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Abstract: In this paper, we generalize cyclic codes to another more large linear codes, namely θ-monomial codes.
It is shown that for a θ-monomial code, its Euclidean and e-Galois dual are also θ-monomial codes.
Furthermore, we present the equivalence between θ-monomial codes and generalized monomial codes.
By considering the skew polynomial ring, we show that θ-monomial codes can relate to submodules
under one condition and to ideals under another condition. This allows us to give a characterization of
θ-monomial codes. More results on the e-Galois dual of θ-monomial codes are given with additional
properties on self duality and self orthogonality. The generalized θ-monomial codes are discussed
with their algebraic structure. The paper is closed by the investigation of the algebraic structure of
θ-monomial codes over the ring Fq + vFq where v2 = v.
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1. introduction

Cyclic codes are considered as an extremely important class of codes. They were first introduced
by E. Prange in [11, 12]. It is known that cyclic codes have a rich algebraic structure which allows the
process of encoding and decoding more efficient. Let Fq be a finite field of q elements, where q is a prime
power number, and let θ be an automorphism of Fq. A linear code of length n over Fq is a subspace
C of the vector space Fnq . The linear code C is called cyclic if, for each vector c=(c

0
, c

1
, . . . , c

n−1
) ∈ C,

the cyclic shift sc=(c
n−1

, c
0
, . . . , c

n−2
) of c is still in C. By considering the one to one correspondence

between the vectors c=(c
0
, c

1
, . . . , c

n−1
) in Fnq and the polynomials c(x)=c

0
+c

1
x+ . . . , c

n−1
xn−1 in Fq[x]

of degree at most n−1, one can characterize cyclic codes as ideals of the residue class ring Fq[x]/(xn−1).
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In [1], authors generalize the notion of cyclic codes by considering the skew polynomial ring Fq[x, θ],
where θ is an automorphism of Fq, to the so-called θ-cyclic codes. Indeed if C is a linear code, and for each
c=(c

0
, c

1
, . . . , c

n−1
) ∈ C we have (θ(c

n−1
), θ(c

0
), . . . , θ(c

n−2
)) ∈ C, then C is called a θ-cyclic code. It was

shown that in the case where ord(θ)|n, θ-cyclic codes can be viewed as left ideals of the residue class ring
Fq[x, θ]/(xn − 1). The generalization of θ-cyclic codes are presented in [3] in the case of the residue class
ring Fq[x, θ]/(f), where f is a polynomial of degree n. The case where the order of θ is not necessarily
a divisor of n is given in [3]. Such codes are modules over the ring Fq[x, θ]. In [13], authors studied the
algebraic structure of θ-cyclic codes of an arbitrary length n. They investigated the equivalence between
cyclic codes and θ-cyclic codes, and the equivalence between θ-cyclic codes and quasi-cyclic codes. The
concept of θ-cyclic codes over finite fields was extended to the class of θ-cyclic codes over various types of
finite rings. Indeed in [2], authors introduced the skew constacyclic codes over Galois rings. Dealing with
Galois ring can be an extremely difficult issue in the context that the polynomial ring may not be left
and right Euclidean, which is important to deal with ideals which are generated by monic polynomials.
In [8], authors studied skew constacyclic codes over the finite chain ring Fpm + uFpm , where u2 = 0.
Recently in [5], authors investigated the algebraic structure of skew constacyclic codes over Fq + vFq
with v2 = v. Throughout this work, we present a new generalization of θ-cyclic codes under the name
of θ-monomial codes which generalize also the class of monomial codes presented in [6], and recently
in [9, 10]. We deal with the structure of the dual and the e-Galois dual of θ-monomial codes, with
similar approach as in [13]. For the case where gcd(ord(θ), n) = 1, we present an equivalence between
θ-monomial codes and monomial codes. The case where gcd(ord(θ), n) = d such that d > 1, allows us
to describe the equivalence between θ-monomial codes and generalized monomial codes. By considering
the skew polynomial ring Rā = Fq[x, θ]/

