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Abstract: This paper presents the study of QSD (quasi-self-dual), right-LCD (linear complementary dual), and
ACD (additive complementary dual) codes over a noncommutative local ring R = (a,b | 3a = 3b =
0, a®> =a, b> =b, ab=>b, ba = a) of order 9. Initially, over this ring R, we introduce QSD codes and
characterize their multilevel construction. Then, we delve into the study of right LCD codes over the
ring R and demonstrate a method for constructing these codes based on ternary LCD codes. Finally,
we introduce the right-ACD codes over this ring and present several criteria for the existence of such
codes.
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1. Introduction

The construction of effective error-correcting codes stands out as a highly consequential challenge
in the area of coding theory. Algebraic coding theory has developed significantly since the late 1940s
when Hamming and Shannon introduced error-correcting codes. This progress encompasses various
advancements in linear codes, including BCH codes, Reed-Muller codes, Reed-Solomon codes, quadratic
residue codes, self-dual codes, and algebraic geometry codes. Further, the research of self-dual codes has
gained considerable attention, primarily due to their associations with quantum error-correcting codes,
lattices, and designs. Initially, our primary objective is to examine self-dual codes over the ring R.
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However, it became evident that the conventional relationship between a code’s size and its dual size is
not always true, as explained in the concept of a “nice code” discussed in Section 4. Recently, Alahmadi
et al. [1] introduced QSD codes over a finite non-unital noncommutative ring £ of order 4. Further, Kim
et al. [6] constructed QSD codes over a non-unital commutative ring with four elements. Later, Kim et
al. demonstrated that the ring E possesses the GC-content map and complement map, making it suitable
for constructing DNA codes [5]. These aspects motivate us to study QSD codes over a noncommutative
non-unital ring R = (a,b | 3a = 3b =0, a® = a, b> =b, ab=b, ba = a) of order 9. A QSD code over
R refers to a self-orthogonal R-code of length n with size 3". Here, we investigate the structure of QSD
codes, emphasizing a multilevel construction based on a pair of dual codes.

Subsequently, we move into another class of codes that are characterized by their connection with
respective dual codes. More precisely, it constitutes the family of linear codes having complementary
dual (LCD). Recall that a linear code C' over a finite field F, is denoted by [n, k] and refers to a subspace
of Fy of dimension k. The dual of the code C, denoted by C*, represents the collection of all the
orthogonal vectors to C under the Euclidean inner product. Also, a linear code C'is called self-orthogonal
if C C CLt. A linear code C is called an LCD code if there is no common non-zero vector to both C
and its dual, i.e., C N Ct = {0}. In 1992, Massey [11] introduced the concept of LCD codes over
finite fields and demonstrated the existence of asymptotically good LCD codes. Recently, these codes
received considerable attention due to their application in Boolean masking, a robust countermeasure
for algorithms in Cryptography [2]. Moreover, Sendrier [14] utilized the hull dimension spectra of linear
codes to demonstrate that LCD codes achieve the Gilbert-Varshamov bound. In 2016, Carlet et al. [2]
introduced multiple constructions of LCD codes and explored their application in defending against Fault
Injection Attacks (FIA) and Side-Channel Attacks (SCA). SCA involves passively recording information
leakage to retrieve the key, while FIA involves actively disrupting the computation to obtain exploitable
variations at the output. Interestingly, the concept of LCD codes and self-orthogonal codes are both used
in our study to develop certain results.

On the other side, in the Boolean masking approach of Carlet-Guilley, the condition C' & C+ = Fy is

necessary, and the minimum distance of C (respectively C) acting as a performance criterion for SCA
(and FIA), respectively. Since this model leverages the additivity of C rather than its linearity, it becomes
relevant to study ACD codes over finite fields (finite rings). Additionally, ACD codes encompass LCD
codes as they include linear codes. Under specific conditions, in 2015, Liu et al. [8] obtained numerous
conditions for linear codes over a finite chain ring to be LCD. Li [7] constructed Hermitian LCD cyclic
codes over finite fields and investigated their parameters. Later, Liu et al. [9] used a Gray map to extract
LCD codes over finite fields from linear codes over Fy +uF, + vF,. In 2019, Zihui et al. [10] studied LCD
codes over finite commutative rings. In 2020, Prakash et al. [13] constructed LCD codes over the ring
R =F, + uF,, where u? = 1 and ¢ is a power of an odd prime p. Additionally, they have demonstrated
the application of LCD codes within multi-secret sharing schemes. Later, in 2021, Islam et al. [3] studied
cyclic codes over a non-chain ring R, , and their application to LCD codes. Recently, there has been
extensive research on LCD codes over various structures [4, 12, 15, 17-19].

As per our survey, the investigation of LCD and ACD codes over non-unital rings first emerged in
[16], in which authors focused on studying left-LCD and left-ACD codes. This motivates us to study
right-LCD, and right-ACD codes over a non-unital noncommutative ring with nine elements. Our re-
search demonstrates that free LCD codes over R encompass ternary LCD codes, and ACD codes over
R encompass free LCD codes over R as a specific case. These observations highlight the importance of
studying LCD codes over R. In particular, we characterize a free LCD R-code C' in terms of a ternary
generator matrix G. Additionally, we introduce the concept of an ACD code over R, called the right-ACD
code. We present various results for the existence of right-ACD codes over R.

This paper is organized as follows: Section 2 discusses the study of codes over the ring R and the
duality of an R-code. Section 3 deals with QSD codes over R while Section 4 studies LCD codes over R.
Section 5 focuses on the study of right-ACD codes over R. Finally, Section 6 concludes the work.
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2. Codes over a noncommutative non-unital local ring of order 9

Let R be a ring generated by a and b under certain relations as follows:
R=1(a,b|3a=3b=0, a>=a, b¥*=b, ab=", ba = a).

For example, consider the ring R generated by two matrices a and b over F3 where

R

Thus, the ring R consists of 9 elements R = {0, a, b, 2a, 2b, a+b, 2a+b, a+2b, 2a+2b} and has
characteristics 3. One can easily derive its addition table. The multiplication table is given in Table 1.

Table 1.  Multiplication table for R.

