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Abstract: This paper introduces the concept of a unit regular graph over an arbitrary ring. A unit regular
graph is a simple undirected graph where the vertices represent the elements of the ring. Two
vertices are adjacent if their sum is a unit regular element within the ring. The study investigates
various properties of this graph, including completeness, vertex degrees, Eulerian and Hamiltonian
characteristics, girth, matching number, clique number, and independence number. Additionally, the
paper explores specific properties of these graphs for particular types of rings.
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1. Introduction

Each ring considered in this paper is finite and possesses an identity element. Let R be a ring with
an identity element. An element a ∈ R is termed idempotent if a2 = a, and is called a Von-Neumann
regular element in R if there exists b ∈ R such that aba = a. If there exists a unit element u ∈ R satisfying
aua = a, then a is referred to as a unit regular element. The element u is called an inner inverse of a
(see [9]). It is evident that if R contains a unit, then the additive identity 0R is unit regular. Let U(R)
and Ur(R) denote the sets of all units and all unit regular elements of R, respectively. Since x ∈ Ur(R)
if and only if −x ∈ Ur(R), the set Ur(R) is inverse closed. Moreover, Ur(R) clearly contains U(R).

A ring R with identity 1R is considered a division ring if, for every a ∈ R with a 6= 0R, there exists
b ∈ R such that ab = 1R, i.e., a has a multiplicative inverse. If every element x ∈ R is idempotent, then
the ring R is called a Boolean ring. A ring R is termed a unit regular ring if every element x ∈ R is unit
regular. The characterization of unit regular rings is provided, for instance, in [9] and [6]. One of the
results given in [9] is as follows.
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Theorem 1.1. ([9]) Given a unit regular ring R. Then, R is either a Boolean ring or a division ring if
any nonzero element of R has a unique inner inverse.

This subsequent theorem gives a requirement for a ring to be unit regular as given in Theorem 1 in
[6].

Theorem 1.2. ([6]) The necessary and sufficient condition for a ring R to be unit regular is that for any
x ∈ R, we can find an element e ∈ R that is idempotent and an element u ∈ R that is a unit satisfying
x = e+ u and xR ∩ eR = 0R.

Recall that a ring R is considered to be clean if, for every x ∈ R, there exists an idempotent e ∈ R
and a unit u ∈ R such that x = e + u. From Theorem 1.2, we know that whenever a ring R is unit
regular, R is also clean.

Algebraic graphs have garnered significant attention in recent research. Following the introduction
of the concept of Cayley graphs, various new algebraic graphs have been introduced and thoroughly
examined in the context of different algebraic structures, including groups, rings, and semigroups. In
addition to Cayley graphs, some authors have shown interest in prime graphs, coprime graphs, commuting
graphs, and noncommuting graphs within the domain of groups, as demonstrated in references such as
[2, 5, 7, 15].

Another type of algebraic graph over a semigroup is the bipartite graph, where the vertex set consists
of the elements of the semigroup and all cosets of the semigroup, as introduced in [13]. A similar graph,
known as the bipartite graph over a ring, is defined as a graph whose vertex set consists of the ring’s
elements and subrings, as proposed in [11]. The concept of these two graphs is motivated by the idea of
a bipartite graph associated with elements and cosets of groups, as presented in [3]. Certain properties
of this graph for a particular group are given in [12].

In [14], the authors introduced the concept of the Von-Neumann regular graph of rings. For a given
ring R, the Von-Neumann regular graph Γvnr(R) is defined as a simple graph whose vertex set is R,
and any two vertices a and b in R are adjacent if and only if a + b is Von-Neumann regular. Later, in
[10], some properties of the graph were presented, including domination parameters. Another type of
algebraic graph associated with rings is the unit graph Γu(R), proposed in [4] as a generalization of the
work presented in [8]. This unit graph is indeed a subgraph of the Von-Neumann regular graph Γvnr(R).
In [1], some properties of the unit regular graph related to the eigensharp property are discussed.

In this manuscript, we propose a new notion of the unit regular graph of rings. For any ring R, the
unit regular graph of R, denoted by Γur(R), is defined as the simple graph with R as the vertex set,
where any two vertices a and b in the graph are connected by an edge if and only if a+ b is unit regular.
The graph Γur(R) is obviously a spanning subgraph of Γvnr(R) and is a supergraph of Γu(R).

In this research, we explore various aspects of the graph, including vertex degrees, Eulerian and
Hamiltonian properties, girth, matching number, clique number, and independence number. Moreover,
for some particular rings, we present specific properties of these graphs, including chromatic number,
planarity, domination number, and some topological indices such as the first Zagreb and the Wiener
indices, as well as the subgraph induced by the unit regular elements.

Some terminologies used in this paper are adopted from [16]. For any graph G, we use the symbols
V (G) and E(G) to indicate the vertex set and the edge set of G, respectively. The degree of any vertex
a in G is denoted by degG(a). A |V (G)|-tuple of all vertex degrees in graph G, such that each term is
greater than or equal to the previous term, is known as the degree sequence of G. Any subgraph K of G is
said to be induced if E(K) is equal to the set of all edges of G connecting two vertices of K. The distance
between a vertex a and a vertex b in G, denoted by dG(a, b), is the number of edges in the shortest path
connecting a and b. The diameter of G is defined as the maximum distance between any two vertices of
G, and the girth of G is defined as the number of edges in the shortest cycle in G. A graph G is called
Eulerian if it contains an Eulerian trail, i.e., a closed trail that contains every edge of G. It is well-known
that G is Eulerian if and only if the degree of each vertex in G is even. If there exists a cycle containing
all vertices of G, then G is considered to be Hamiltonian. For arbitrary graphs G and H, any bijection
f : V (G) → V (H) satisfying xy ∈ E(G) if and only if f(x)f(y) ∈ E(H) is called an isomorphism from

80



Y. Susanti et. al. / J. Algebra Comb. Discrete Appl. 12(2) (2025) 79–96

G to H. Specifically, whenever G = H, f is known as an automorphism. A graph G is considered vertex
transitive if, for any vertices x and y within G, there exists an automorphism f on G such that y = f(x).
A subset A ⊆ V (G) such that for each x ∈ V (G) \ A, there exists y ∈ A that is adjacent to x, is called
a dominating set. The size of the minimum dominating set of G is called the domination number of G,
denoted by γ(G). On the other hand, a subset B ⊆ V (G) such that for any a, b ∈ B, a is not connected
by any edge to b, is called an independent set. The size of the maximum independent set of G, denoted by
α(G), is termed the independence number of G. Analogous to the independent set, a subset C of E(G)
is called a matching if C contains no two adjacent edges. The matching number of G is identified as the
size of a maximum matching, denoted by ν(G). Any complete subgraph of G is known as a clique, and
the size of the maximum clique of G is termed the clique number of G, denoted by ω(G). The minimum
natural number k such that we can assign numbers in {1, 2, . . . , k} to label the elements of V (G) in such
a way that any x ∈ E(G) connects two vertices with different labels, denoted by χ(G), is called the
chromatic number of G. A planar graph is a graph that can be drawn on a plane such that no edges
intersect except at their endpoints. According to Kuratowski’s theorem, a graph is planar if and only if
it does not contain a subgraph that is a subdivision of the complete graph K5 or the complete bipartite
graph K3,3. Clearly, any graph that contains K5 or K3,3 as a subgraph is not planar. The Wiener index
of a connected graph G is defined as

W (G) =
∑

a,b∈V (G)

dG(a, b).