〈
xn −

∏n−1
i=0 ai

〉
, where ā = (a0, a1, . . . , an−1) ∈

(
Fθq
)n such

that
∏m−1
i=0 ai 6= 0 and Fθq = {x ∈ Fq : θ(x) = x} is the fixed field of θ. In the case where ord(θ)|n, we

present the characterization of θ-monomial codes as left ideals of Rā, and in the case where ord(θ) - n
we characterize θ-monomial codes as left Fq[x, θ]-submodules of Rā. Some algebraic properties of the
generator polynomial and the generator matrix of θ-monomial codes are given. By considering the e-
Galois dual of θ-monomial codes, more results on the self duality and the self orthogonality are derived.
To generalize such codes, we introduce the class of generalized θ-monomial codes under the name of
(θ, σ, ā)-monomial codes with some properties on their duals and e-Galois duals. Finally, similar to the
work of [5], we extend the class of θ-monomial code, over the finite non-chain ring Fq+vFq, where v2 = v.
Indeed in Theorem 5.3, we give a characterization of θ-monomial codes. In this case, additional results
on the e-Galois dual are given. The paper is organized as follows. Section 2 contains the preliminaries
on skew polynomial rings. Section 3 defines the class of θ-monomial codes. Section 4 introduces the class
of generalized θ-monomial codes. Section 5 is devoted to θ-monomial codes over the ring R = Fq + vFq
where v2 = v.

2. Preliminaries

Let q = ph be a prime power and Fq be a finite field with q elements, e is an integer such that
0 ≤ e ≤ h− 1 and κ = h− e. A linear code C of length m over Fq is a linear subspace of Fmq . We define
the Hamming weight of, a = (a0, a1, . . . , am−1) ∈ C, wH(a), as the number of non-zero components of a
and the hamming distance of C, dH(C) = min {wH(a) | a ∈ C,a 6= 0}. The code C is said to be an [m, k, d]
if it has the dimension k, and the Hamming distance d. The Euclidean inner product of two vectors of
Fm−1
q , a = (a0, a1, . . . , am−1) and

b = (b0, b1, . . . , bm−1) is defined by 〈a, b〉 =

m−1∑
i=0

aibi and the Euclidean dual code C⊥ of C is de-

fined as C⊥ =
{
a ∈ Fmq | 〈b, a〉 = 0, for all b ∈ C

}
. The e-Galois inner product of two vectors a

and b is defined by 〈a, b〉e =

m∑
i=0

aib
pe

i and the e-Galois dual code C⊥e of C is defined as C⊥e ={
a ∈ Fmq | 〈b, a〉e = 0, for all b ∈ C

}
. We denote the Frobenius automorphism of Fq by Γ, which is
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given by Γ(α) = αp for α ∈ Fq.

Proposition 2.1 ([4]). Let C be a linear code of length m over Fq. Then we have

1. For all a, b ∈ Fmq , 〈a, b〉e = Γe (〈Γκ(a), b〉) = Γe (〈b, a〉κ).

2. C⊥e = Γκ(C⊥) =
(
Cpκ
)⊥

, where Cpκ = {(xp
κ

1 , xp
κ

2 , . . . , xp
κ

n ) : (x1, x2, . . . , xn) ∈ C }.

3. If dim(C) = k, then dim
(
C⊥
)

= dim
(
C⊥e

)
= m− k.

Definition 2.2. Let θ be an automorphism of Fq. A linear code C ⊆ Fn
q
is said to be a θ-monomial code

induced by the vector ā = (a0, a1, . . . , an−1) if and only if for each codeword c = (c0, c1, . . . , cn−1) ∈ C,
the vector (an−1θ(cn−1), a0θ(c0), . . . , an−2θ(cn−2)) is also a codeword of C.

Remark 2.3. 1. If a = (1, 1, . . . , 1) and θ = Id, the code C is a cyclic code.

2. If a = (1, 1, . . . , 1, λ) and θ = Id, the code C is a λ-constacyclic code.

3. If a = (1, 1, . . . , 1) and θ 6= Id, the code C is a skew cyclic code.

4. If a = (1, 1, . . . , 1, λ) and θ 6= Id, the code C is a skew λ-constacyclic code.

5. C is a θ-monomial code induced by the vector ā = (a0, a1, . . . , an−1) if it is invariant under the
following θ-monomial shift map

ϕā,θ : Fnq −→ Fnq
(v0, v1 . . . , vn−1) 7−→ (an−1θ(vn−1), a0θ(v0), . . . , an−2θ(vn−2)) .

6. If
n−1∏
i=0

ai 6= 0, then ϕā,θ is an isomorphism and its inverse map is given by

ϕ
−1

ā,θ : Fnq −→ Fnq
(y0, y1, . . . , yn−1) 7−→

(
θ−1(a−1

0 y1), θ−1(a−1
1 y2), . . . , θ−1(a−1

n−2yn−1), θ−1(a−1
n−1y0)

)
.