Ola|bl|2a|2b] a+b |2a+ b|a+ 2b|2a + 2b
0{0|0[0]|0 0 0 0 0
0la|bl|2a|2b] a+b |2a+ b|a+ 2b|2a + 2b
0la|bl|2a|2b] a+b |2a+ b|a+ 2b|2a + 2b
2a  |0(2a|2b| a | b |2a+ 2bla+ 2b{2a +b| a+b
2b  |0|2a|2b| a | b |2a + 2bla + 2b|2a +b| a+b
a+b [0|2a|2b| a | b|2a+2bla+2b|2a+b| a+b
2a+b|0/0|0|0 |0 0 0 0 0
a+2b |0 00 0 0 0 0
2a +2b|0| a | b |2a|2b| a+b |[2a+ bla+ 2b|2a + 2b

The above table shows that the ring R is noncommutative and has no identity element with respect to
the given multiplication. Also, ax = x and bz = z for all x € R. Further, the ring R has a unique maximal
ideal I = {0,2a 4+ b,a + 2b}, and hence it is a local ring with residue class field R/I = F3 = {0, 1,2}, the
finite field of order 3. Let ¢ = a + 2b. Then every element r € R has a c-adic decomposition as follows:

r = xa + yc where x,y € Fs.
Define a natural action of F3 on R as
rO=0r=0, Ir=rl=r 2r=r2=2n

Note that this action is distributive, i.e., for all » € R, we have r(z ®p, y) = rz + ry where G, denotes
the addition in Fs.

Next, define a map o : R — R/I =F3 by
a(0) =a(2a+b) = ala+2b) =0, ala) = ad) = a(2a+2b) = 1, a(2a) = a(2b) = a(a +b) = 2.

This map can be extended in a natural way from R" to F% and is known as the map of reduction modulo
1.

Definition 2.1 (Linear and additive codes over R). A right R-submodule of R™ is called a linear code
over R or a linear R-code, while any additive subgroup of R™ is called an additive R-code.

Definition 2.2 (Permutation-equivalent codes). A code Cy is called permutation-equivalent to a code Cy
if and only if there exists a coordinate permutation from Cy to Cs.



A. Kushwaha et. al. / J. Algebra Comb. Discrete Appl. 11(3) (2024) 207-225

We define two ternary linear codes associated with a linear code C over R of length n.

(i) Residue code: We define the residue code of the code C' by
Res(C) = {a(x) | z € C}.

(ii) Torsion code: The torsion code of the code C is defined by
Tor(C)={v eFy |vece C},
where ¢ = a + 2b.

Remark 2.3. Throughout the paper, a and b represent the generators of the ring R satisfying the relations
30 =3b=0,a’2=a, > =0, ab=1", ba = a and c = a + 2b. Also, we denote the dimension of the
residue code by k1 and the dimension of the torsion code by ki + ko.

2.1. Duality

For any ® = (z1,2,...,2n), Y= (Y1,¥2,.-.,Yn) € R", define an inner product on R™ as follows
n
(@,y) = ;1.
j=1

Under this inner product, we define two duals as follows.

(i) Right dual: The right dual of the code C' is defined by
Ctr={yec R" | (x,y) =0,V x € C}.
Here, the right dual of the code C' forms a right R-module.
(ii) Left dual: The left dual of the code C is defined by
Ctr ={yecR" | (y,x) =0,V € C}.
Also, the left dual of the code C forms a left R-module.

Definition 2.4 (Self-orthogonal code). A linear R-code C' is called self-orthogonal code if (x,y) =0 for
all z,y € C.

Definition 2.5 (Self-dual code). An R-code C is called right self-dual if C = C+%, and is called left
self-dual if C = C+t. Hence, a code C is called self-dual if C = C+r = C+r.

3. Quasi-self-dual (QSD) codes over R

This section studies the QSD codes over the ring R and demonstrates their multilevel construction
from ternary linear codes.

Definition 3.1 (Quasi-self-dual code). An R-linear code C is called a quasi-self-dual code if it is self-
orthogonal and has size 3™.

Next, we present the multilevel construction of QSD codes by utilizing ternary linear codes.
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Theorem 3.2. Let D be a ternary linear code of length n. If D is self-orthogonal, then the code C'
constructed through the relationship

C = Da + D¢,

is a QSD code. Additionally, Res(C) = D and Tor(C) = D*.

Proof. Let C = Da + D*c. First, we prove that C' is an R-linear code. By using the linearity of
D and D+, we see that the code C is closed under addition. Also, every element r € R has a c-adic
decomposition

r=xa+yc where x,y € Fg3.
Let ' € C. Then &’ can be written as @’ = da + d'c, where d € D and d' € D+. Hence, we have

x'r = (da+ d'c)(za + yc)

daxa + dayc + d'cxa + d cyc
dxa + dyc

= (dx)a+ (dy)c.

Since d € D, z,y € F3 and D is a ternary linear code, we see that dx,dy € D. Moreover, dy € D+
by using self-orthogonality of D. Hence, 'r € C. Thus, C is a linear code over R. Further, let & =
xia+x'c, y=1y,a+y'ce C for some x1,y; € D and x’,y’ € D*. Then, their inner product

<£I}, y> = <a:1a + mlca Y0+ ylc>
= <m1a7 y1a> + <mlc7 y1a> + <m1a7 ylc> + <mlc7 y,C>
= (@1, y1)a+ (z1,9')c

= 0,

as D is self-orthogonal. Hence, C is self-orthogonal. Now, C' = Da+ D¢ implies that |C| = |D||D+| = 3".
Thus, C is a QSD code. Moreover, the torsion and residue codes can be derived easily just by applying
their definitions. O

The next result shows that Theorem 3.2 does not hold if D is not self-orthogonal.

Theorem 3.3. Let D be a ternary linear code and C' be a code over R defined by the relationship
C = Da+ D'c. Then C is always an additive code over R but never be a linear R-code unless and until
D is self-orthogonal.

Proof. Let D be a ternary linear code and C = Da + D+c. Then C is an additive code over R by
using the linearity of D and D+. Now, suppose C is a linear R-code and let d € D. Then there exists
some d € D+ such that ' = da + d'c € C. Moreover, every element € R has a c-adic decomposition
form r = za + yc where z,y € F3. Next,

x'r = (da + d'c)(za + yc) = daxa + dayc + d'cza + d'cyc = dra + dyc = (dz)a + (dy)c.