The first Zagreb index of G is defined as the sum

M1(G) =
∑

a∈V (G)

(degG(a))2.

2. Results

Let us start with this subsequent description.

Definition 2.1. Given a ring R. The unit regular graph Γur(R) of R, is a simple undirected graph which
vertex set is R and any two elements a and b in R are connected by an edge exactly when a+ b is a unit
regular.

Remark 2.2. For any ring R, 0R is adjacent to any x ∈ Ur(R).

Remark 2.3. For any ring R, Γur(R) is a subgraph of Γvnr(R).

Theorem 2.4. If R is a division ring or a Boolean ring, then Ur(R) and R coincide, so that Γur(R) is
a complete graph.

Proof. It is obvious.

Nevertheless, in order R = Ur(R), R is not necessarily a division ring nor a Boolean ring, as for
instance, we have Z6 that is not division ring nor Boolean ring, but Ur(R) = R.

The following theorem presents a requirement for Γur(R) being complete.

Theorem 2.5. Given a ring R having an identity element. These three statements are equivalent.

(i) Γur(R) is complete.

(ii) Ur(R) = R (ring R is unit regular).

(iii) For each x ∈ R, we have an idempotent e and a unit u in R such that x can be expressed as x = e+u
and xR ∩ eR = 0R.
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Proof. (i)⇔(ii) Let a ∈ R. As Γur(R) is complete, x is adjacent to 0R. Thus, x + 0R = x ∈ Ur(R).
Hence, R ⊆ Ur(R) implying R = Ur(R). Conversely, it is obvious that for any a, b ∈ R we have
a+ b ∈ Ur(R), meaning that Γur(R) is complete.
(ii)⇔(iii) By Theorem 1.2 as given in [6].

Based on Theorem 2.5 and the property that every ring that is unit regular is clean, we can derive
the following corollary.

Corollary 2.6. For arbitrary ring R, in order Γur(R) to be complete, R is necessarily clean.

Remark 2.7. Let a finite ring R be unit regular. The necessary and sufficient for Γur(R) to be Eulerian
is R has odd number elements.

Theorem 2.8. Let R be a division ring and M2(R) be the ring of all matrices of size 2× 2 which entries
are in R. Then Ur(M2(R)) = M2(R), and hence Γur(M2(R)) is a complete graph.

Proof. Let
(
a b
c d

)
∈ M2(R) where

(
a b
c d

)
is not a unit. Hence, det

((
a b
c d

))
= ad − bc = 0 or

ad = bc. If a 6= 0, d 6= 0, then bc 6= 0, so c 6= 0. As R is a division ring, we have
(
a−1 c−1

0 −d−1

)
∈M2(R).

Therefore, det
((

a−1 c−1

0 −d−1

))
= −(ad)−1 6= 0, so that

(
a−1 c−1

0 −d−1

)
is a unit. Thus,

(
a b
c d

)(
a−1 c−1

0 −d−1

)(
a b
c d

)
=

(
1 0

ca−1 0

)(
a b
c d

)
=

(
a b
c d

)
.

Therefore,
(
a b
c d

)
is a unit regular. If a = 0, d 6= 0, we can find

(
1 0
0 d−1

)
satisfying

(
0 b
c d

)(
1 0
0 d−1

)(
0 b
c d

)
=

(
0 bd−1

c 1

)(
0 b
c d

)
=

(
0 b
c d

)
.

Since det
((

1 0
0 d−1

))
= d−1 6= 0, so

(
1 0
0 d−1

)
is a unit. Hence,

(
0 b
c d

)
is unit regular. If a 6= 0, d = 0,

there exists
(
a−1 0
0 1

)
such that

(
a b
c 0

)(
a−1 0
0 1

)(
a b
c 0

)
=

(
1 b

ca−1 0

)(
a b
c 0

)
‘ =

(
a b
c 0

)
.

As det
((

a−1 0
0 1

))
= a−1 6= 0, so

(
a−1 0
0 1

)
is a unit. Hence,

(
a b
c 0

)
is a unit regular. If a = 0, d = 0,

there exists
(

0 x
y 0

)
, where x =

{
c−1, c 6= 0

1, c = 0
and y =

{
b−1, b 6= 0

1, b = 0
. It is obvious that

(
0 x
y 0

)
a unit in

M2(R). Thus, we get (
0 b
c 0

)(
0 x
y 0

)(
0 b
c 0

)
=

(
by 0
0 cx

)(
0 b
c 0

)
=

(
0 b
c 0

)
.

Thus,
(

0 b
c 0

)
is a unit reguler. As all of non unit elements in M2(R) are unit regular, we come to a

conclusion that Ur(M2(R)) = M2(R). By Theorem 2.5, Γur(M2(R)) is complete.
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In the following figures we give several examples of unit regular graphs.

0 1

23

Figure 1. Γur(Z4)

0 1

2

34

5

Figure 2. Γur(Z6)

(0, 0) (0, 1)

(1, 0)(1, 1)

Figure 3. Γur(Z2 × Z2)

The following theorem describes all possible degrees of the unit regular graph vertices.

Theorem 2.9. Let ring R be commutative and with a unit element. For every a ∈ R, we have

(i) degΓur(R)(a) = |Ur(R)| if 2a /∈ Ur(R).

(ii) degΓur(R)(a) = |Ur(R)| − 1 if 2a ∈ Ur(R).

Proof. Take any a ∈ R. Note that (R,+) is a group, so there exists a unique au ∈ R such that
au + a = u, for any u ∈ Ur(R). We consider these two possibilities.

(i) Suppose that 2a /∈ Ur(R). For any u ∈ Ur(R), it follows that au 6= a. Clearly, a and au are adjacent
in Γur(R). Hence, degΓur(R)(a) = |Ur(R)|.

(ii) Suppose that 2a ∈ Ur(R). Then, a2a = a. This implies a and a2a are not adjacent in Γur(R). For
every u ∈ Ur(R) \ {2a}, we have au 6= a. We have that a and au are connected by an edge in
Γur(R). Hence, degΓur(R)(a) = |Ur(R)| − 1.
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Theorem 2.10. Given a finite ring R with identity. Then Γur(R) is Eulerian if and only if |Ur(R)| is
odd and Γur(R) is (|Ur(R)| − 1)-regular, that is all elements of Γur(R) have degree |Ur(R)| − 1.

Proof. Let Γur(R) be Eulerian. Then each vertex of Γur(R) has even degree. By Theorem 2.9, all
vertices in Γur(R) are of degree |Ur(R)| or all are of degree |Ur(R)| − 1, as for otherwise there will a
vertex which degree is odd and a vertex which degree is even. Now, assume that all vertices of Γur(R)
have degree |Ur(R)|. For any x ∈ R, let NΓur(R)(x) be the set of all vertices of Γur(R) that are adjacent
to x. Then, by definition of unit regular graph, |NΓur(R)(0R) ∩ Ur(R)| = |Ur(R)| − 1. Thus, there exists
an element y ∈ R \ Ur(R) such that y is adjacent to 0R, and hence y = y + 0R ∈ Ur(R). Hence, we have
a contradiction as y /∈ Ur(R). Therefore, all vertices of Γur(R) have degree |Ur(R)| − 1. As Γur(R) is
Eulerian, |Ur(R)| must be odd. Conversely, it is clear as all vertices of Γur(R) have even degree.

