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Abstract: In this paper, we generalize cyclic codes to another more large linear codes, namely #-monomial codes.
It is shown that for a f#-monomial code, its Euclidean and e-Galois dual are also 8-monomial codes.
Furthermore, we present the equivalence between f-monomial codes and generalized monomial codes.
By considering the skew polynomial ring, we show that §-monomial codes can relate to submodules
under one condition and to ideals under another condition. This allows us to give a characterization of
0-monomial codes. More results on the e-Galois dual of #-monomial codes are given with additional
properties on self duality and self orthogonality. The generalized §-monomial codes are discussed
with their algebraic structure. The paper is closed by the investigation of the algebraic structure of
#-monomial codes over the ring Fy + v, where v* = v.
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1. introduction

Cyclic codes are considered as an extremely important class of codes. They were first introduced
by E. Prange in [11, 12]. It is known that cyclic codes have a rich algebraic structure which allows the
process of encoding and decoding more efficient. Let F; be a finite field of ¢ elements, where g is a prime
power number, and let # be an automorphism of F,. A linear code of length n over F, is a subspace

C of the vector space . The linear code C is called cyclic if, for each vector c=(c,,¢,,...,c,_,) € C,
the cyclic shift sc=(c, ,,¢,,...,c,_,) of c is still in C. By considering the one to one correspondence
between the vectors c=(c,, ¢, ,...,c,_,) in F? and the polynomials ¢(x)=c,+¢,z+...,c,_ 2" " in Fy[z]

of degree at most n— 1, one can characterize cyclic codes as ideals of the residue class ring Fy[z]/(z" —1).
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In [1], authors generalize the notion of cyclic codes by considering the skew polynomial ring F, [z, 6],
where 6 is an automorphism of [F, to the so-called §-cyclic codes. Indeed if C is a linear code, and for each
c=(cy,¢y5-..,¢,_,) € C we have (0(c,_,),0(c,),...,0(c,_,)) € C, then C is called a f-cyclic code. It was
shown that in the case where ord(6)|n, #-cyclic codes can be viewed as left ideals of the residue class ring
F,lz,0]/(z™ — 1). The generalization of f-cyclic codes are presented in [3] in the case of the residue class
ring Fy[z,0]/(f), where f is a polynomial of degree n. The case where the order of 6 is not necessarily
a divisor of n is given in [3]. Such codes are modules over the ring Fy[z,8]. In [13|, authors studied the
algebraic structure of #-cyclic codes of an arbitrary length n. They investigated the equivalence between
cyclic codes and f-cyclic codes, and the equivalence between #-cyclic codes and quasi-cyclic codes. The
concept of f-cyclic codes over finite fields was extended to the class of #-cyclic codes over various types of
finite rings. Indeed in [2], authors introduced the skew constacyclic codes over Galois rings. Dealing with
Galois ring can be an extremely difficult issue in the context that the polynomial ring may not be left
and right Euclidean, which is important to deal with ideals which are generated by monic polynomials.
In [8], authors studied skew constacyclic codes over the finite chain ring Fpm + uF,m, where u? = 0.
Recently in [5], authors investigated the algebraic structure of skew constacyclic codes over F, + vF,
with v? = v. Throughout this work, we present a new generalization of #-cyclic codes under the name
of #-monomial codes which generalize also the class of monomial codes presented in [6], and recently
in [9, 10]. We deal with the structure of the dual and the e-Galois dual of #-monomial codes, with
similar approach as in [13|. For the case where ged(ord(6),n) = 1, we present an equivalence between
f-monomial codes and monomial codes. The case where ged(ord(6),n) = d such that d > 1, allows us
to describe the equivalence between §-monomial codes and generalized monomial codes. By considering

the skew polynomial ring Rz = F,z, 6]/ <a:" - H?:_Ol ai>, where a = (ag,a1,...,a,-1) € (Fg)n such

that H?:Ol a; # 0 and Fg = {z € F, : 0(z) = z} is the fixed field of 6. In the case where ord(6)|n, we
present the characterization of §-monomial codes as left ideals of Rz, and in the case where ord(6) { n
we characterize #-monomial codes as left F,[z, §]-submodules of R;. Some algebraic properties of the
generator polynomial and the generator matrix of §-monomial codes are given. By considering the e-
Galois dual of #-monomial codes, more results on the self duality and the self orthogonality are derived.
To generalize such codes, we introduce the class of generalized 8-monomial codes under the name of
(0, 0, a)-monomial codes with some properties on their duals and e-Galois duals. Finally, similar to the
work of [5], we extend the class of §-monomial code, over the finite non-chain ring F, +vF,, where v? = v.
Indeed in Theorem 5.3, we give a characterization of #-monomial codes. In this case, additional results
on the e-Galois dual are given. The paper is organized as follows. Section 2 contains the preliminaries
on skew polynomial rings. Section 3 defines the class of §-monomial codes. Section 4 introduces the class
of generalized 0-monomial codes. Section 5 is devoted to #-monomial codes over the ring R = F, + v[F,

where v? = v.