Since C is linear, 'r € C, we have dy € D+. This implies that dyy~' = d € D+ where y~! denotes the
multiplicative inverse of y € F5. Therefore, D C D+. Thus, D is self-orthogonal. O

The following two results are true without the QSD requirement.

Lemma 3.4. Let C be a linear code over R and xa + yc be an arbitrary codeword of C' where x and y
are ternary vectors. Then x € Res(C), Res(C)a C C and y € Tor(C).
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Proof. Let xa+ yc be an arbitrary codeword of C. Then a(xa + yc) = x implies that © € Res(C).
Also, for any & € Res(C), there exists xa + yc € C such that a(xa + yc) = @. Since C is linear,
(xa+yc)a = xa € C. Hence, Res(C)a C C. Further, by using linearity of C, (xa + yc) + 2xza = yc € C.
Thus, y € Tor(C). O

Theorem 3.5. If C is a linear R-code, then C = Res(C)a @ Tor(C)c as modules.

Proof. Any arbitrary codeword x of C has a c-adic decomposition form x = ua + vc for some ternary
vectors u and v. Since a(x) = a(ua+vc) = u, u € Res(C). Then, by Lemma 3.4, ua € C. Also, linearity
of C implies that (ua + vc) + 2ua = ve € C. This shows that v € Tor(C). Therefore, C C Res(C)a +
Tor(C)c. The converse inclusion holds by using linearity of C' and Res(C)a C C, Tor(C)c C C. Hence,
C = Res(C)a + Tor(C)c. Now, it remains to show that this sum is direct. Let & € Res(C)a N Tor(C)c.
Then = ua = ve for some u € Res(C) and v € Tor(C). Hence, ua = ve implies that (ua)a = (vc)a.
Therefore, ua = 0. That is, = 0. Thus, the given sum is direct.

Lemma 3.6. A linear R-code C is self-orthogonal if and only if Res(C) C Tor(C)*t. Moreover, C is
QSD if and only if Res(C) = Tor(C)*.

Proof. Let C be a self-orthogonal code over R. For any u € Res(C), there exists ua + u’c € C
such that a(ua + u’c) = u. Further, for any v € Tor(C), we have ve € C. Since C is self-orthogonal,
(ua + v'c,vc) = (u,v)ec = 0. It implies that (u,v) = 0, and so w and v are orthogonal. Hence,
v € Res(C)*. Then, Tor(C) C Res(C)* implies that Res(C) C Tor(C)*. Conversely, suppose Res(C) C
Tor(C)* and x,y € C. Then, by Theorem 3.5, * = ua +vc and y = u’a + v'c for some u, u’ € Res(C)
and v, v’ € Tor(C). Following a similar procedure given in [1], we can show that if C' is a linear R-code,
then Res(C) C Tor(C). This implies that Tor(C)t C Res(C)*. Then Res(C) C Tor(C)* C Res(C)*
implies that

(x,y) = (ua+ve,u'a+v'c) = (u,u'a + (u,v')c = 0.

Thus, C is self-orthogonal.

On the other hand, suppose C' is QSD. Then |C| = 3?%1+k2 = 37 implies that 2k; + ko = n. This
shows that k; = n — (k1 + kz2), and so Res(C) and Tor(C)+ have equal dimensions. Since Res(C) and
Tor(C)* have equal dimensions and Res(C) C Tor(C)*, Res(C) = Tor(C)*. Conversely, suppose that
Res(C) = Tor(C)*. Since Res(C) C Tor(C), Tor(C)* C Res(C)*. Hence, Res(C) = Tor(C)*+ C
Res(C)* implies that Res(C) is self-orthogonal. Thus, by Theorems 3.2 and 3.5, C is QSD. O

4. LCD codes over the ring R

This section deals with the LCD codes over the ring R and characterizes free LCD R-codes in terms
of a ternary generator matrix.

Definition 4.1 (Generating set). Let X = {@x1, ®o,..., &y} be a subset of an R-linear code C. Then
(right) R-span of X is defined by

(X)r ={m101 + 302+ - - - + Ty, | @ € R, Vi }.
We define the additive span of X by
(X)r, = {1 +T272 + -+ + T ym | v € F3, Vit

Note that (X)r does not always contain (X)g, since the ring R has no unity element.

A subset X = {x1, xa,...,xm} of C is called a generating set for the code C if

(X)rU (X)p, =C.
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Definition 4.2 (Generator matrix). Consider a set X = {x1, xa,...,xm} C C which generates the

linear code C. Then, we define its generator matrix Gr as an mxn matric whose Tows are Ty, Ta, ..., Ty,
such that (G)r = (X)r U (X)Fp,.

Definition 4.3 (Right-nice code). An R-linear code C is called right-nice if
C| - |CHR] = 9™

Remark 4.4. The relation |C|-|C+%| = 9" does not hold in general. For example, let us consider an
additive R-code C of length 3 with an additive generator matrix

a b 0
0 0 bl

{(a, b, 0), (z, y, 2)y =0 and {(0, 0, b), (z, y, 2)) =0.

G =

Let (x, y, z) € C+&. Then, we have

Hence, we get two equations: ax +by = x+y = 0 and z = 0. These imply that y = 2z and z = 0.
Therefore, C% can be given by the set

ctr={(x 2z,0)|z€R}.
It is easy to see that |C| = |C+%| = 9. Hence, |C||C+%| =92 < 9.
Definition 4.5 (Left-nice code). An R-linear code C' is called left-nice if
C]-|CHE] = 9m.
Definition 4.6 (Right-LCD code). A right-nice code C' is called right-LCD code if C N C*+7 = {0}.
Note that C is a right-LCD code if and only if C ® C*+7» = R".

Definition 4.7 (Left-LCD code). A left-nice code C is called left-LCD code if C N C+t = {0}.
Note that C is a left-LCD code if and only if C ® C+t = R™.

Remark 4.8. There exists no non-trivial left-LCD code over R.
Proof. Let C # {0} be an R-linear code. Since C' is linear, for any « € C, xc € C. From Table 1, we

can see that @c = uc where u is a ternary vector. Since c is a left zero divisor, (zc,y) =0 for all y € C.
Hence xc € C+t | which shows that C' N C+% # {0}. Thus, a left-LCD code over R does not exist. [

Therefore, in our further investigations, we consider the right-LCD codes as LCD codes and hence
the right dual only.
Definition 4.9 (Free code). An R-linear code C' is free if it can be written as a finite direct sum of R
(R as a right R—module), i.e., C = RO R® ---® R where R = (x;)g for some x; € R.