Recall that Ore’s theorem states that if for any two different non-adjacent vertices u and v in graph
G, the sum of the degree of u and of the degree of v is less than or equal to the number of vertices in G,
then G is Hamiltonian. As a consequence of Ore’s theorem, we have the following result.

Theorem 2.11. Let finite ring R have at least 3 elements. If Γur(R) is connected and |Ur(R)| ≥ |R|+2
2 ,

then Γur(R) is Hamiltonian.

Proof. Let finite ring R has at least 3 elements and |Ur(R)| ≥ |R|+2
2 . By Theorem 2.9, degΓur(R)(x) =

|Ur(R)| or degΓur(R)(x) = |Ur(R)|−1. Thus, for arbitrary x, y ∈ R, degΓur(R)(x)+degΓur(R)(y) is at least

2|Ur(R)| − 2. As 2|Ur(R)| − 2 ≥ 2
(
|R|+2

2

)
− 2 = |R|, then by Ore’s theorem, Γur(R) is Hamiltonian.

In the next property, we show that the unit regular element graph of a ring with identity is contain
a cycle of length 3.

Theorem 2.12. For any ring R containing nonzero unit regular element, the graph Γur(R) has girth 3.

Proof. Clearly, 0R is unit regular. Let u be a nonzero unit regular element. We have −u is also a unit
regular element. Thus, we have a cycle of length 3 connecting u, 0R and −u.

As a consequence, we have this subsequently theorem.

Theorem 2.13. Let R be any ring containing nonzero unit regular element. The Von Neumann regular
graph Γvnr(R) associated with R has girth 3.

Proof. This is as Γur(R) is a spanning subgraph of Γvnr(R) and by Theorem 2.12.

Theorem 2.14. If ring R is not a field and has a nonzero unit regular element and x+ y ∈ Ur(R), for
any x ∈ R \ Ur(R) and 0R 6= y ∈ Ur(R), then diam(Γur(R)) ≤ 3.

Proof. As R is not a field, consequently diam(Γur(R)) > 1. Now, let take arbitrary two vertices u and
v in R. If u, v ∈ Ur(R), then we obtain a path u − 0R − v of length 2. If u, v ∈ R \ Ur(R), then take
a nonzero unit regular element a ∈ R. Then we obtain a path u − a − v of length 2. If u ∈ Ur(R) and
v ∈ R \ Ur(R), then u and v are connected by an edge or we have a path u− 0R − a− v of length 3 for
some nonzero unit regular element a ∈ R. Hence, diam(Γur(R)) ≤ 3.

The next result shows the lower bound of the matching number of Γur(R).

Theorem 2.15. Let R be a finite ring and R2,+ = {x ∈ R|2x 6= 0R}. The matching number of Γur(R)

is greater or equal to |R2,+|
2 . Particularly, if ring R is unit regular with even number elements, then the

matching number of Γur(R) is |R|2 .
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Proof. Observe that x ∈ R2,+ is equivalent to −x ∈ R2,+, implying that |R2,+| is even. Let x ∈ R2,+,
that is x 6= −x. Let −x = y. Hence, x + y = 0R ∈ Ur(R). Thus, we have independent edge set
{{x,−x}|x ∈ R2,+} comprising precisely |R2,+|

2 elements. Hence, the matching number of Γur(R) must
be greater or equal to |R2,+|

2 . Particularly, if R is a unit regular ring such that |R| is even, then by
Theorem 2.5, Γur(R) is complete. Thus, the matching number of Γur(R) is |R|2 .

Recall that any graph that is isomorphic to a graph with vertex set {c, xi, yi|i = 1, 2, . . . , r} and
edge set {cxi, cyi, xiyi|i = 1, 2, . . . , r} is called as a friendship graph Fr. The following theorem gives a
sufficient condition for the graph Γur(R) to contain a friendship graph.

Theorem 2.16. Let R be a finite ring. If R2,+ = {x ∈ R|2x 6= 0R} and Ur(R) ∩R2,+ = {0R}, then the
subgraph of Γur(R) induced by Ur(R) contains the friendship graph F |Ur(R)|−1

2
.

Proof. Obviously, Ur(R) is inverse closed, i.e. −x ∈ Ur(R) if x ∈ Ur(R). Let Ur(R) ∩ R2,+ = {0R}.
Then |Ur(R)| = 2k + 1 for some k ≥ 1. Moreover, for all nonzero x ∈ Ur(R), x is adjacent to −x, and
also to 0R. Therefore, if E = {{x,−x}, |0R 6= x ∈ Ur(R)} ∪ {0R, x}|0R 6= x ∈ Ur(R)}, then Ur(R) and E
defines the subgraph of Γur(R) induced by Ur(R) and is a friendship graph Fk with k = |Ur(R)|−1

2 .

Theorem 2.17. Let Ri be a finite division ring for any i = 1, 2, . . . , n. If R = R1 ×R2 × . . .×Rn, then
Ur(R) = R and thus Γur(R) is complete. If there is i such that |Ri| is even, then Γur(R) is not Eulerian.

Proof. Let R = R1 × R2 × . . . × Rn for some division rings Ri’s, i = 1, 2, . . . , n. Then a =
(a1, a2, . . . , an) ∈ R is unit regular exactly when ai is unit regular for all i = 1, 2, . . . , n. As Ur(Ri) = Ri

by Theorem 2.4, hence Ur(R) = R. And thus by Theorem 2.5, Γur(R) is complete and moreover each
vertex of Γur(R) has degree |R| − 1. Therefore, if |Ri| is even for some i, then |R| − 1 is odd implying
Γur(R) is not Eulerian.

Theorem 2.18. For any ring R, if Ur(R) is closed under addition, then the independence number
α(Γur(R)) is at most |R \ Ur(R)|+ 1.

Proof. Clearly, if a+b ∈ Ur(R) for any a, b ∈ Ur(R), then any independent set in Γur(R) cannot include
two elements from Ur(R). Additionally, if a + b ∈ R \ Ur(R) for any a, b ∈ R \ Ur(R), then R \ Ur(R)
is an independent set. And hence to maintain its independence, adding k elements to R \ Ur(R) is only
possible for k = 1. Thus, α(Γur(R)) ≤ |R \ Ur(R)|+ 1.

Theorem 2.19. Let R be any finite ring. If Ur(R) is closed under addition, then the clique number of
Γur(R) is at least |Ur(R)|.

Proof. For any ring R, let Ur(R) be additively closed. Then, any elements x and y in Ur(R) will be
adjacent. Thus Ur(R) induces a complete subgraph meaning that Ur(R) is a clique. Therefore, the clique
number is greater than or equal to |Ur(R)|.

Remember that for any ring R, the characteristic of R is the smallest positive integer k such that
kx = 0R for arbitrary x ∈ R. In the next theorem, we give a sufficient condition for the unit graph
Γur(R) to be vertex transitive, in connection with the characteristic of the ring.

Theorem 2.20. Let ring R have an identity and have characteristic 2. Then Γur(R) is vertex transitive.