2. Preliminaries

Let ¢ = p" be a prime power and F, be a finite field with ¢ elements, e is an integer such that
0<e<h-—1and k=h—e. A linear code C of length m over F, is a linear subspace of Fj". We define
the Hamming weight of, a = (ag, ai,...,am-1) € C, wg(a), as the number of non-zero components of a
and the hamming distance of C, di(C) = min{wgy(a) | a € C,a # 0}. The code C is said to be an [m, k, d]
if it has the dimension k, and the Hamming distance d. The Euclidean inner product of two vectors of
Ffln’l, a=(ag, aiy...,am—1) and
m—1

b = (bo, b1,...,b;m—1) is defined by (a, b) = Z a;b; and the Euclidean dual code Ct of C is de-
i=0

fined as Ct = {aeF"|(b,a)=0, forallbeC}. The e-Galois inner product of two vectors a

and b is defined by (a, b), = Zaibfe and the e-Galois dual code Cte of C is defined as Ctc =
i=0
{acFy|(b,a), =0, forallbeC}. We denote the Frobenius automorphism of F, by I', which is
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given by I'(a) = o for a € F,.

Proposition 2.1 ([4]). Let C be a linear code of length m over F,. Then we have
1. For all a, b € F*, (a, b), =T* ((I"*(a), b)) =T ((b, a),).

2. Cte =T"(Ct) = (CPK)J', where CP" = {(a" a8 ,... aP") : (x1,29,...,2,) €C}.
3. If dim(C) = k, then dim (C*) = dim (C*+) = m — k.

Definition 2.2. Let § be an automorphism of F,. A linear code C C IFq is said to be a 8-monomial code
induced by the vector a = (ag,a1,...,an—1) if and only if for each codeword ¢ = (co,c1,...,¢n—1) € C,
the vector (an—10(cn—1),a00(co), - .., an—20(cn—2)) is also a codeword of C.

Remark 2.3. 1. Ifa=(1,1,...,1) and 8 = Id, the code C is a cyclic code.
2. Ifa=(1,1,...,1,)) and 0 = Id, the code C is a A-constacyclic code.
3. Ifa=(1,1,...,1) and 0 # Id, the code C is a skew cyclic code.
4. Ifa=(1,1,...,1,\) and 0 # Id, the code C is a skew \-constacyclic code.

5. C is a 8-monomial code induced by the vector a = (ag,a1,...,a,—1) if it is invariant under the
following 8-monomial shift map

©a,0 Fy — Fy
(vo, V1 ..y V1) +— (an—10(vn—1),a00(vg), ..., an—20(vy_2)).
n—1
6. If H a; # 0, then g ¢ is an isomorphism and its inverse map is given by
i=0
o Fg — F7
(y07y17"'7yn—1) — (071(a51y1)7971(a1_1y2)7"'7971(a1:i2yn—1)’Qil(ar_y,ilyo)) .
n—1
Lemma 2.4. Let a = (ag,a1,...,an—1) € (Fg)n such that H a; # 0. Let s be a positive integer and

i=0

ke{0,1,...,n—1}. Then we have

n—1 s
n sntk k ns
Yo eFy: wag (v) = <H ai> “©a00 (v).
=0
where 6™ (vg, vy ..., Vp—1) = (0™ (vo), 0™ (v1) ..., 0™ (Vp_1)).

In the following theorem we give a characterization of the dual of #-monomial codes induced by the
vector a = (ag,a1,...,an_1).

Theorem 2.5. Let C be a 6-monomial code with associated vector a = (ag,a1,...,ap-1) € (Fg)n such
n—1

that H a; #0. Then C* is a §-monomial code with associated vector & = (ao_l, ait,..., a;il) .
i=0

111
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Proof. Let x = (x0,21,...,Zn_1) €Ct and ¢ = (co,c1,...,¢h_1) € C. We have
(a,0(x),¢) = ((ant10(xn1), a5 0(20), - ., ay 50(xn—2)) , (co,c1, -5 Cn1))

n—1
:agflﬂ(xn,l)co + Z ai__llé’(xi,l)ci
i=1

=0 (9_1(a;1160)l‘n_1 + z_: 9_1(ai_110i)xi_1>
=0 (<(:vo, Tlyeeny Tpo1)s (H_I(aalcl), G_I(aflcg), A 9_1(a;i26n,1), 9_1(a;i1c0))>)
=0 (2, 7 4()) -

n—1 s
By Lemma 2.4, ¢, , = (H ai> - I, where m = lem(n, ord(d)) and s = ™ Then we get o= 4(c) =
; n ,
i=0
n—1 S
m—1
(H ai1> “pag (c) € C. Therefore
i=0
(pa,o(z),c) = 0.
Hence, Ct is a #-monomial code with associated vector & = (aal, al_l, ceey a;il) . O

Corollary 2.6. Let h be a positive integer such that ¢ = p*, 0 < e < h and Kk = h—e. IfC is a

n—1

6-monomial code with associated vector @ = (ag,a1,...,an—1) € (]Fg)n such that H a; # 0, then the
i=0

e-Galois dual Ct< of C is a 0-monomial code with associated vector (agpn, ar? ., a;f;) .

K J_ K
Proof. By Proposition 2.1, we have C+e = (CT’ ) , then it is sufficient to show that CP is a #-monomial

code with associated vector (agn , alfn, ...,ab ) Let (c’of , c’fn, ...c

N n—l) € CP", then (cosC1y.eyCno1) €

C. Since C is a 8-monomial code with associated vector a, then (a,—16(cn-1),a00(co),...,an—20(ch_2)) €
C. Therefor

K

(210" 0) ab (), al () = (@ 0(en1)" ab 0co)”" - all0(ca2)" ) € CP".