Following [1], we see that C'is free if and only if ko = 0.

Theorem 4.10. Let C be a free linear code over R with generator matriz Gr. Then

(i) C = (Ga)r, where G is a ternary matric.

(ii) C+7 = (Ha)r, where H is a ternary parity check matriz.

Proof. (i) Since C is a free linear code, there exists a generating set X = {x1, ®2,..., &}t C C
such that C = (x1)g & - -+ ® (@) g, where (x;)r = R for each i. Note that (x;)r = (z;a)r for
1=1,2,...,m, since axr = z for all x € R. Since G r consists of the rows 1, xa,...,x,,, SO we can
replace these rows by xia, ®aa,...,x,a. From Table 1, we can see that x;a = @}a, where } is a
ternary vector. Hence, C' = (Ga) g for some ternary matrix G.
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(ii) Note that (Ga)(Ha)T = (aG)(Ha)T = aGH"a = 0, since H is a parity check matrix related to G.
Therefore, (Ha)r C C*+%. Conversely, we show that C+# C (Ha)g.
Let G = [I|A], and B = (B1, B2, ..., Bn) € CHE. Also, suppose

ria
roQ

Ga=[I|Ala=| | |,
r;;a
where 7;’s are the ternary rows of G. Then (r;a, B) =0 for 1 <i < k. That is, for any 1 < i <k,
mi,afi, +mi,afi, + -+ mgab; =0,
for some 1 < j <k and m;,’s are either 1 or 2. This implies that
mi, iy +miyBiy + - +my; Bi; =0,

since ax = z for all z € R. Moreover, G = [I|A] is in its standard form, we get k equations as
follows:

Bi+0+0+ - +0+mppiBeri, +-+mi, Bi, =0,

0+ B2 40+ + 0+ mptipBryi, + - +mi, Biy, =0,

0+04 -+ 0+ B + MitiyBrtip + - +mi, Bi,, =0,

where for any j = 1,2,...,k, the indices k +1j,...,is, of B correspond to the non-zero coordinates
of r;ja. Considering the above k equations, we have maximum n — k independent variables. Hence,
there can exist maximum 9"~* solutions for 3. Therefore, |C1%| < 9"~k Also, [(Ha)p| = 9"~*.
Thus, C+7 = (Ha)g.

O

Corollary 4.11. Let C be an R-linear code. Then it is permutation-equivalent to an additive R-code
with an additive generator matriz

I,a Xa Ya
I,b Xb YV,
0 Ipc Zc

where X,Y , Z are ternary matrices and Iy is the identity matriz of order k.

Proof. Let C' = (C)g. Obviously, C’ is free. Then, by Theorem 4.10, C’ = (Gia), where G;
is a ternary matrix. Suppose G is in the standard form [Ij,|A], then for all y € C\ C’, we
can assume that y = (0,0,...,0, ¢’). Since y + 2ya = ysc for some ternary vector y; and
k
1
2ya € C', ysc ¢ C’, we have y = ya + ysc. Hence, we can find an Fs-linearly independent set
Ys = {ykc, y3c,...,yt2c | ¥k is a ternary vector for all k} such that C = C’ @ (Y3)p,. Hence the re-
sult. O
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Next, we define a map ¢ : R — R by

$(0) =0, ¢p(a) =a+2b=c, ¢(b) =2b, p(a+b)=a+b, ¢(2a)=2a+b,

@(2b) = b, Pp(a+2b) =a, ¢(2a+b) = 2a, ¢(2a + 2b) = 2a + 2b.
We can easily see that
Pz +y) = () + ¢(y) and y¢(z) = ¢(yz) for all z,y,z € R.
We can extend this map naturally on R™. That is,
o(y) = (6(y1), ¢(y2) ..., d(yn)) for all y = (y1, y2...,yn) € R".
Further, we have
(@ + ) = d(@) + d(y) and yd(z) = ¢(yz) for all = € R and @,y € R".

Theorem 4.12. Let C be a linear R-code. Then it is free if and only if vc € C' implies va € C where v
is a ternary vector.

Proof. Let C be free. Then there exists a generating set X = {x1, ®2,..., %, } C C such that
C=(x1)r® (@2)r D D (Tm)R-

Since vec € C, vc = 101 + Xaas + - -+ + Ty, Where each a; € R.
Now,

va = wvaa = vad(c) = ¢p(vac) = ¢p(vc)
d(xrar + oo + -+ - + Tyt
p(x101) + ¢(T2002) + -+ + DTy V)
z19(a1) + 2g(@2) + - + Tmd(amm).

This shows that wa is a linear combination of the vectors of the generating set X. Hence, va € C.
Conversely, Suppose for any ve € C, we have va € C. Following a similar procedure given in [1], we
can show that if C' is a linear code, then Res(C) C Tor(C). For any v € Tor(C), ve € C. Hence,
va € C. Since va € C and «a(va) = v, v € Res(C). This implies that Tor(C) C Res(C). Hence,
Res(C) = Tor(C). Thus, ko = 0 implies that C' is free. O

Proposition 4.13. Let C' be an R-linear code. Then it is free if and only if it is right-nice.
Proof. Let C be an R-linear code. Then
|C||CLr| = gkighzgn—hi — gnghs,
Thus, C' is free if and only if it is right-nice. O
Corollary 4.14. An LCD R-code C' is free.

Proof. By definition, an LCD R-code C is right-nice. Hence, by Proposition 4.13, it is free. O

Next, we demonstrate a method for constructing right-LCD codes over R using ternary LCD codes.

Proposition 4.15. Let D be a ternary LCD code with generator matric Gixn. Then the R—span of Ga,
(Ga)g is an LCD R-code.
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Proof. Let C' = (Ga)r and H be a ternary parity check matrix for D. Then, by (ii) of Theorem 4.10,
CLR = <HG>R.
Hence, |C||C+2| = |C||[{Ha)g| = 9%9"~* = 9". This shows that C is right-nice.