Proof. Let α, β ∈ R. Construct a function ψ : R → R with ψ(a) = a + β − α for every a ∈ R. By
the definition of ψ, we have ψ(α) = β and moreover, ψ is a bijection as (R,+) is a group. Furthermore,
for any a, b ∈ R, we have that a is adjacent to b, i.e. a + b ∈ Ur(R) if and only if ψ(a) + ψ(b) =
a+ β − α+ b+ β − α = a+ b ∈ Ur(R), i.e. ψ(a) and ψ(b) are adjacent. Therefore, ψ is an isomorphism
and hence Γur(R) is vertex transitive.
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3. Unit regular graph over some particular rings

Throughout this section we present some more detail properties of the unit regular graph of ring of
integers modulo n for some particular n.

Theorem 3.1. Let Zn be the ring of all integer classes modulo n. If n = p1p2 . . . pk, where pi’s,
i = 1, 2, . . . , k, are distinct prime numbers, then Ur(Zn) = Zn and hence Γur(Zn) is complete.

Proof. Let n = p1p2 . . . pk for some different primes pi’s, i = 1, 2, . . . , k. By Chinese Remainder
theorem, clearly we have Zn

∼= Zp1
× Zp2

× . . . × Zpk
. As Zpi

is a field, by Theorem 2.17, Ur(Zn) = Zn

and thus Γur(Zn) is complete.

Theorem 3.2. Given ring Zn with n = 4p for some prime number p ≥ 3.

(i) Ur(Zn) = Zn \ {4t+ 2 | 0 ≤ t < p} and thus |Ur(Zn)| = 3p.

(ii) For any x ∈ Zn, degΓur(Zn)(x) = 3p− 1 if x is even and degΓur(Zn)(x) = 3p if x is odd.

Proof. (i) Let a be a unit regular element. There exists a unit u ∈ Zn satisfying aua = a. As u
is a unit, we have gcd{u, n} = 1 so that u ≡ 1 mod4 or u ≡ 3 mod4. Let assume that a is of the
form a = 4t+ 2 for some 0 ≤ t < p. Then a ≡ 2 mod4. For u ≡ 1 mod4 or u ≡ 3 mod4, we have
uau ≡ 0 mod4 and hence is not equal to a. Therefore, a ∈ Zn \ {4t+ 2 | 0 ≤ t < p}. Now, let
a ∈ Zn \ {4t+ 2 | 0 ≤ t < p}. Then, either a = 0 or a ≡ 1 mod4 or a ≡ 3 mod4. If a = 0, then
a is a unit regular element. If a ≡ mod4 or a ≡ 3 mod4, then gcd{a, n} = 1 so that a is a unit.
Consequently, a is a unit regular element.

(ii) Let x ∈ Zn be arbitrary. If x is even, then 2x ≡ 0 mod4 and thus 2x is a unit regular element. By
Theorem 2.9, the degree of x is |Ur(Zn)| − 1 = 3p− 1. Let now x be odd, say x = 2r + 1 for some
r. We have 2x is of the form 4t+ 2 for some 0 ≤ t < p. Hence 2x is not a unit regular element. By
Theorem 2.9, the degree of x is |Ur(Zn)| = 3p.

Theorem 3.3. Given ring Zn with n = 4p for some prime number p ≥ 3.

(i) The degree sequence of unit regular graph Γur(Zn) is

(|Ur(Zn)| − 1, . . . , |Ur(Zn)| − 1︸ ︷︷ ︸
2p

, |Ur(Zn)|, . . . , |Ur(Zn)|︸ ︷︷ ︸
2p

).

(ii) Γur(Zn) is connected with diameter 2.

(iii) Γur(Zn) is Hamiltonian but not Eulerian.

(iv) The matching number of Γur(Zn) is 2p.

(v) The clique number of Γur(Zn) is p+ 2.

(vi) The independence number of Γur(Zn) is p.

(vii) The domination number of Γur(Zn) is 2.

(viii) The chromatic number of Γur(Zn) is p+ 2.

(ix) Γur(Zn) is not planar.

(x) The first Zagreb index of Γur(Zn) is M1(Γur(Zn)) = 36p3 − 12p2 + 2p.

(xi) The Wiener index of Γur(Zn) is W (Γur(Zn)) = 8p2 − p.
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(xii) The subgraph of Γur(Zn) induced by Ur(Zn) is the union of the complete tripartite graph defined by
partition {S0, S1, S3} and the complete subgraph induced by S0, where Si = {4t+ i ∈ Zn|0 ≤ t < p}
for i = 0, 1, 3.

Proof. Consider Si = {4t+ i ∈ Zn|0 ≤ t < p}, for any i = 0, 1, 2, 3. By Theorem 3.2, Ur(Zn) =
S0 ∪ S1 ∪ S3.

(i) As a direct consequence of Theorem 3.2.

(ii) By Theorem 3.2, Γur(Zn) is not complete. Hence, diam(Γur(Zn)) ≥ 2. Let x, y ∈ Zn. If x, y ∈
Ur(Zn), then we have path x−0−y of length 2. Now, let x ∈ Ur(Zn) and y /∈ Ur(Zn). By Theorem
3.2, y is in S2. If x ∈ S1 ∪ S3, then x and y are connected by an edge. Hence, dΓur(Zn)(x, y) = 1. If
x ∈ S0, then we have a path x− 1− y of length 2. Now, let x, y /∈ Ur(Zn), i.e. x, y ∈ S2. We have
a path x− 1− y. Therefore, we conclude that Γur(Zn) is connected with diameter 2.

(iii) By Theorem 2.11 and Theorem 3.2, the unit regular graph Γur(Zn) is Hamiltonian, but as the
parity of the degree of its vertices are not the same, Γur(Zn) is not Eulerian.

(iv) Let for any i = 0, 1, 2, 3, Si = {ai,1, ai,2, . . . , ai,p}. We form

M = {{a0,k, a1,k}|k = 1, 2, . . . , p} ∪ {{a2,k, a3,k}|k = 1, 2, . . . , p}.

Thus M has precisely 2p elements. Moreover, for any k, a0,k + a1,k /∈ {4t+ 2 ∈ Zn|0 ≤ t < p}, i.e.
a0,k + a1,k ∈ Ur(Zn). Similarly, for any k, a2,k + a3,k /∈ {4t+ 2Zn|0 ≤ t < p}, i.e. a2,k + a3,k ∈
Ur(Zn). This means that each element in M is an edge in Γur(Zn). Thus M is a perfect matching
as it covers all vertices in Γur(Zn). Hence, the matching number of Γur(Zn) is 2p.

(v) For any x, y ∈ S0, it follows that x + y ∈ S0 ⊆ Ur(Zn). Hence the subgraph induced by S0 is
complete. Thus, the clique number of Γur(Zn) is at least |S0| = p. Now, let C be a maximal
clique in Γur(Zn). This implies C cannot contains two vertices in S1, as for otherwise we have two
vertices that are not adjacent in C. Thus, |C ∩ S1| ≤ 1. Similarly, |C ∩ S3| ≤ 1. Observe that C
cannot contain simultaneously a vertex from S0 and and a vertex from S2. Thus, C ⊆ S0 ∪ {a, b}
or C ⊆ S2 ∪ {c, d} for some a, c ∈ S1 and b, d ∈ S3. Let C ⊆ S0 ∪ {a, b}. Recall that a and b are
adjacent. Moreover, both a and b are adjacent to any x ∈ S0. By maximality of C, C must be
equal to S0∪{a, b}. If C ⊆ S2∪{c, d}, by similar argument, C and S2∪{c, d} must coincide. Thus,
|C| = p+ 2.

