 7 € b for some a,b=0,1,...,p—1. If a = b # 0, then T and 7 are adjacent and thus
dr,,z.)(@,¥) = 1. If a = b =0, then Z and ¥ are adjacent if and only if 7 = —7. For §j # —7, we
have path 7 — 1 —7 of length 2. Thus, dr,(z,)(%,7) is 1 or 2. Let a # b. If a+b # p, then T and j

are adjacent. If a + b = p, then we always have a path T — 0 — 3. Hence, I',,,-(Z,,) is connected with
diameter 2.

(iii) Let « and y be connected by an edge in I'y,.(Z,,). The sum of the degrees of x and y is greater than
p¥. Therefore, by Ore’s theorem, I',,.(Z,) is Hamiltonian. By Theorem 3.6, the vertices of T'y,.(Z,,)
have different parity degrees. Hence, I'y.(Z,,) is not Eulerian.

(iv) For a = 0 and for any b = 1,2,...,p — 1, each vertex in @ is adjacent to any vertex in b. Therefore,
Iur(Zy) contains a bipartite graph Kpe—1 ,x-1. As p > 3 and k > 2, then by the Kuratowski’s
theorem, I'y,.(Z,,) is not planar.

93
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(v) If T is a maximal independent set, then I cannot have an element from U,.(Z

% ») and an element
from Z,, \ U,(Z,), simultaneously. Moreover, since 0 is adjacent to every T € U,.(Z,), necessarily
I CU(Zy)\ {0} or I C Z, \ U.(Zy,). Obviously, for any T,y € Zy, \ U-(Z,), T and 7 are
adjacent if and only if § = —%. Thus, if I C Z, \ U.(Z,), then |I| = pk7;_1

when I C U,(Z,) \ {0}. Let 2,y € U.(Z,) \ {0}. Let T = ip+a € aand y = jp+0b € b,
a,b=1,2,...,p—1,i,5=0,1,...,p" 1 —1. Then 7 is not adjacent to 7 if and only if a+b = p and
i+ j # p*~! — 1. Therefore, the only largest independent set is reached only when I C Z,, \ U,(Z,)

pF1_1
5 .

Now, consider

where I has size

(vi) We have that @ is a clique for any a =1,...,p—1. Moreover, for a,b # 0 and a+b # p, each vertex

in @ is adjacent to any vertex in b. Therefore, if a + b # p, then @ U b is a clique. But the largest
subset A of {1,2,...,p — 1} such that a + b # p for any a,b € A has size %. Hence, the clique
number of I',,.(Z,,) is greater or equal to 702;1(]9’“*1). Now, let C be the largest clique in I'y,,.(Zy,).
If CNO#0, then [CNO| <2 fCNa#0and CNb#0and a+b=p, then [CNa| <1 and
ICNbl <1. fCNG#Band CNb#Pand a+b+#p, then |[CNal < pF~!and |CNbl <pF i
Therefore, the largest C' will be reached whenever C' contains | J,. , @ where A is the largest subset
of {1,2,...,p — 1} such that for any u,v € A, u+v # p. Thus, |4| = p%l. Therefore, | J,c4 @

has pT_l(pk_l) vertices. Now, take two elements 7,7 € 0 such that § = —Z. Then T is connected

by an edge to 3. Moreover, T and 7 are connected to any vertex in (J,c 4 @ by some edges. Hence

Usea @U{T,7} is of size p—;l(pk_l) + 2 and defines the largest clique. This completes the proof.

(vii) As I'yr(Z,,) is not complete, then its domination number is greater then 1. Consider @ = {T €

(viii

)

~—

Znlx = a mod p}, a=0,1,...,p—1 and put D = {0,T}. Then, each T € @, a # 0, is adjacent to
0e D. Foreachw €0, T # 0, T is adjacent to 1 € D. Hence, D is a dominating set. Therefore, the
domination number of Ty, (Z,,) is 2.

Observe that the order of T',.(Z,,) is p* which is odd. Thus, a perfect matching will be not reached.
k —

Thus, the maximum size of a matching in I'y,(Z,) is 5. Let @ = {Z € Z,|x = a mod p}, a =

0,1,...,p—1. Let A= {{rp,(p*1 —7r)p}lr =1,2,..., pk_zlfl}. Hence, A contains pk_2171 edges

connecting two vertices in 0. For any i = 1,2,..., %, let Bi’p_i,: Hrp+i,(pF 1 —r)p+jli+j =

pF}. Each B; p—i contains pP~1 edges connecting a vertex in i to a vertex in p — 4. Altogether,
pF—1
2

p=1
AUL,2, Bip—: is a matching of size covering all nonzero vertices in I'y,.(Z,,). This completes

the proof.