Next, we prove C' N C+% = {0}. If possible, let x(# 0) € C N C+=. Then, we have two possible cases:
Case 1: Suppose x is not a product of a ternary vector by c, then

xr = Z r;a0;, where r;a is a row of Ga for some distinct 7 and «; € R.
Also,
xr = Z riafs, where ria is a row of Ha for some distinct ¢ and 5; € R.

Since ax = x # 0,

xr = Z r;0;, where r; is a row of G for some distinct ¢ and «; € R.
Again,

xr = Z B¢, where r; is a row of H for some distinct ¢ and 5; € R.
Now, from Table 1, we have

xra = E ri,a, where r;; is a row of G for some distinct ;.
Also,

xra = g Ty a, where 7y is a row of H for some distinct ¢,.

Hence, 0 = ) rj,a— > ria = (3 7y, — > 7, )a. Therefore, > vy, — > ry, =0, ie, Y r;, =) 71y €
D n D+, which contradicts that D is LCD.

Case 2: Let x be the product of a ternary vector v by ¢, i.e., * = ve. Let the generator matrix G
of D be in the standard form. Then, by investigating generator matrix Ga, it turns out that v can be
expressed as a sum of scalar multiples of some rows of G. Hence, v is a codeword of D. Similarly, we
can see that v is also a codeword of D+. Hence, v € D N D+, which contradicts that D is LCD.

In both cases, we arrive at a contradiction. Hence, we conclude that C N C+# = {0}. Thus, C is an
LCD R-code. O

Next, we give an example of LCD code over R constructed by the method described in Proposition
4.15.

Example 4.16. Let C; = {(0, 0),(1, 2),(2, 1)}. Then C} is a ternary linear code of length 2. Its dual
is given by

C(1J_ = {(O’ 0)’(17 1)7(2’ 2)}

We see that Cy N C{- = {0} and |Cy||C{| = 32 = 3™. Hence, Cy is a ternary LCD code of length 2.
Consider a generator matriz for C1 as G = [1 2}. Then, by Proposition 4.15, the R—span of Ga,
(Ga)g is an LCD code over the ring R. Now, we validate all the conditions of the definition of an LCD
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R-code to show that (Ga)r is an LCD R-code.
Consider C = (Ga)r = ({a Za} Yr- Then the code C can be represented by the set

C={(a, 2a)x | z € R}
={(z, 2z) | z € R}.
We can easily see that |C| = 9. Let (o, B) € C+=. Then
((z,22), (a,B)) =0 implies that za + 225 = 0.

Now, the following cases arise:

(i) When oo = 8. Then
ra+ 2z8 = za + 2xa = 3xa = 0.
Hence, we have {(a,a) | « € R} C Ctr.

(ii) When o # B. Then, from Table 1, we can see that for x = a € R, there does not exist o, 8 € R
such that xa + 2z = 0.

From both cases, we conclude that
C+% = {(e,a) | @ € R} and |C+7| = 9.

It is easy to see that C N C*+7 = {0} and |C||C+7| = 9% = 9. Hence, C is an LCD R-code.

Next, we see the inverse assertion of Proposition 4.15 holds partially.

Proposition 4.17. A free LCD R-code C is generated by the matriz Gza where G is a generator matrizx
for a ternary LCD code D.

Proof. By Theorem 4.10, C' is generated by the rows of the matrix G3a where G3 is a generator matrix
of a ternary code D. Also, by Theorem 4.10, C+# = (Hza)r where Hj is a ternary parity check matrix
of D. Since C is an LCD code, C N C+% = {0}. Now, we claim that D N D+ = {0}. If possible, let
v(# 0) € DN D*. Then va(# 0) € C N C+%, which contradicts the assumption. Hence, D is LCD. [

Corollary 4.18. The residue and torsion codes of an LCD R-code C' are also LCD.
Proof. By Corollary 4.14, an LCD R-code C' is free. Then, by Proposition 4.17, C is generated by the

matrix Gza where G3 is a generator matrix of a ternary LCD code. Since C' is free, Res(C) = Tor(C)
and G3 will be a generator matrix for both. Hence, both are ternary LCD codes. O

5. ACD codes

This section deals with ACD codes over the considered ring R. Here, we introduce right-ACD codes
over R and give several criteria for the existence of such codes.

Definition 5.1 (Right-nice and left-nice additive codes). An additive R-code C' is called right-nice (re-
spectively, left-nice) if |C||C+=| = 9™ (respectively, |C||C+E| = 9™ ).

Definition 5.2 (Right-ACD and left-ACD codes). An additive R-code C is said to be right-ACD (
respectively, left-ACD) if it is right-nice ( respectively, left-nice) and C N C+r = {0} (respectively, C' N
C*+r = {0} ).
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Theorem 5.3. Let C be an additive R-code of length n. Then its Tight dual is free, but the left dual is
not.

Proof. First, we prove that both duals are linear codes over R. Let ¢,y € C1%® and z € C. Then,
(z,2) =0 and (z,y) = 0. These imply that

(z,x+y)=(z,2)+ (2,y) =0+0=0.

Hence,  +y € C+%. Now, let * € C1% and z € C. Then, for any r € R, (z,xr) = (z,z)r = 0. This
shows that zr € C+%. Thus, C1* is a right submodule of R" and hence a linear code over R.
Let z,y € C*+* and z € C. Then

(x+y,z)=(x,2)+ (y,2) =0+0=0.

Therefore,  +y € C+t. Also, (xa,z) = (xb,z) = (x,z) = 0. Now, let r € R. Then it has a c-adic
decomposition as ua + ve where u,v € Fs. Then

(xr, z) = (x(ua + ve), z)
= (xua, z)+ (zve, z)
= (zu,z) +0
= (x, 2)u
=0-u
=0.

This shows that xr € C+-. Hence, C+* is also an R-linear code.
Next, we show that the right dual is free but not the left one.
(i) Let * = vc € C1®, where v is a ternary vector. Then, from Table 1, for any y € C, (y,x) =
)

(y,vc) = lc = 0. So ! will be a multiple of 3. Now, let z = wa, then by seeing Table 1, (y, z
(y,va) = la = 0. This shows that z = va € C+%. Hence, by Theorem 4.12, C1% is free.

(ii) Suppose C*t is free. Since c is a left zero divisor, (cI,)r, C C+t. Then, by Theorem 4.12,
{al,)p, C€ C*% and so (bl,)r, C C+L. These imply that |CLZ| > 3" x 3" = 9”. Again C+r C R"
implies that |C+2| < 9", Hence, C+% = R™. In this case, C = {0}, which is not possible. Therefore,
C*r is not free.