(vi) We have S1 and S3 are independent sets, as for i = 1, 3, for any x, y ∈ Si it follows that x+ y ∈ S2,
i.e. x + y /∈ Ur(Zn). Hence, the independence number of Γur(Zn) is greater or equal to p. Let I
be the largest independent set. This implies I cannot include two elements from S0. As for any
x, y ∈ S0, x and y are adjacent. Thus, |I∩S0| ≤ 1. Similarly, |I∩S2| ≤ 1. Moreover, if I∩S1 6= ∅ or
I ∩S3 6= ∅, then I ∩S0 = I ∩S2 = ∅. Also if I ∩S1 6= ∅, then I ∩S3 = ∅. Hence, the largest possible
independent set is I = S1 or I = S3, which has p vertices. We conclude that the independence
number of Γur(Zn) is p.

(vii) If D is a dominating set, then necessarily D is not a singleton since there are no edges connecting
a vertex in S0 and a vertex in S2 and also by the fact that S1 and S3 are independent sets. Thus,
the domination number of Γur(Zn) is greater or equal 2. Let a ∈ S0 and b ∈ S2 be arbitrary. For
each x ∈ (S0 \ {a})∪ S1 ∪ S3, a and x are adjacent. For each y ∈ S2 \ {b}, y is adjacent to b. Thus
D = {a, b} is a dominating set. We conclude that the domination number of Γur(Zn) is 2.

(viii) By (v), the chromatic number of Γur(Zn) must be at least p+ 2. Now, let us color the vertices in
S0 with p colors c1, c2, . . . , cp such that each color ci appears once. And let also the vertices in S2

be colored with c1, c2, . . . , cp and each color appears once. Put color cp+1 for all vertices in S1 and
put color cp+2 for all vertices in S3. Then, we find that all edges in Γur(Zn) connect two vertices
of different colors. We conclude that the chromatic number of Γur(Zn) is p+ 2.
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(ix) By (v), Γur(Zn) contains the complete graphK5 implying Γur(Zn) is not planar by the Kuratowski’s
theorem.

(x) Let Ze
n = {x ∈ Zn|x even} and let Zo

n = {x ∈ Zn|x odd}. By Theorem 3.2, we have

M1(Γur(Zn)) =
∑

v∈V (G)

(degΓur(Zn)(v))2

=
∑
v∈Ze

n

(degΓur(Zn)(v))2 +
∑
v∈Zo

n

(degΓur(Zn)(v))2

= 2p(3p− 1)2 + 2p(3p)2

= 36p3 − 12p2 + 2p.

(xi) Let for any i, j ∈ {0, 1, 2, 3}, Aij = {{x, y} ⊆ Zn|x 6= y, {x, y} ∩ Si 6= ∅, {x, y} ∩ Sj 6= ∅}. We have
|Aij | = p(p−1)

2 if i = j and |Aij | = p2 if i < j. Let {x, y} ∈ Aij be arbitrary. If i = j = 0 or
i = j = 2, then dΓur(Zn)(x, y) = 1. If i = j = 1 or i = j = 3, then dΓur(Zn)(x, y) = 0. For i < j, if
i = 0 and j = 2, then dΓur(Zn)(x, y) = 2 and dΓur(Zn)(x, y) = 1 for the remaining cases. Therefore,

W (Γur(Zn)) =

3∑
i=0

∑
{x,y}∈Aii

dΓur(Zn)(x, y) +
∑

0≤i<j≤3

∑
{x,y}∈Aij

dΓur(Zn)(x, y)

=
p(p− 1)

2
(1 + 0 + 1 + 0) + 2p2 + 5p2

= 8p2 − p.

(xii) As mentioned in the proof of (v) and (vi), S0 is a clique and both S1 and S3 are independent sets.
Hence, S0 induces a complete subgraph. But for each i, j ∈ {0, 1, 3}, with i 6= j, the set Si ∪ Sj

altogether with all edges connecting a vertex in Si and a vertex in Sj define a complete bipartite
graph with partition {Si, Sj} and thus partition {S0, S1, S3} defines a complete tripartite graph.
Altogether with the subgraph induced by S0, the union of the tripartite graph and the complete
subgraph induced by S0 is indeed the subgraph of Γur(Zn) induced by Ur(Zn).
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Figure 4. The unit regular graph Γur(Z12)
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Figure 5. The subgraph of Γur(Z12) induced by Ur(Z12)

Theorem 3.4. Let n = 2k for some positive integer k. We have

(i) Ur(Zn) = {x ∈ Zn | x is odd} ∪ {0}, so that |Ur(Zn)| = 2k−1 + 1.

(ii) degΓur(Zn)(x) = 2k−1 + 1 if x ∈ Zn \ {0, 2k−1} and degΓur(Zn)(x) = 2k−1 if x ∈ {0, 2k−1}.

Proof. (i) We have Ur(Zn) = {x ∈ Zn|gcd(x, n) = 1} ∪ {0}. But, as n = 2k, then it follows that
gcd(x, n) = 1 if and only if x is odd. Therefore, |Ur(Zn)| = 2k−1 + 1.

(ii) Let x ∈ Zn \ {0, 2k−1}. For all u ∈ Ur(Zn), there exists a unique yu ∈ Zn with yu 6= x such that
x + yu = u. Hence, degΓur(Zn)(x) = |Ur(Zn)| = 2k−1 + 1. Let x ∈ {0, 2k−1}. For all u ∈ Ur(Zn)

with u 6= 0, there exists a unique yu ∈ Zn such that x+ yu = u. For u = 0, we have yu = x. Hence
degΓur(Zn)(x) = |Ur(Zn)| − 1 = 2k−1.
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Theorem 3.4 implies the following several results.

Theorem 3.5. Given ring Zn with n = 2k for some positive integer k.

(i) The degree sequence of Γ(Zn) is

(|Ur(Zn)| − 1, |Ur(Zn)| − 1, |Ur(Zn)|, . . . , |Ur(Zn)|︸ ︷︷ ︸
2k−2

).

(ii) Γur(Zn) is connected with diameter 2.

(iii) Γur(Zn) is Hamiltonian but not Eulerian.

(iv) Γur(Zn) is planar if and only if k ≤ 2.

(v) The clique number of Γur(Zn) is 4.

(vi) The independence number of Γur(Zn) is 2k−2 + 1.

(vii) The domination number of Γur(Zn) is 2.

(viii) The matching number of Γur(Zn) is 2k−1.

(ix) The chromatic number of Γur(Zn) is 4.

(x) The first Zagreb index of Γur(Zn) is M1(Γur(Zn)) = 23k−2 + 22k − 2k − 2.

(xi) The Wiener index of Γur(Zn) is W (Γur(Zn)) = 22k−1 − 2k−1 + 1.

(xii) The subgraph of Γur(Zn) induced by Ur(Zn) is the friendship graph F2k−2 .

Proof. Let n = 2k where k is a positive integer. Let Ze
n = {x ∈ Zn|x even} and let Zo

n = {x ∈
Zn|x odd}.

(i) It is a direct consequence of Theorem 3.4.