K . . . . r r r .
Hence CP" is a #-monomial code with associated vector (ag al ,...,aﬁ_l) . Therefore Cte is a 6-
_ K — K —m
monomial code with associated vector (ao Plalt ,anfl) .
O

The two following theorems give a relationship between #-monomial codes and monomial codes and
generalized monomial codes in the case where ord(9) t n.

n—1
Theorem 2.7. Let @ = (ag,a1,...,an—1) € (IFZ)” such that H a; # 0. If ged(n,ord(0)) =1 and C is
i=0
a 8-monomial code with associated vector @, then C is equivalent to a monomial code with the associated
vector a.

Proof. Let us denote ord(f) = t. Since ged(n,t) = 1, there exist two integers r and s > 0 such that
rt —sn = 1. Let ¢ = (co,¢1,...,¢n-1) € C, let us show that (ap_1¢n—_1,0a0C0,--.,an_2¢n—2) € C. Using
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Lemma 2.4, we get

Then (an—1¢n—1,00C0, - - -, @n—2¢n—_2) € C, therefore C is a monomial code with associated vector a. [

Exercise 2.8. Let 6 be the Frobenius automorphism of Fg = F3la] and C the 6-monomial code with
associated vector a = (2,2,2,2,2,1,2,1,2,2,1,1,2) generated by the following matriz

0221221010110
G=10011212202011
2002211120101
We have C is a [13,3,9] linear code and its 1-Galois dual is a [13,10, 3] 8-monomial code with associated
vector a=3 = a.

Moreover, we have ged(13,0rd(6)) = ged(13,2) = 1. Then C is equivalent to a monomial code with the
assoctated vector a.

Definition 2.9. A linear code C of length n over F, is said to be a generalized monomial code if and

n—1
only if there exists a permutation o and a = (ag, a1, ..., an—1) € Fy such that H a; # 0 and for each
i=0
codeword ¢ = (co,C1,...,¢cn-1) € C, the vector
¢ = (ao(O)CU(O)a A5 (1)Co(1)y -+ ao(n—l)ca(n—l))
is also a codeword.
In this case C is said to be a (o, a)-monomial code.
n—1
Theorem 2.10. Let @ = (ag,a1,...,an-1) € (IFZ)" such that H a; # 0. If ged(n,ord(0)) = d, where
i=0

d > 1, and C is a B-monomial code with associated vector @, then C is equivalent to a generalized monomial
code.

Proof. Let us denote ord(f) = t. Since ged(n,t) = d, there exist two integers r and s > 0 such that
rt —sn = d. By Lemma 2.4, we have

n—1 s
rt sn+d d —d
Pae(c) = @ap ()= <H ai) “pagol (c).
i=0

On the other hand, if z = (2o, z1,...,7,-1) € Fy, we have

d

d d d
@&,9(3:) = (b‘r(O)e (xT(O))7 b'r(l)e (x‘r(l))7 o ab'r(nfl)e (x‘r(nfl)))-

113
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where

7:{0,1...,.n—1} — {0,1...,n—1}
k — n—d+ kmodn

and for all j € {0,1...,n—1}, b; = H a;j, where A; = {kmodn: ke{j...,j+d—1}}.

k‘EAj
Hence, if ¢ = (co,c1,...,¢n-1) € C, then (br(0)cr(0), br(1)Cr(1) - -+ br(n—1)Cr(n—1)) € C. Therefore C is
equivalent to a generalized monomial code. O

Exercise 2.11. Over Fi5 = Falal, let 6 be the automorphism defined by x +— 2%, Let C the 0-monomial
code with associated vector a = (a®,a'?,1,a’) generated by the following matriz

0 a® a® 1
G(o 0 o 7>'

We have C is a [4,2,2] linear code. Moreover, we have ged(4,ord(0)) = ged(4,2) = 2. Then C is equivalent
to a (o,b)-monomial code, where o = (0,2) o (1,3) and b= (1,a'?,a%, a).

3. f-monomial codes and skew polynomial ring

Before starting this section, let us recall some properties of the structure of the set
-1
Ra = Fyfw,0]/ (2"~ TIi% o).

Lemma 3.1. Let F, be a finite field, 8 an automorphism of F, and n an integer divisible by the order
of 6. The ring Rg is a principal left ideal ring in which left ideals are generated by p(G), where G is a

right divisor of x™ — H?:_Ol a; inFylz,0] and p: Fylx,0] — Rg is the canonical morphism that associate
a polynomial with its remainder by the right division with x™ — szol a; in Fylz, 0].

Proof. The similar result is showed in [1] lemma 1, then one can deduce by substituting ™ — 1 by
A TS O

Since @ = (ag,a1,...,an-1) € (Fg)n, two cases arise: the first where ord(#) t n and the second where
ord(0) | n.