By (vi), the chromatic number of I',,.(Z,) is greater or equal pT_lpkfl +2. Leta={T € Z,|z =

amodp},a=0,1,...,p—1. Now, fori=1,..., 1’2;1, let color each vertex rp + 4 € 7 with color ¢, ;,

r=0,1,...,p" 1 —1. Fori = ”2;1,...,]9— 1, let color each vertex rp + ¢ € 7 with color Cr (i—1ys
’ 2

with 7 = 0,1,...,pF"! — 1. So far, we have used 25 p*~! colors. Now, take two more new colors,
= k—
let say ¢ and ¢’. Let use ¢ to color vertices 7p € 0, where 7 = 0,..., L 21_1
= k—
vertices 7p € 0, where r = B = +1,...,pF 1 — 1. Then by this coloring, we have that each edge
in 'y (Z,,) connects two vertices of different colors. Thus, we conclude that the chromatic number

of Ty (Zy,) is %pk_l + 2.

and use ¢ to color

(x) By point (i), we have

M, (Fur(Zn)) = Z (degrur(zn)(j))Q

TELn
S A e O (- V(e T S D (7 A )
— p3k‘ _ 2p3k71 +p3k72 4 2p2k71 _ 2p2k72 _ 2pk + 3pk71 —1.
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(x) For any i, € {0.L,....p — 1}, let Ay = ({77} C Zalz # 7, (@7} 07 £ 0,37} T # 0},
k—1 k 1

We obtain |A;;]| = % if i = j and |A;;| = p?*72? if i < j. For any 7,7 € 0, we have

dr,, .z (@,y) =1ify= 7. Ify # —7, then T +7 ¢ U.(Z,) and hence Z and ¥ are not adJacent

But, for any Z € 1, we have path = a:—z—y Hence dr,,z.)(T,y) = 2ify # —T. As there are 2t 21_1

1(pk1 H _p k=1_q  (pF—1_1)2
2 2 - 2

pairs of the form {Z, —Z}, then there are 2 pairs of the form {Z,7}
where dr, (z,)(T,7) = 2. If Z,7 € @, a # 0, then T and 7 are adjacent and thus dr, (z,)(Z,7) = 1.
Now let T Eiandy € ?, where ¢ < j, and ¢,57 = 0,1,...,p— 1. If ¢ = 0, then T is adjacent to ¥.
Now, let i # 0. If i + j # n, then T and y are connected by an edge. If i + j = n, then T and y are
adjacent if and only if Z=rp+i and § = (p*~! — r)p+ j. Thus, for each Z €4, i = 1,2, ..., et
there are 1+ (p — 2 — i)p"~! 7’s such that dr, (z,)(Z,7) = 1. The remaining p*~! — 1 y’s are
satisfying dr,, (z,)(Z,7) = 2 as we always have a path T — 0 — 7 of length 2. If i = %, o, p—1,
then T and 7 are adjacent so that dr, (z,)(Z,7) =1. If i = %_1 +1,...,p—1, then T is connected
by an edge to ¥.

Therefore, the Wiener index of T',,.(Z,,) as the following:

k—1
p"t—1  _(p
2
5 " 2

E—1 _ 1)2
W (T (Z0)) = o)

T ) B B

4. Conclusion

In this manuscript we propose the definition of the unit regular graph over rings. We present
some fundamental properties of the graph included its completeness, Eulerian and Hamiltonian property,
connectivity, girth, matching number, independence number, and clique number. Moreover, we present
also some more detail properties of the graph for the ring Z,, for some particular n. Nevertheless, more
general properties of the unit regular graph of the ring Z, for arbitrary m have not been obtained.
Therefore we give the following open problems.

Open Problem 1 Investigate the characteristic of the unit regular graph over the ring Z,, for
arbitrary n.

Open Problem 2 Investigate the characteristic of the unit regular graph over the ring My(Z,,) of
all k& x k matrices over Z,, for any k > 3.

Acknowledgment: The authors extend their thanks to all the reviewers for their valuable remarks
and recommendations, which have played a vital role in improving this manuscript.
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