(ii) Let x, y ∈ Zn. If x ∈ Ze
n and y ∈ Zo

n, then x and y are adjacent, and hence dΓur(Zn)(x, y) = 1. Let
x, y ∈ Ze

n. If y = −x, then x+ y = 0 and thus x and y are adjacent. If y 6= −x then for any z ∈ Zo
n,

both x and y are adjacent to z and thus we have a path x − z − y. Therefore, dΓur(Zn)(x, y) = 2.
Similarly, if x, y ∈ Zo

n, then dΓur(Zn)(x, y) is 1 or 2. We conclude that the diameter of Γur(Zn) is 2.

(iii) By Theorem 3.4 and Ore’s theorem on Hamiltonicity of graphs, Γur(Zn) is Hamiltonian. By The-
orem 3.4, Γur(Zn) have some vertices of different parity. Hence, Γur(Zn) is not Eulerian.

(iv) If k = 1, then Γur(Zn) is isomorphic to the path graph P2 with two vertices, which is planar. For
k = 2, then Γur(Zn) is also planar as illustrated on Figure 2. If k ≥ 3, then Γur(Zn) contains
complete bipartite graph K4,4 as each vertex x ∈ Ze

n is adjacent to any vertex y ∈ Zo
n. By the

Kuratowski’s theorem, Γur(Zn) is not planar.

(v) Let C be the maximal clique of Γur(Zn). For any x, y ∈ Ze
n, x and y are adjacent if only if y = −x.

Also, for any x, y ∈ Zo
n, x and y are adjacent if only if y = −x. Therefore, |C∩Ze

n| ≤ 2 and |C∩Ze
n| ≤

2 impliying that the clique number of Γur(Zn) is at most 4. Consider C ′ = {1, 2k − 1, 2, 2k − 2.
It is easy to check that C ′ induces a complete subgraph of Γur(Zn). Hence, the clique number of
Γur(Zn) is 4.
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(vi) Obviously, |Ze
n| = |Zo

n| = 2k−1. Put I = {2a|0 ≤ a ≤ 2k−2}. Then, I is an independent set. Hence,
the independence number of Γur(Zn) is at least 2k−2 + 1. Let I be the largest independence set
in Γur(Zn). It is easy to see that I ∩ Zo

n 6= ∅ implies I ∩ Ze
n = ∅. Therefore, I ⊆ Ze

n or I ⊆ Zo
n.

Let I ⊆ Ze
n. For any two different vertices x, y ∈ Ze

n, x and y are adjacent if and only if y = −x.
Consider Ze

n \ {0, 2k−1}. From Ze
n \ {0, 2k−1}, we have 2k−2 − 1 edges of the form {x, y}, with

y = −x. Thus, |I ∩ (Ze
n \ {0, 2k−1})| ≤ 2k−2 − 1. Hence, we can take a vertex from each of those

edges, so that we obtain 2k−2 − 1 independent vertices. Let collect those vertices in A. Now put
B = A ∪ {0, 2k−1}. Then B is independent and also the largest. Thus, I = B and I has 2k−2 + 1
elements. Now, let I ⊆ Zo

n. In the subgraph induced by Zo
n, we have 2k−2 edges of the form {x, y}

with y = −x. Therefore, |I| ≤ 2k−2. We conclude that the independent set of Γur(Zn) is 2k−2 + 1.

(vii) Observe that x is not adjacent to y whenever x, y ∈ Ze
n or x, y ∈ Zo

n, and y 6= −x. Hence, the
domination number of Γur(Zn) must be greater or equal 2. As {0, 1} is a dominating set, we can
conclude that the domination number is 2.

(viii) The matching number of Γur(Zn) is at most 2k−1. Let {x, y} be an edge connecting vertex x and
vertex y. ConsiderM = {{x, x+1}|x ∈ Ze

n}. Then, M contains 2k−1 independent edges and covers
all vertices in Zn. Therefore, M is maximum so that the matching number of Γur(Zn) is 2k−1.

(ix) From (v), the chromatic number must be greater or equal to 4. We know that all vertices Ze
n are

adjacent to all vertices in Zo
n. Therefore, if x ∈ Ze

n and y ∈ Zo
n, then we must put different colors

for x and for y. As for any x, y ∈ Zo
n or x, y ∈ Ze

n, x and y are adjacent if and only y = −x,
then we can use two colors for vertices in x ∈ Ze

n, let say c1 and c2. Use c1 for vertices in the set
X1 = {2a|0 ≤ a < 2k−2−1} and use c2 for vertices in the set X2 = {2a|2k−2 ≤ a ≤ 2k−1−1}. Now,
let use c3 for all vertices in X3 = {2a+ 1|0 ≤ a ≤ 2k−2 − 1} and for the remaining vertices which
are in X4 = {2a+ 1|2k−2 ≤ a ≤ 2k−1 − 1} use the fourth color c4. Then due to this coloring, all
edges will be connecting two vertices of different colors. We conclude that the chromatic number
of Γur(Zn) is exactly 4.

(x) By Theorem 3.4, we obtain

M1(Γur(Zn)) =
∑

v∈V (G)

(degΓur(Zn)(v))2

=
∑

v∈{0,2k−1}

(degΓur(Zn)(v))2 +
∑

v∈Zn\{0,2k−1}

(degΓur(Zn)(v))2

= 2(2k−1)2 + (2k − 2)(2k−1 + 1)2

= 23k−2 + 22k − 2k − 2.

(xi) Let A1 = Zo
n and let A2 = Ze

n. We have |A1| = |A2| = 2k−1. For any i, j ∈ {1, 2}, let Aij =

{{x, y} ⊆ Zn|x 6= y, {x, y} ∩ Ai 6= ∅, {x, y} ∩ Aj 6= ∅}. We obtain |Aij | = 2k−1(2k−1−1)
2 if i = j and

|Aij | = 22k−2 if i < j. For any x ∈ A1 and y ∈ A2, x is adjacent to y by Theorem 3.4. For any
x, y ∈ A1, we have dΓur(Zn)(x, y) = 1 if y = −x. If y 6= −x, then x + y /∈ Ur(Zn) and hence x is
not adjacent to y. For any z ∈ A2, we have path x − z − y. Hence, dΓur(Zn)(x, y) = 2 if y 6= −x.
Now, let x, y ∈ A2. If x, y /∈ {0, 2k−1}, then if y = −x, x is adjacent to y and dΓur(Zn)(x, y) = 1
as a result. If y 6= −x, then dΓur(Zn)(x, y) = 2 as x and y are not adjacent and x − z − y is a

path for any z ∈ A1. Thus, dΓur(Zn)(x, y) = 2. Therefore, among 2k−1(2k−1−1)
2 elements of A11, we

have 2k−2 elements of the form {x,−x}, which is satisfying dΓur(Zn)(x,−x) = 1. The remaining
2k−1(2k−1−1)

2 −2k−2 = 22k−3−2k−1 elements of A11 are of the form {x, y} such that y 6= x satisfying

dΓur(Zn)(x, y) = 2. From all 2k−1(2k−1−1)
2 elements of A22, we have 2k−1−2

2 = 2k−2 − 1 elements of

the form {x,−x}, which is satisfying dΓur(Zn)(x,−x) = 1. The remaining 2k−1(2k−1−1)
2 − 2k−2 + 1

elements of A22 are of the form {x, y} such that y 6= x satisfying dΓur(Zn)(x, y) = 2. For i < j, all
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22k−2 elements of Aij are of the form {x, y} such that dΓur(Zn)(x, y) = 1. Hence, we obtain the
Wiener index of Γur(Zn) as the following:

W (Γur(Zn)) = 2k−2 + 2(22k−3 − 2k−1) + 2k−2 − 1 + 2(22k−3 − 2k−1 + 1) + 22k−2

= 3.22k−2 + 2k−1 − 2k+1 + 1.