Proposition 3.2 (Lemma 1 [5]). 1. If ord(8) {1 n, then Rz is a left Fy[x, 0]-module where the multipli-

n—1

cations is defined for all (f(:z:) + (m" - H ai>> € Ra and b(x) € Fylz; 0] by:

i=0
n—1 n—1
b(a) <f<x> ¥ <x 11 )) = b(a)f (@) + (x I ) |
1=0 i=0
2. If ord(9) | n, then Rs is a non commutative ring, where the multiplications is defined by:

(f(x) " ( 11 )) <g<x> ¥ ( 11 )) — f@)glz) + <x 11 ) |
=0 =0 1=0

The following theorems show how #-monomial codes induced by a relate to submodules of R; when
ord(#) t n, and to ideals of R; when ord(6) | n.
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n—1
Theorem 3.3. Let a = (ap,a1,...,an-1) € (IFZ)” such that H a; # 0, and consider the following map
i=0
Ta,0 . ]FZ — Ra

n—2 7 n—1
1 i 1 —
(vo, V1 .ovy Upq) +— E viHHak '+ U()Hai T
i=0 k=0 i=0

1. Iford(0) t n, then C is a O-monomial code induced by @ if and only if mg,0(C) is a left Fy[x; o]-submodule
Of Ra.
2. If ord(9) | n, then C is a 6-monomial code induced by @ if and only if 7g,9(C) is a left ideal of Rs.

Proof. Let v = (vg, v1...,v,-1) € Fy. We have

_ n—1
:mrag Z<1+1Hak>xi+m<voﬂa;1>x

1=0
n—2 n—1

- Z a;f(v; H aj; > <an_10(vn_1) H ai—1> 21
1=0 1=0

= Ta,n (an 19 Un 1) 009(1)0)7 cee 7an—20(vn—2))

= Ta,0 (a,0(v)) -

Remark 3.4. The reciprocal map of 7g,0 is given by

Ta0 Ra — Fy
n—1
i

Zuix — (1}0, vl...,vn,l),

i=0
n—1

where vy = H a; | un—1 and for alli € {1,2,...,n -1}, v; = H aj | wi—1.

§=0 j

From this point forward until the end of this section, we assume that ord(6) | n.

As known, R; is a principal left ideal domain. Then we have the following characterization of monomial
codes.

Proposition 3.5. Let C be a 6-monomial code of length n over F_. Then
1. There is a unique monic polynomial of least degree g(x) € F_[x,0] such that 7g,(C) = (g(x)) and

g(z) is a right divisor of the polynomial x™ — H a;.

2. The family {g(z),zg(z),...,2* Lg(z)} forms a basis of m34(C), as an F, vector space, where k =
n — deg(g).
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3. A generator matriz G of C is given by:

7o (71 g(a))

Proof. 1. Let g(x) € m3,6(C) be a monic polynomial of minimal degree such that g(z) # 0. Suppose
that there is a monic polynomial f(z) € mz¢(C) of the same degree, then g(z) — f(z) € mz,0(C) and
g(z) — f(x) is of degree less than the degree of g(z), necessary g(x) — f(z) = 0, hence g(x) = f(z). Let
c(x) be any element in 75 ¢(C). By the right division algorithm, there are two unique polynomials ¢ and
r such that

c(z) = q(z)g(z) + r(z) where r(x) = 0 or deg(r(x)) < deg(g(x)).

ma,0(C) is a left ideal, then r(z) = c(x) — ¢(x)g(x) € mg,6(C). Since g(z) is of minimal degree in
7z,0(C), then r(z) = 0, hence c¢(z) = ¢(x)g(z). Therefore 75 9(C) = (g9(x)).
n—1
Now, let us show that g(x) is a right divisor of 2™ — H a;. Again, by the right division algorithm, there
i=0
are two unique polynomials ¢(z) and r(x) such that

2" — T[ = a@)g(x) + r(z) where deg(r(z)) < deg(g(x))-
i=0

n—1 n—1
Since g(x) and 2™ — H a; = 0 are in 75 ¢(C), then r(z) = 0 and hence g(z) is a right divisor of ™ — H a;.
i=0 =0
n—1
2. We have g(x) is a right divisor of z™ — H a;, then there exist a polynomial h(z) € F[z; 0] such that

=0
n—1

h(z)g(z) = z™ — H a;. We will show that the family {g(z), zg(z),..., 2"~ 9@ ~1g(x)} forms a basis of
i=0

73,0(C). Let ¢(x) € mg,0(C), then ¢(z) = f(x)g(z) for a polynomial f(z) € F[z;6]. By the right division

algorithm of f(x) by h(x), there are two polynomials ¢(z) and r(z) such that

f(x) = q(x)h(z) + r(z) with r(z) = 0 or deg(r(z)) < n — deg(g(x))
Multiplying by g(x) on the right, we get
f(@)g(@) = q(x)h(2)g(z) + r(x)g(x) = r(z)g(x) in Ra.

Hence c(z) = r(x)g(x), whit deg(r) < n—deg(g)—1. Therefore, the set {g(z), zg(z), ...,z "8@)~1g(z)}
is a spanning set of m54(C). To show that {g(z),xg(x),...,2" "€ ~1g(x)} is linearly independent,
suppose that

cog(x) + crxg(x) + ... + cpp_1z" 98D "1g(2) = 0.

Comparing coefficients yields the fact that ¢; = 0 for all ¢ = 0,1,...,n — deg(g) — 1. Hence
{g(z),2g(x),..., 2"~ ~1g(2)} is linearly independent and therefore it is a basis for 75 4(C) and
dim 7z ¢(C) = n — deg(g). O
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As in the case of skew cyclic and skew constacyclic codes, we give a parity check matrix of a 6-
monomial code.