O
Theorem 5.4. Let C be an R-linear code. Then (C+7)Lr = C if and only if C is right-nice.

Proof. Let (C+r)Lr = C. We have to prove that C is right-nice. From Theorem 5.3, we know that
C*r is free, and from Proposition 4.13, a linear code over R is free if and only if it is right-nice. Hence,
|C||CLR| = |CLR||(CER)LR| = 9™ implies that C is right-nice.

Conversely, let C' be a right-nice code. Since C' and C+7 are free, by Theorem 4.10, for each
x € C and y € C1%, we assume that £ = ua and y = va for some ternary vectors u and v. Then, their
inner product

(y,x) = (va7ua)
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This implies that = € (C*+®)*&. Hence, C C (C*+r)LR. Further, since C and C1* are right-nice,
|CLR||(CLR)LR| = |C||C+7| implies that |C| = [(C*+R)LR|. Therefore, (C17)1r = C. Thus, (C+r)+r =
C if and only if C is right-nice. O

Proposition 5.5. The right dual of an LCD R-code C is also LCD but not the left one.

Proof. Let C be an LCD R-code. Then, C N C+% = {0} and |C||C*+7| = 9. Also, by Theorem 5.4,
(C+r)Lr = C. Hence,

citrn(Ctr)ytr = ctrnC = {0}
and
[CER||[(CHr)HR] = |CHR(IC) = 9™

This shows that the right dual of an LCD R-code C' is also an LCD R-code. Further, by Theorem 5.3,
C*r is not free. Thus, by Corollary 4.14, C+* is not an LCD code. O

Proposition 5.6. If C is a right-ACD code over R with 3™ codewords, then m is even.

Proof. By Theorem 5.3, C+# is free. Then |C1r| = 9%t = 321, Also, C is right-ACD code over
32n

R implies that |C||Ct®| = 9® = 32", Therefore, |C| = s = 32n—2k1 je  3m — 3272k Hence,
m = 2n — 2kq, i.e., m is even. 0

Remark 5.7. Let G = [al,] be an additive generator matrix of an additive R-code C' of length n. Then
Hp, = [el,,] will be an additive generator matriz of C+E. In this case, the parameters of the both C and
C*t are given by (n, 3", 1). It is easy to see that C NC+= = {0} and |C||C*+*| = 3" x 3" = 9". Hence,
C is a left-ACD code over R. Thus, for any integer m, it is possible to construct a left-ACD code over R
with 3™ codewords.

Theorem 5.8. Let C be an additive R-code of length n. Let C N C*tr = {0}, Ce N Ctr = {0} and
|C| |CJ‘R| < 9", Consider 0 #z=x+ycc C+Cc. If € C 7, then x # 0,yc # 0 and x is a product
of a ternary vector by ¢ such that x € C'\ Ce.

Proof. Let0#z=x+yc€e C+Ccwherex,y € C. Assume that z € C+7. Then the following cases
arise:

(1) If x =0, yc =0, then z = 0 which is not true. Therefore, this case is not possible.

(2) If x = 0 and yc # 0, then z = yc € Ce. In this case, z = yc ¢ C*+%& as Ccn C*+7 = {0}. It again
leads to a contradiction. So, this case is also not possible.

(3) f x # 0 and yc = 0, then z = x € C. In this case, z = x ¢ C*+% as CNC+& = {0}. It again leads
to a contradiction. So, this case is also not possible.

(4) If x # 0 and yc # 0, then z = x+yc. Assume that x is not a product of a ternary vector by ¢. Then
xc # 0. Since C*# is a free linear code over R and z € C+%, we have zc = (x +yc)c = xc € C+E.
Thus, xc € CcN C+® = {0}, i.e., xc = 0 which is a contradiction. Hence, z is a product of a
ternary vector by c. Now, if x € C'N Ce, then z € Cc, i.e., z € CeN Ct7 = {0}. This implies that
z = 0, which is a contradiction. Thus, € C'\ Cec.

The intended result is obtained by combining all the above cases. O

Proposition 5.9. Let C be an additive R-code of length n. Let C N C+& = {0}, Ccn C+& = {0} and
|C| |C’LR| < 9". Then C can be extended to a right-ACD code by adding some codewords of Cc.

219
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Proof. We prove it in two steps.
Step 1: We first show that C'c € C. Let us consider the set

D=(C)pr=Ca+Cc={xa+yc|z,yecC\Cc},

where x,y are not product of a ternary vector by ¢, since c is a left zero divisor. It is easy to see that D
is a free linear R-code and C+# = D+%. By Theorem 4.10 and Proposition 4.15, we have |D||D+%| = 9.
If possible, let Cc C C. Then, we define a map f: C — D by

f(x) = zxa, f(xc) =xc, f(0)=0, for any x € C'\ Ce.

Let f(z1+ 2z2) = f(2z1) + f(2z2), for all z1,z2 € C. It is easy to see that f is a surjective linear map over
Fs5. Since f is surjective, |C| > |D|. Then

ClIctR] > D[R] = DDA = 97,

which is a contradiction. Hence, Cc Z C. Therefore, C' can be extended to a right-nice code by adding
some codewords of Cc.

Step 2: We prove that there exists yc € Cc\ C such that = + yc ¢ C+# for all z € C. Suppose this
is not true. Then, there exists € C such that & + yc € C*& for all yc € Cc\ C. Hence, by Theorem
5.8, x is a product of a ternary vector by ¢ and € C'\ Cec. For y,¢,y,c € Cc\ C and y, ¢ # ys¢, there
exist ®1, o € C such that x; + y,c, o + yoc € CE. We have x; # xa, otherwise if £; = o, then
(1 + yp¢) + 2(z2 + yoc) € CHE. This implies that (y; + 2y,)c € CHE. Since y,,y, € C, y; + 2y, € C
and (y; + 2y,)c € Cc. Hence, (y; + 2y,)c € CcnN C+7, which is a contradiction. Thus, z; # 2. Now,
we define a map g : D — C' and discuss the below given two cases:

(i) For any y € C'\ Cg¢, if yc € Cc\ C, then define g by

g(ya) =y, g(yc) ==z, g(0) =0,

where z is the aforementioned vector such that x+yc € C17. Let g(z1+22) = g(21)+g(22), for all
21,29 € D. Then, obviously g is an Fs-linear map. We can see that g is injective as g(y,a) = g(y,a)
implies that y; = y, and hence y;a = y,a. Also, if g(y,c) # g(y,c), then we must have &1 # xa,
since for y, ¢, y,c € Cec, there exist 1,z € C such that &1 + y,¢, T2 + yyc € CLF and x1 # .