(xii) Observe that Ur(Zn) = Zo
n ∪{0} and for any x ∈ Zo

n, x is adjacent to 0. Moreover, every x, y ∈ Zo
n,

x and y are adjacent in Γur(Zn) if and only if y = −x. As Zo
n has 2k−1 elements, then there are

precisely 2k−2 edges which end vertices are in Zo
n. This means that Zo

n induces 2k−2 different path
graphs of order 2. Since 0 is adjacent to any x ∈ Zo

n, then there are 2k−2 different cycle subgraphs
C3’s, each of order 3, which has 0 as a common vertex. Therefore, the subgraph of Γur(Zn) induced
by Ur(Zn) is a friendship graph F2k−2 .
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Figure 6. The unit regular graph Γur(Z32)

As a closing of this section, we give characterization on Γur(Zpk) for some prime number p ≥ 3 and
positive integer k ≥ 2.

Theorem 3.6. Given ring Zn with n = pk for any prime number p ≥ 3 and for any positive integer
k ≥ 2.

(i) Ur(Zn) = Zn \ {x ∈ Zn|gcd(x, n) 6= 1} ∪ {0}, so that |Ur(Zn)| = pk − pk−1 + 1.

(ii) degΓur(Zn)(x) = pk − pk−1 + 1 if {x|x ≡ 0 mod p} \ {0} and degΓur(Zn)(x) = pk − pk−1 otherwise.

Proof. Let p ≥ 3 be a prime number, k ≥ 2 be a positive integer and let n = pk.

(i) Observe that Ur(Zn) = Zn \ {x ∈ Zn|gcd(x, n) 6= 1} ∪ {0} = {x ∈ Zn|x 6≡ 0 mod p} ∪ {0}. As
|{x ∈ Zn|x ≡ 0 mod p}| = pk−1, then |Ur(Zn)| = pk − pk−1 + 1.
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(ii) Let x ∈ Zn \ Ur(Zn). Then x = rp for some 1 ≤ r < pk−1 − 1. Then, 2x /∈ Ur(Zn), and hence
degΓur(Zn)(x) = pk − pk−1 + 1. Let x ∈ Ur(Zn). If x = 0. Then, 2x = 0. Hence, degΓur(Zn)(0) =

pk − pk−1. If x = rp+ i for some 0 ≤ r < pk−1 − 1 and i ∈ {1, 2, . . . , p − 1}, as p ≥ 3, then
2x ∈ Ur(Zn). And thus degΓur(Zn)(x) = pk − pk−1.

Theorem 3.7. Given any prime number p ≥ 3 and any positive integer k ≥ 2. If n = pk, then the
following assertions hold.

(i) The degree sequence of unit regular graph Γ(Zn) is

(|Ur(Zn)| − 1, . . . , |Ur(Zn)| − 1︸ ︷︷ ︸
pk−pk−1+1

, |Ur(Zn)|, . . . , |Ur(Zn)|︸ ︷︷ ︸
pk−1−1

)

(ii) Γur(Zn) is connected with diameter 2.

(iii) Γur(Zn) is Hamiltonian but not Eulerian.

(iv) Γur(Zn) is not planar.

(v) The independence number of Γur(Zn) is pk−1−1
2 .

(vi) The clique number of Γur(Zn) is p−1
2 (pk−1) + 2.

(vii) The domination number of Γur(Zn) is 2.

(viii) The matching number of Γur(Zn) is pk−1
2 .

(ix) The chromatic number of Γur(Zn) is p−1
2 (pk−1) + 2.

(x) The first Zagreb index of Γur(Zn) is M1(Γur(Zn)) = p3k−2p3k−1 +p3k−2 +2p2k−1−2p2k−2−2pk +
3pk−1 − 1.

(xi) The Wiener index of Γur(Zn) is 1
2p

2k + 1
2p

2k−1 − pk − 1
2p

k−1 + 1
2 .

Proof. Let a = {x ∈ Zn|x ≡ a mod p} for any a = 0, 1, . . . , p− 1. This set is of size pk−1.

(i) By Theorem 3.6.

(ii) By Theorem 3.6, Γur(Zn) is not complete, and hence its diameter is greater than 1. For any
a = 0, 1, . . . , p − 1, let a = {x ∈ Zn|x ≡ a mod p} = {ip+ a ∈ Zn|i = 0, 1, . . . , pk−1 − 1}. Let
x ∈ a and y ∈ b for some a, b = 0, 1, . . . , p − 1. If a = b 6= 0, then x and y are adjacent and thus
dΓur(Zn)(x, y) = 1. If a = b = 0, then x and y are adjacent if and only if y = −x. For y 6= −x, we
have path y− 1− x of length 2. Thus, dΓur(Zn)(x, y) is 1 or 2. Let a 6= b. If a+ b 6= p, then x and y
are adjacent. If a+ b = p, then we always have a path x− 0− y. Hence, Γur(Zn) is connected with
diameter 2.

(iii) Let x and y be connected by an edge in Γur(Zn). The sum of the degrees of x and y is greater than
pk. Therefore, by Ore’s theorem, Γur(Zn) is Hamiltonian. By Theorem 3.6, the vertices of Γur(Zn)
have different parity degrees. Hence, Γur(Zn) is not Eulerian.

(iv) For a = 0 and for any b = 1, 2, . . . , p− 1, each vertex in a is adjacent to any vertex in b. Therefore,
Γur(Zn) contains a bipartite graph Kpk−1,pk−1 . As p ≥ 3 and k ≥ 2, then by the Kuratowski’s
theorem, Γur(Zn) is not planar.
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(v) If I is a maximal independent set, then I cannot have an element from Ur(Zn) and an element
from Zn \ Ur(Zn), simultaneously. Moreover, since 0 is adjacent to every x ∈ Ur(Zn), necessarily
I ⊆ Ur(Zn) \ {0} or I ⊆ Zn \ Ur(Zn). Obviously, for any x, y ∈ Zn \ Ur(Zn), x and y are
adjacent if and only if y = −x. Thus, if I ⊆ Zn \ Ur(Zn), then |I| = pk−1−1

2 . Now, consider
when I ⊆ Ur(Zn) \ {0}. Let x, y ∈ Ur(Zn) \ {0}. Let x = ip+ a ∈ a and y = jp+ b ∈ b,
a, b = 1, 2, . . . , p−1, i, j = 0, 1, . . . , pk−1−1. Then x is not adjacent to y if and only if a+b = p and
i+ j 6= pk−1− 1. Therefore, the only largest independent set is reached only when I ⊆ Zn \Ur(Zn)

where I has size pk−1−1
2 .