¢
Definition 3.6. Let e be an integer such that ¢ = p", 0 < e < h and Kk = h —e. Let h = Zhixi

i=0
be a polynomial of degree £ in Ry such that hg # 0, the e-skew reciprocal polynomial of h is h*e =
‘
ZGi (hfil) zt, and the left monic e-skew reciprocal polynomial of h is hi = (1/96 (hf))n)) h*e.
i=0
If a skew polynomial is equal to its left monic e-skew reciprocal polynomial, then it is called e-self-reciprocal.

Lemma 3.7. Let f € Fylx;0] be a skew polynomial of degree m such that f = hg, where h and g are
skew polynomials of degrees m — k and k, respectively. Then

1. f*e _ Hm—k (g*e) he.
2. (fre) =0m(f).

k m—k m
Proof. 1. Let us denote g = Zgixi and h = Z hiz'. We have f* = Z&s( fj:_s)xs, where
i=0 i=0 s=0
0°( 7;171;75) _ Z gs(hf~)0i+s (g;f) _ Z es(h;fr:’_k_t)am—k—t—i-s (gi’:r)
i+j=m—s m—k—t+k—r=m-—s
0<i<m—k 0<m—k—t<m—k
0<5<k 0<k—r<k
= > el (o).
r+t=s
0<t<m—k
0<r<k
k m—k )
On the other hand, we have g* = ZGZ (ngr) z" and h* = Z ot (hfnfkft) xt. Then
r=0 t=0
m
gk (g%¢) h*e = chxs, where ¢, = Z gm—ktr (ngr) 9T+t(hﬁ%k7t).
s=0 r+t=s
0<r<k
0<t<m—k

Then, we get that f*c = g™k (g*<) h*e,

2. We have
*p - s " s ’ - s/nm—s h s m
(fr)ym = <ZQ ( fn_g)ff) =) 0O ()t = 07 ().
s=0 s=0
O

Theorem 3.8. Let C be a 8-monomial code induced by the vector a = (ap,a1,...,an_1) € (FZ)” such

n—1 k—1
that H a; # 0, and generated by the polynomial g = x* + 291957 € Fy[x; 0], and h € Fylx; 0] such that

z‘n=i)1 i=0
" — H a; = hg. Then e-Galois dual C of C is generated by hi.

i=0
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n—1 n—1
Proof. Since ord(f) | n and H a; € IE‘Z, then z" — H a; = gh = hg, hence
i=0 =0

fﬁa;pﬁ: <Ha )0"k *e) hXe
i=0
:h*e< Ha )9"kg °).

Let C = 71';9(<h*8 (z))), where @ = a~?". Then C is a f-monomial code induced by the vector &@. Moreover,
dim (@) = k. Now, let us show that C = C*e.

n—1 n—1
For s € {0,1,...,k—1} and r € {0,1,...n — k — 1}, let us denote z°g = Zgixi and x"h*e = Zl@x’
i=0 i=0
We have
0 ifo0<i<s-—1 ~ 0 ifo<i<r-—1
Gi=< 0°(gis) fs<i<s+k and hi=Q 0"(h%_, , ) ifr<i<r+n—k
0 ifs+k+1<14 0 ifn—k+r+1<i
Denote ﬂ(_;,le(:z:sg) = (ug, U1, .., up_1) and ﬂ(;je(l’rh*e) = (v, v1,-..,Vn_1). Then we get
n—1
-1, 5 vy ~ 7D
(Tan(@9), map@ ™)) =" Gih!
¢ =0
min(n—k+r,k+s)
= ) Gk
i=max(r,s)
min(n—k+r—s,k)
_ ~  7p°
- Z gl+5h(i+sfr)+r
i=max(0,r—s)
min(n—k+r—s,k)
= Y @) (A rerr—s)—i)-
i=max(0,r—s)
n—1 n
On the other hand, we have ™ — H =gh = Z w;xt, where
i=0 i=0
min(¢,k)
pe= Y git'(h;)= > 9i0" (he—s).
i+j=~ i=max(0,/—(n—k))
0<i<k
0<j<n—k

Hence, for ¢ =n —k +1r — s we get

(Tan(@*9). Tap(@ h™)) =0 (o).

e

Since ¢ € {1,2,...,n — 1}, then p, = 0, and <7r;9(1‘sg), nga(x’"h*e)> = 0%(ue) = 0. Then C C C*te.
e

Since they have the same dimension, then C = Ct¢. Let us show that C'¢ is generated by hfc. Since
ord(0)|n, then we have

9"th< Ha ):( Ha )9”’%”)
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Then
n—1 n—1 )
2" — H ai—P — hhe (_ H ai—P ) en—k (g*e)en—k‘(hg )
i=0 i=0
n—1 )
Hence h® is a right divisor of 2" — H a; ’", and the code C’ = w(;je(<h*e (x))) is f-monomial code induced
i=0
by the vector @, and dim (C') = k. Let v(x) € C, then v(z) = t(x)h*(2) for some polynomial ¢(x), hence
v(x) = t(z)0"F(hE )h% (), therefor v(z) € C’ and then C’ = C. O
Corollary 3.9. Let C be a 8-monomial code induced by the vector a = (ag,a1,...,an_1) € (]FZ)”, such
n—1 k-1
that H a; # 0, and generated by the polynomial g = x* + Zgia:i € Fy[z; 0], and h € Fy[z; 0] such that
:Liol n—1 =0
" — H a; = hg. If the order of H a; in the multiplicative group F divides p~ + 1, then the following
i=0 i=0
holds

1. C is an e-Galois self-orthogonal if and only if hie is a right divisor of g.
2. C is an e-Galois self-dual if and only if hf = g.