(i) For any y € C'\ Ce, if yc € C, then define g by

9(ya) =y, g(yc) =yc, g(0) =0.

Let g(z1 + z2) = g(z1) + g(22), for all z1, zo € D. Then, obviously g is an Fz-linear map. We can
see that g is injective as ¢g(y,a) = g(y-,a) implies that y; = y, and hence y;a = y,a.

In both cases, we see that g is an Fz-linear map, and it is injective. Therefore, |C| > |D|. This implies
that |C||C+®| > |D||D+%| = 9", which is not possible. Hence, there exists yc € Cc\ C such that
x+ycd CLtr forall xz € C.

After these two steps, we add yc to C to get a new code C;. Obviously, C; N ClJ‘R ={0}. If C; is
right-nice, then C is right-ACD. Otherwise, repeat both steps for C;. O

Now, we extend the definitions of torsion and residue codes of an R-linear code to an additive R-
code. Clearly, these codes are ternary linear codes. Towards this, we consider dim(Res(C)) = my and
dim(Tor(C)) = ma.

Let C be a linear code over R with the generator matrix G as given in Corollary 4.11. Then
dim(Res(C)) = k1 = my and dim(Tor(C)) = k1 + ka = mq + k2 = ma where ks is the Fs-dimension of

the set of elements of C' which are scalar multiples of ¢ € R and can not be generated by the upper two
blocks of G.

Any arbitrary codeword of the code C' can be written in c-adic decomposition form as xa + yc where
x,y are ternary vectors so that a(xza + yc) = x.
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Theorem 5.10. If C is an additive R—code of length n, then C+* = (Res(C)*)gr, and

|CJ_R‘ _ gnfdim(Res(C)) — gn—mi

Proof. Let x € C. Then there exists u € Res(C) such that za = ua. Let v € Res(C)*. Then
(x,va) = (xa,va) = (ua,va) = (u,v)a =0,
and
(x, vb) = (xa,vdb) = (ua,vd) = (ub, vb) = (u,v)b = 0.
This shows that va,vb € C+7. Since a and b are generators of R and ua,va € C+%, we see that
(Res(C)*)p C C+r. 1t is easy to prove that (Res(C)1)r = (Res(C))ﬁR. Let u € Res(C). Then, there
exists ua + vc € C such that a(ua + vc) = u. Since c is a left zero-divisor, for any y € C17, we have
(ua,y) = (ua + ve,y) =0,
and
(ub, y) = (ua, y) =0.
This shows that y € (Res(C))%". Hence, C*+7 C (Res(C)) 5" = (Res(C)*) g. Therefore,

C«J_R — <R€S(C)J—>R, and |C«J_R| — gnfdim(Res(C)) — gn—mi

Next, we derive a sufficient condition for an additive R-code to be right-ACD.
Proposition 5.11. An additive R-code C of length n is right ACD if it satisfies the following conditions:
(i) Res(C) is ternary LCD,
(i) Tor(C)en C+r = {0},
(#7) 3™ x 32 x 9N = 9" (that is, m1 = ma).
Proof. 1t is easy to see that |C| = |Res(C)||Tor(C)| = 3™ x 3™ and |C+E| = 9"~™1. Then,
|C||C+7| = 9™ implies that C is right-nice. Let (# 0) = (z1,...,2,) € CNCLE. Then, Tor(C)cNC+# =

{0} implies that x is not a product of a ternary vector by ¢. Hence, «(x) is a non-zero ternary vector.
Also, for any z = (21, 22,...,2n) € C, (z,x) = 0. Since « is a ring homomorphism, we have

a(z)-a(@) =) alz)alz;)

This implies that a(x) € Res(C)*, which contradicts that Res(C) is LCD. Hence, = 0. Therefore, C
is right-ACD. O

Next, we see that the inverse assertion of Corollary 4.18 is true.
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Corollary 5.12. A free linear R-code C is LCD if Res(C) is a ternary LCD code.

Proof. Since Res(C) is a ternary LCD code, proving C is an LCD code is sufficient to prove two
conditions of Proposition 5.11. By Theorem 5.10,
Tor(C)eNCHR = Tor(C)e N (Res(C)) g
= Res(C)en (Res(C) 1) g
= Res(C)en Res(C)te
= (Res(C) N Res(C)*)e
= {0}.

Since C' is free, Res(C) = Tor(C) implies that m; = ms. Hence, C is right-ACD. Thus, C is an LCD
code over R. 0

Theorem 5.13. Let C be an additive R-code of length n. Then Res(C+#) = Tor(C1%) = Res(C)* .

Proof. By Theorem 5.3, C*% is free. Hence, Res(C+%) = Tor(C+®). Let ua + ve € C*+® and
u'a + v'c € C where u, v, v’ and v’ are ternary vectors. Then a(ua + vc) = w is an arbitrary element
of Res(C+R) and a(u’a + v’'c) = ' is an arbitrary element of Res(C). Since (u’a + v’c, ua + ve) =0
and « is a ring homomorphism,

a((u'a+v'c, ua+wvc)) =a(u'a+v'c) - a(ua+ve) =u' -u =0.

This shows that u € Res(C)*. Hence, Res(C+%) C Res(C)*. For converse inclusion, let u € Res(C)> .
Also, let © = va + we € C be an arbitrary codeword of C for some ternary vectors v and w. Since
a(z) = a(va +wc) = v, v € Res(C). Then

(z,ua) = (va + we,ua) = (va,ua) + (we,ua) = (v,u)a+0=0.

This implies that ua € C*+%. Since a(ua) = u, u € Res(C+r). Therefore, Res(C)* C Res(C+#). Thus,
Res(C+®) = Res(C)*. Hence, the result. O

Corollary 5.14. Let C be an R-linear code. Then Tor(C)*t C Tor(C*+*®). Equality holds if C is free.