(vi) We have that a is a clique for any a = 1, . . . , p−1. Moreover, for a, b 6= 0 and a+ b 6= p, each vertex
in a is adjacent to any vertex in b. Therefore, if a + b 6= p, then a ∪ b is a clique. But the largest
subset A of {1, 2, . . . , p − 1} such that a + b 6= p for any a, b ∈ A has size p−1

2 . Hence, the clique
number of Γur(Zn) is greater or equal to p−1

2 (pk−1). Now, let C be the largest clique in Γur(Zn).
If C ∩ 0 6= ∅, then |C ∩ 0| ≤ 2. If C ∩ a 6= ∅ and C ∩ b 6= ∅ and a + b = p, then |C ∩ a| ≤ 1 and
|C ∩ b| ≤ 1. If C ∩ a 6= ∅ and C ∩ b 6= ∅ and a + b 6= p, then |C ∩ a| ≤ pk−1 and |C ∩ b| ≤ pk−1.
Therefore, the largest C will be reached whenever C contains

⋃
a∈A a where A is the largest subset

of {1, 2, . . . , p − 1} such that for any u, v ∈ A, u + v 6= p. Thus, |A| = p−1
2 . Therefore,

⋃
a∈A a

has p−1
2 (pk−1) vertices. Now, take two elements x, y ∈ 0 such that y = −x. Then x is connected

by an edge to y. Moreover, x and y are connected to any vertex in
⋃

a∈A a by some edges. Hence⋃
a∈A a ∪ {x, y} is of size

p−1
2 (pk−1) + 2 and defines the largest clique. This completes the proof.

(vii) As Γur(Zn) is not complete, then its domination number is greater then 1. Consider a = {x ∈
Zn|x ≡ a mod p}, a = 0, 1, . . . , p − 1 and put D = {0, 1}. Then, each x ∈ a, a 6= 0, is adjacent to
0 ∈ D. For each x ∈ 0, x 6= 0, x is adjacent to 1 ∈ D. Hence, D is a dominating set. Therefore, the
domination number of Γur(Zn) is 2.

(viii) Observe that the order of Γur(Zn) is pk which is odd. Thus, a perfect matching will be not reached.
Thus, the maximum size of a matching in Γur(Zn) is pk−1

2 . Let a = {x ∈ Zn|x ≡ a mod p}, a =

0, 1, . . . , p − 1. Let A = {{rp, (pk−1 − r)p}|r = 1, 2, . . . , p
k−1−1

2 }. Hence, A contains pk−1−1
2 edges

connecting two vertices in 0. For any i = 1, 2, . . . , p−1
2 , let Bi,p−i = {{rp+ i, (pk−1 − r)p+ j|i+j =

pk}. Each Bi,p−i contains pk−1 edges connecting a vertex in i to a vertex in p− i. Altogether,

A∪
⋃ p−1

2
i=1 Bi,p−i is a matching of size pk−1

2 covering all nonzero vertices in Γur(Zn). This completes
the proof.

(ix) By (vi), the chromatic number of Γur(Zn) is greater or equal p−1
2 pk−1 + 2. Let a = {x ∈ Zn|x ≡

a mod p}, a = 0, 1, . . . , p−1. Now, for i = 1, . . . , p−1
2 , let color each vertex rp+ i ∈ i with color cr,i,

r = 0, 1, . . . , pk−1 − 1. For i = p−1
2 , . . . , p− 1, let color each vertex rp+ i ∈ i with color cr,(i− p−1

2 ),
with r = 0, 1, . . . , pk−1 − 1. So far, we have used p−1

2 pk−1 colors. Now, take two more new colors,
let say c and c′. Let use c to color vertices rp ∈ 0, where r = 0, . . . , p

k−1−1
2 and use c′ to color

vertices rp ∈ 0, where r = pk−1−1
2 + 1, . . . , pk−1 − 1. Then by this coloring, we have that each edge

in Γur(Zn) connects two vertices of different colors. Thus, we conclude that the chromatic number
of Γur(Zn) is p−1

2 pk−1 + 2.

(x) By point (i), we have

M1(Γur(Zn)) =
∑
x∈Zn

(degΓur(Zn)(x))2

= (pk − pk−1 + 1)((pk−1 − 1)(pk − pk−1 + 1) + (pk − pk−1)2)

= p3k − 2p3k−1 + p3k−2 + 2p2k−1 − 2p2k−2 − 2pk + 3pk−1 − 1.
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(xi) For any i, j ∈ {0, 1, . . . , p − 1}, let Aij = {{x, y} ⊆ Zn|x 6= y, {x, y} ∩ i 6= ∅, {x, y} ∩ j 6= ∅}.
We obtain |Aij | = pk−1(pk−1−1)

2 if i = j and |Aij | = p2k−2 if i < j. For any x, y ∈ 0, we have
dΓur(Zn)(x, y) = 1 if y = −x. If y 6= −x, then x+ y /∈ Ur(Zn) and hence x and y are not adjacent.
But, for any z ∈ 1, we have path x−z−y. Hence, dΓur(Zn)(x, y) = 2 if y 6= −x. As there are pk−1−1

2

pairs of the form {x,−x}, then there are pk−1(pk−1−1)
2 − pk−1−1

2 = (pk−1−1)2

2 pairs of the form {x, y}
where dΓur(Zn)(x, y) = 2. If x, y ∈ a, a 6= 0, then x and y are adjacent and thus dΓur(Zn)(x, y) = 1.
Now let x ∈ i and y ∈ j, where i < j, and i, j = 0, 1, . . . , p − 1. If i = 0, then x is adjacent to y.
Now, let i 6= 0. If i+ j 6= n, then x and y are connected by an edge. If i+ j = n, then x and y are
adjacent if and only if x = rp+ i and y = (pk−1 − r)p+ j. Thus, for each x ∈ i, i = 1, 2, . . . , p−1

2 ,
there are 1 + (p − 2 − i)pk−1 y’s such that dΓur(Zn)(x, y) = 1. The remaining pk−1 − 1 y’s are
satisfying dΓur(Zn)(x, y) = 2 as we always have a path x− 0− y of length 2. If i = p−1

2 , . . . , p− 1,
then x and y are adjacent so that dΓur(Zn)(x, y) = 1. If i = p−1

2 + 1, . . . , p− 1, then x is connected
by an edge to y.
Therefore, the Wiener index of Γur(Zn) as the following:

W (Γur(Zn)) =
pk−1 − 1

2
+ 2

(pk−1 − 1)2

2
+ (p− 1)

(pk−1 − 1)pk−1

2

+ (p− 1)(pk−1)2 +

p−1
2∑

i=1

(p− 2− i)(pk−1)2 +
p− 1

2
pk−1

+ 2
p− 1

2
(pk−1)(pk−1 − 1) +

p−1∑
i= p−1

2 +1

(p− 1− i)(pk−1)2

=
1

2
p2k +

1

2
p2k−1 − pk − 1

2
pk−1 +

1

2
.

4. Conclusion

In this manuscript we propose the definition of the unit regular graph over rings. We present
some fundamental properties of the graph included its completeness, Eulerian and Hamiltonian property,
connectivity, girth, matching number, independence number, and clique number. Moreover, we present
also some more detail properties of the graph for the ring Zn for some particular n. Nevertheless, more
general properties of the unit regular graph of the ring Zn for arbitrary n have not been obtained.
Therefore we give the following open problems.

Open Problem 1 Investigate the characteristic of the unit regular graph over the ring Zn, for
arbitrary n.

Open Problem 2 Investigate the characteristic of the unit regular graph over the ring Mk(Zn) of
all k × k matrices over Zn for any k ≥ 3.

Acknowledgment: The authors extend their thanks to all the reviewers for their valuable remarks
and recommendations, which have played a vital role in improving this manuscript.
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