4. Generalized -monomial codes

Before starting this section, let us recall some basics about permutations.

Definition 4.1. Let ¢ be an integer such that £ > 2, and T € S,,. We say that T is a {-cycle if there are
integers ay,as,...,ag € {1,2,..., n} such that 7(a1) = aa,..., 7(as—1) = ae, and 7(ag) = a1 and T fizes
every other integers. In this case T will be denoted by

7= (a1, ag,...,a¢) and supp(t)={i: 7(i) #i} = {a1, as,...,as}.

Based on the notion of /-cycles, we give the following theorem, which gives the decomposition of a
permutation into disjoint cycles.

Theorem 4.2. Let o be any element of S,,. Then o can be uniquely factored as a product of disjoint
cycles, this factorization is unique.
O =T17T2...Tp

Definition 4.3. Let 0 = (aq,...,a¢) be an L-cycle of S,,. We call the index of o the smallest integer a;
and we denote it by

ind(o) = min{a; : i € {1,..., (}}.
Now, we will give the definition of a generalized §-monomial code.
Definition 4.4. A linear code C of length n over Fy is said to be a generalized 8-monomial code if and
only if there exists a permutation o € S,, and @ = (a1, az,..., a,) € (Fg)n such that Ha,- %0 and for
1

each codeword ¢ = (c1,¢2,...,¢,) € C, the vector

’

¢ = (a;1)0(Co1)), @ (2)0(Co(2)): - - - s Qo) (Com))) -

119
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is also a codeword.
In this case C is said to be a (0, o, a)-monomial code.

Exercise 4.5. 1. A 0-cyclic code is a (0,0, a)-monomial code, where o = (n,n—1,...,1) and a =
1,1,...,1).
2. A 0-A-constacyclic code is a (0,0, a)-monomial code, where 0 = (n,n—1,...,1),a=(1,1,...,\)
and § = Id.
3. A 0-monomial code induced by the vector a = (a1,as,...,a,) is a (8,0, a)-monomial code, where
oc=(nn—1,...,1) and a = (a1, ag,...,a,)

4. A 0-quasi-cyclic codes of length n = ¢m is a (0,0, a)-monomial code, where o is defined for all
i€ {,2,....om} byo(i) = L —1)m+i and for all i € {m+1,...,0m} : o(i) = i —m and
a=(1,1,...,1).

5. Let C be a 0-generalized quasi-cyclic codes of length n =ny +ng + ...+ n,. Denote ng =0, and for
i

alli € {0,1,...,r}: s, = an. Then C is a (0,0, a)-monomial code, where ¢ = 0109 ...0, such

j=0
that 0y = (84, 8 — 1,..., 81+ 1) anda = (1,1,...,1).

6. A O-multi-twisted codes of length n = ny + ng + ... + n, and parameters (A1,...,\.) is a
(6,0,a)-monomial code, where ¢ = c103...0, such that o; = (s;, 8 — 1,..., 8i—1 + 1), for

all i € {0,1,...,r} : s = an where ng = 0. And @ = (ai,az...,a,) such that for
j=0
je{si: ie{l,2...,r}} a; = \; and a; = 1 otherwise.

Remark 4.6. 1. C is a 6-monomial code induced by the vector @ = (ap,a1,...,an-1) € (Fg)n such
n—1
that H a; # 0, if it is invariant under the following 8-monomial shift map
i=0

©a0,0: F" — F"

(’1)17 V2., Un) — (ag(1)9<v0(1)), ag(g)e(vg(g)), ey ag(n)e(vg(n))) .

2. The map ®g 0,0 15 an isomorphism and its inverse map is given by

1 -

. mn
a,0,0 - q F

— a
(y17y2a"'ayn) — (oil(al_ly‘r(l))v971(a2_1y7(2))7" '7071(a;1y‘r(n))) )

where T = o1

Lemma 4.7. Using the same notation as in Remark 4.6, suppose that 0 = 1175 ... T, the decomposition
into disjoint cycles, where ¢; is the length of the cycle ; and J = {j € {1,2,...,n}: o(j) = j}. If we
denote ord(c) =m

and for all i € {1,...,r} and we define s; = %, then for v = (vi,v2,...,v,) € Fy, we have
@Ze’a(v) = (1, 2, - - - in), where '
VkedJ: pp=ap0m(vg) and Vie{l,...,r}:u = H a; 0™ (v;).
Jje€supp(ri)
Theorem 4.8. Let C be a (0, o, a)-monomial code, where a = (ag,a1,...,a,-1) € (Fg)n such that
nl_[lai #0. Then Ct is a (0, o, &)-monomial code, where & = (ao_l, art, ..., a;il) :
i=0
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Proof. Letx = (x1,%2,...,2,_1) €CL and ¢ = (c1,¢2,...,¢,) € C. We have
(Pa,0,0(z),c) = < (a;(ll)ﬁ(xa(l)), a;(lz)ﬁ(xo.(g)), el a;(ln)ﬁ(x(,(n))) ,(c1, e, ... ,cn)>

= Z a;(ll)e(xo—(i))ci
x,,(i)Q_l (aa(ll)ci)>
ng(i)0*1 (a;(li)calg(i))>

Let m = ord(c)lem (ord(6),ord(ay), .. .,ord(a,)), where ord (a;) denotes the multiplicative order of a;
in the multiplicative group F;, for 1 <7 < n. Using Lemma 4.7, we get @y, = Id, then 43571970(0) =
(I)gb,;,}r(c) € C. Hence

(®s,0,0(x),c) = 0.