Proof. For a linear code C, we know that Res(C) C Tor(C) and Res(C+®) C Tor(C*+r). Then,
Tor(C)*t C Res(C)*. By Theorem 5.13, Res(C+%7) = Res(C)*. Therefore, Tor(C)* C Res(C+?) C
Tor(C+r). Now, suppose C is free. By Theorem 5.3, C1% is also free. Hence, Tor(C+%) = Res(C+r) =
Res(C)*. Thus, Tor(C+r) = Tor(C)* as C is free. O

Next, we see that the inverse assertion of Proposition 5.11 holds partially.

Proposition 5.15. Let C be a right-ACD R-code of length n and Cc N C+2 = {0}. Then 3™ x 3™2 x
gn=mi = 9" (e, my =my), Tor(C)eN C+r = {0}, and Res(C) is a ternary LCD code.

Proof. We know that |C| = |Res(C)||Tor(C)| = 3™ x 3m2, |C+r| = 9"~™1. Since C is right-ACD,
3Mi x 3M2 x QML = 9" je. my = my. Let & € Tor(C)cN CR. Then x € Tor(C)c and = € CL=.
Since & € T'or(C)c, we have = uc for some u € Tor(c). Then, by definition of the torsion code, x € C.
Hence, € C N C** implies that & = 0. Therefore, Tor(C)cNC+# = {0}. Let u € Res(C) N Res(C)* .
Then u € Res(C)t = Res(C+#). Hence, by Theorem 5.13, there are ua + ve € C and ua + v'c € C+#
such that a(ua + vc) = a(ua + v’c) = u. Since C17 is a linear R-code,

(ua +v'c)c = uac + v'cc = uc € C+*.

Additionally, (ua+wvc)c = uc € Ce. Hence, uc € CeNC+# implies that uc = 0. Then, u = 0. Therefore,
Res(C) is a ternary LCD code. O
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Proposition 5.16. Let C' be an additive R-code. Then Res(C*+t) C Tor(C)*. Equality holds if C is
linear.

Proof. Let C be an additive R-code and © = ua + vc € C+% be an arbitrary codeword of C+* for
some ternary vectors u and v. Then a(x) = a(ua +vc) = u is an arbitrary element of Res(C+2). Now,
let y € Tor(C). Then yc € C. Further, z € C*~ and yc € C imply that

0 = (x,yc) = (ua + ve,yc) = (ua,yc) + (ve,yc) = (u,y)c+ 0 = (u,y)c.

Hence, (u,y) = 0 and so u € Tor(C)*. Thus, Res(C*++) C Tor(C)* .

On the other hand, suppose C' is linear and € C. Then, by Theorem 3.5, * = ua + vc for some
u € Res(C) C Tor(C) and v € Tor(C). Let w € Tor(C)*. Then, the inner product

(wa, z) = (wa, ua + ve) = (wa, ua) + (wa, ve) = (w,u)a + (w,v)e=0+0=0.

This shows that wa € C+*. Since a(wa) = w, w € Res(C++). Therefore, Tor(C)+ C Res(C+t). Thus,
Res(C+t) = Tor(C)* . O

Proposition 5.17. Let C be an R-linear code. Then it is free if and only if Res(C*++) = Res(C+r).

Proof. Let C be a free R-linear code. Then, by Theorem 5.13, Res(C*+?) = Res(C)* and by Propo-

sition 5.16, Res(C+r) = Tor(C)*. Since C is free, Res(C) = Tor(C) and so Res(C)* = Tor(C)* .

Therefore, Res(C+t) = Res(C+®). Conversely, suppose C is an R-linear code such that Res(C1r) =

Res(C+®). Then, by Theorem 5.13 and Proposition 5.16, Tor(C)~ = Res(C)*. This implies that

Tor(C) = Res(C). Thus, C is free. O
Next, we give an example to illustrate Propositions 5.9 and 5.11.

Example 5.18. Consider an additive R-code C with an additive generator matrix
a b 0
0 0 b|

((a, b, 0), (z, y, 2)) =0 and {(0, 0, b), (z, y, 2)) =0.

G:

For any (x, y, z) € C+%, we have

Hence, we get two equations: ax +by = x +y = 0 and z = 0. These imply that y = 2z and z = 0.
Therefore, C+% can be given by the set

Ctr={(z, 22, 0) |2 €R}.

It is easy to see that C NC+& = {0}, CcNC*r = {0}, and |C| = |C+=| = 9. Then |C||C+2| =92 < 93.
Hence, we can add (a,b,0)c = (¢,¢,0) and (0,0,b)c = (0,0,¢) in G to get

Gy =

S 0o O Q
o o0 O o
o o o O

Consider an additive R-code Cy with an additive generator matriz Gy. Then, by Proposition 5.9, Cy is
a right-ACD code over the ring R. In order to prove Cy is really a right-ACD code, we check all the
conditions of Proposition 5.11. It is easy to see that the generator matrices for Res(Cy) and Tor(C1) can
be given respectively by

T R R
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Clearly, m; = my = 2. Now, let (x,y,z) € Res(Cy)*. Then
((z,y,2), (1,1,0)) =0 and ((z,y,2), (0,0,1)) =0.

These give us x +y = 0 and z = 0. These imply that y = 2z and z = 0. Hence, Res(C)*" can be given
by the set

R@S(Cl)l = { (I’,QI’,O) ‘ x € Fg }
Clearly,
Res(C1) N Res(Cy)*+ = {0}.

Hence, Res(C1) is a ternary LCD code. Further, Tor(Ch)c has generator matriz

Tor(Gy)e = [g g (c)]

Clearly,
Tor(Cy)en Ci-% = {0}.

Hence, by Proposition 5.11, Cy is a right-ACD code.

6. Conclusion

We have introduced QSD, right-LCD and ACD codes over a non-unital noncommutative local ring R
of order 9. The multilevel construction of QSD codes has been accomplished by utilizing self-orthogonal
ternary linear codes. Further, the connection between ternary LCD codes and LCD codes over the ring
R has been demonstrated. We have introduced right-ACD codes over R and given several conditions
for the existence of such codes. Finally, the characterization of right-ACD codes over R has also been
presented, incorporating their torsion and residue codes. However, it is still open to see the application
of these codes to construct the quantum codes.
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