Therefore, C* is a #-monomial code with associated vector & = (aal, afl, e ,a;il) . O

Corollary 4.9. Let h be a positive integer such that g =p", 0 < e < h and k = h—e. IfC is a (0, 0, a)-

monomial code with a = (ag,a1,...,a,-1) € IF:, then the e-Galois dual C+< of C is a (0, o, &)-monomial
code code with & (aapn,al_pﬁ, . ,a;fi) .

Now, we will see #-generalized monomial as left Fy[z, §]-submodule of a left F,[x,f]-module. For
this, let us consider the following maps defined for:

1- A cycle in S,, and a = (a1, a2,...,a,) € (]F;‘)n
Let 7 = (ig,9¢—1,...,11) be a cycle of length ¢ with index i1, we denote @, = (a;,, @i,, . .., a;,) and A g -
the following map

A(a)eﬂ.) : FZ — Raﬂ_

(v1,v2,...,0n) > Ta. 0(Viy, Vig, ..., 0i,)

where 75, is given as in Theorem 3.3.
2- A permutation in S,, and a = (ay,as,...,a,) € (F;)n

Let 0 € S, such that ¢ = 775 ... 7, is the decomposition into disjoint cycles, where ¢; is the length of
the cycle o;, and J = {j1,...,4s} = {j € {1,2,...,n} : o(j) = j} such that j; < ... < j;. We denote
©(a,0,0) the following map

H(a.0.0) : Fy — IR, x [ Ra..
=1 =1
v = (UhUZv"wvn) — (vj17"' ’Ujs7A((i,0,7'1)(v)7'"7A(&,0,Tr)(v)) s

where R,; = Fylr —a;,]/ (v —a;) for all i € {1,...,s}.
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If J =0, then
H(ﬁﬂﬂ) : ]FZ — H Rflq—l
(v1,v2,...,0,) +—> (A(a,e,n)(v), e ,A(C—hgm)(v)) .

Remark 4.10. 1. [[Ra, x [[ Ra,, is a left Fylx, 6]-module.

i=1 i=1
2. The map 1 (g,9,0) s an Fy-isomorphism.

Theorem 4.11. Let C be a linear code of length n over F,. Then C is a (0, o, a)-monomial if and only

if Uz05(C) is a left Fy[x; o]-submodule ofHRa X HRGT .

i=1 =1

Proof. Let v = (vi,va,...,v,) € Fy and v = (a01)0(Vo(1))s A (2)0(Vo(2))s - - - s Ao ()0 (Vo)) . Let us
show that

Ma,0,0)(v) = 215,05 (V).

On one hand, we have

H(aﬁ,o) (U/) = (ajla(vjl)7 e ’ajsa(,ujs)’ A(&,G,ﬁ) (U/)» ) A(Flﬂm-) (U/)) .
On the other hand, let s € {1,2...,r} and denote 7; = (tg,tp—1...,t1), where ind(7;) = t;. We have

Ao,y (V') =Ta, 0 (06(t)0(Vo(1,))s o (t2)0 (Va(ts))s - - - Qo) 0 (Va(t,)))

=Ta,,,0 (atee(vte)7 at16(vt1)7 s 7at1{—19(vt£—1))
=2Ta, 0 (Vty; Vtys - -+ s Vt,)
:xA(a,O,n)('U)'

Hence

H(a’g’g) (’U/) = (l‘l}jl s e s TUG,, a?A(a’g’Tl)(U), ey xA(&’g’TT)(U)) = xH((—I’g’U) (1})

Therefor, C is a (0, 0, @)-monomial if and only if IIz e ,(C) is a left F,[z;o]-submodule of HRa X
i=1

ﬁ Raﬂ: . ]
=1

5. @-monomial codes over the ring R = F, 4+ vIF;,, where v? =

Let us start by given some basic results on the finite non-chain ring R = F, + vF, = F(] <v — v>
Clearly, R is a semilocal ring with maximal ideals (v) and (1 — v). Further, by the classmal ring theory,
we have that

R=vR&(1—-v)R=vF; & (1—-v)F,.
Then, for any element r € R, there are unique a,b € F,; such that » = va + (1 — v)b. We denote by
1 the Frobenius map over R defined by

P:R—>R
r=vr+ (1—v)y— 0(r)=vz? + (1 —v)y".
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For an automorphism 6 of R, we have § = 1!, where ¢ is the order of §. Now we give the definition of a
linear code over R.

Definition 5.1. A nonempty subset C of R"™ is said to be a linear code over R of length n if it is an
R-submodule of R™.

Proposition 5.2 ([14]). Let C be a linear code of length n over R. Then C can be uniquely expressed as
C=vC & (1—v)Cs.
Where
Ci={xeF)|vx+(l—v)y €C, for somey cFy}
and

CQ:{yEFZ‘UX+(17’U)yEC, forsomeXEIF;l}.

Based on the previous proposition, the following theorem gives a characterization of #-monomial
codes over R.

n—1
Theorem 5.3. Let a = (ag,a1,...,a,_1) and b = (bg,b1,...,b,_1) be in (IFZ)” such that H a; # 0,
=0

n—1 n—1

H b; #0 and H (a; +b;) #0. Let C be a linear code of length n over R, and let C = vC1® (1 — v)Ca,
i=0 i=0

where C1 and Co are linear codes of length n over Fy. Then C is a §-monomial code with respect to the
vector a+vb = (ag +vbg, a1 +vby,. .., an_1 +vby_1) if and only if C; and Cy are O-monomial codes over
F, with respect to the vectors a + b and a, respectively.

Proof. Let (xo,y1,.--,Yn—1) € C1 and (Yo,Y1,---,Yn—-1) € Co. For all i € {0,1,...,n — 1}, put
¢; = vx; + (1 —v)y;. Then the vector (co,c1,...,¢c,—1) € C. Since C is a f-monomial code with respect
to a + vb it follows that

/

c = ((an_l + bn_lv)ﬂ (Cn—l) y (ao + b(ﬂ})o (Co) ) (CLn_Q + bn_g’l))0 (Cn_g)) eC.

On the other hand, we have

C/ =0 ((an_l + bn_l)ﬂ (Cn—l) y (ao + b0)9 (Co) goeny (an_g + bn_g)a (Cn_g))
+ (1 =) (an-10 (cn-1),a00 (co) ;... an—20 (cn_2)) '

Then ((an_l + bn_l)e (Cn—l) s (ao + bo)tg (Co) RN (an_g + bn_g)e (Cn_g)) € Cy and

(an_lﬁ (Cn—l) ,apl (Co) ey Op_ob (Cn_g)) € Cs.

Conversely, let (co,c1,...,¢n—1) € C, then for all i € {0,1,...n — 1}, ¢; = vz; + (1 — v)y;, where
(o, 21, .., Tn—1) € C1 and (Yo, Y1,---,Yn—1) € C2. Let us show that

¢ = ((an—1 4+ bp_10)0 (cpn-1), (ag + bov)8 (co) , ..., (an—2 + br_20)0 (chn—2)) € C. Since C; and Cy are
f-monomial codes over F, with respect to a + b and @, respectively. Then we have

' =v((an_1+bp-1)0(cn-1),(ao+b0)0(co),-..,(an—2+bp_2)0 (ch_2)
+ (1 =) (an-10 (cn-1),a00 (co) ;- .., an—20(cn_2)) € vC1 & (1 —v)Cy =C.

Hence, C is a #-monomial code with respect to the vector a + vb over the ring R.

Now, we will give some properties on the Galois dual codes.
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Definition 5.4. Let h be a positive integer such that ¢ = p", 0 < e < h and Kk = h — e. The e-Galois
inner product of two elements x = (xg,T1,...,Tn—-1) andy = (Yo, Y1,---,Yn—1) in R™ is defined by

n—1
<Xa y>e = Z CEH/)@(%)
i=0
and the e-Galois dual code of a linear code C over R of length n is defined as
Cre ={x€R"| (¢,x), =0 for any c € C}.

If C C C*e, then C is called e-Galois self-orthogonal. And C is called e-Galois self-dual if C = Ct<. Note
that Co is just the Euclidean dual code of C, which we denote by C*.

Theorem 5.5 ( Theorem 2 in [7]). Let C be a linear code of length n over R, and let C = vC1® (1 —v)Ca,
where Ci and Cy are linear codes of length n over F,. Then

Ct=wCi@®(1—-v)Cr,

where Ci- and C3- are dual codes of Cy and Ca, respectively. Furthermore, C is self-dual if and only if both
Cy1 and Cq are self-dual.

Corollary 5.6. Let h be a positive integer such that ¢ = p", 0 < e < h and k = h —e. If C = vC1®
(1 —v)Cy, where C1 and Cy are linear codes of length n over F, then

Cre =wCie @ (1 —v)Cye,
where Ci-< and Cy are the e-Galois dual codes of Cy and Ca, respectively.

Proof. For a subset A of R™, let us denote (A) = {(¢¥(z1),...,¢¥(zn)) : (x1,...,2,) € A}. Then we
can easily show that CLe = (¢%(C))" and ¢*(vC1& (1 — v)Cs) = vI™(Cy) & (1 — v)[*(Cy), where T is th
Frobenius automorphism of F,. Then, by the previous Theorem we get
Cle = (WI™(C) & (1 — v)T"(C2))™
=u (T"(C1))" @ (1 - v) (T(C2))
=vCi @ (1 —v)Cye.

O

Proposition 5.7. Let C = vC; @ (1 — v)Co be a -monomial code with respect to the vector a + vb over
n—1

the ring R such that H(ai +b;) # 0. Then the e-Galois dual code Ce = vCi*® (1 —v)Cy* of C is a
i=0

0-monomial code, where Ci-¢ and C3* are 0-monomial codes over B, with respect to the vectors (a-+b)~*"
and @, respectively.

Proof. Since C; and C; are f-monomial codes over F, with respect to the vectors a+b and @, respectively.
Then by Corollary 2.6, the codes Cf"‘ and Cj"‘ are f-monomial codes over I, with respect to the vectors
(@+b)~?" and a—P", respectively . Then, by Theorem 5.3, we get that C*te is a f-monomial code over
R, with respect to the vectors a + vb. O
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