Lemma 2.4. Let a = (a0, a1, ..., an−1) ∈
(
Fθq
)n such that

n−1∏
i=0

ai 6= 0. Let s be a positive integer and

k ∈ {0, 1, . . . , n− 1}. Then we have

∀v ∈ Fnq : ϕ
sn+k

ā,θ (v) =

(
n−1∏
i=0

ai

)s
· ϕ

k

ā,θ ◦ θns(v).

where θns(v0, v1 . . . , vn−1) = (θns(v0), θns(v1) . . . , θns(vn−1)).

In the following theorem we give a characterization of the dual of θ-monomial codes induced by the
vector ā = (a0, a1, . . . , an−1).

Theorem 2.5. Let C be a θ-monomial code with associated vector ā = (a0, a1, . . . , an−1) ∈
(
Fθq
)n

such

that
n−1∏
i=0

ai 6= 0. Then C⊥ is a θ-monomial code with associated vector ᾱ =
(
a−1

0 , a−1
1 , . . . , a−1

n−1

)
.
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Proof. Let x = (x0, x1, . . . , xn−1) ∈ C⊥ and c = (c0, c1, . . . , cn−1) ∈ C. We have

〈ϕᾱ,θ(x), c〉 =
〈(
a−1
n−1θ(xn−1), a−1

0 θ(x0), . . . , a−1
n−2θ(xn−2)

)
, (c0, c1, . . . , cn−1)

〉
=a−1

n−1θ(xn−1)c0 +

n−1∑
i=1

a−1
i−1θ(xi−1)ci

=θ

(
θ−1(a−1

n−1c0)xn−1 +

n−1∑
i=1

θ−1(a−1
i−1ci)xi−1

)
=θ
(〈

(x0, x1, . . . , xn−1),
(
θ−1(a−1

0 c1), θ−1(a−1
1 c2), . . . , θ−1(a−1

n−2cn−1), θ−1(a−1
n−1c0)

)〉)
=θ
(
〈x, ϕ−1

ā,θ(c)〉
)
.

By Lemma 2.4, ϕ
m

ā,θ =

(
n−1∏
i=0

ai

)s
· Id, where m = lcm(n, ord(θ)) and s =

m

n
. Then we get ϕ−1

ā,θ(c) =(
n−1∏
i=0

a−1
i

)s
· ϕ

m−1

ā,θ (c) ∈ C. Therefore

〈ϕᾱ,θ(x), c〉 = 0.

Hence, C⊥ is a θ-monomial code with associated vector ᾱ =
(
a−1

0 , a−1
1 , . . . , a−1

n−1

)
.

Corollary 2.6. Let h be a positive integer such that q = ph, 0 ≤ e < h and κ = h − e. If C is a

θ-monomial code with associated vector a = (a0, a1, . . . , an−1) ∈
(
Fθq
)n

such that
n−1∏
i=0

ai 6= 0, then the

e-Galois dual C⊥e of C is a θ-monomial code with associated vector
(
a−p

κ

0 , a−p
κ

1 , . . . , a−p
κ

n−1

)
.

Proof. By Proposition 2.1, we have C⊥e =
(
Cpκ
)⊥

, then it is sufficient to show that Cpκ is a θ-monomial

code with associated vector
(
ap

κ

0 , ap
κ

1 , . . . , ap
κ

n−1

)
. Let

(
cp
κ

0 , cp
κ

1 , . . . , cp
κ

n−1

)
∈ Cpκ , then (c0, c1, . . . , cn−1) ∈

C. Since C is a θ-monomial code with associated vector ā, then (an−1θ(cn−1), a0θ(c0), . . . , an−2θ(cn−2)) ∈
C. Therefor(

ap
κ

n−1θ(c
pκ

n−1), ap
κ

0 θ(cp
κ

0 ), . . . , ap
κ

n−2θ(c
pκ

n−2)
)

=
(
ap

κ

n−1θ(cn−1)p
κ

, ap
κ

0 θ(c0)p
κ

, . . . , ap
κ

n−2θ(cn−2)p
κ
)
∈ Cp

κ

.

Hence Cpκ is a θ-monomial code with associated vector
(
ap

κ

0 , ap
κ

1 , . . . , ap
κ

n−1

)
. Therefore C⊥e is a θ-

monomial code with associated vector
(
a−p

κ

0 , a−p
κ

1 , . . . , a−p
κ

n−1

)
.

The two following theorems give a relationship between θ-monomial codes and monomial codes and
generalized monomial codes in the case where ord(θ) - n.

Theorem 2.7. Let a = (a0, a1, ..., an−1) ∈
(
Fθq
)n such that

n−1∏
i=0

ai 6= 0. If gcd(n, ord(θ)) = 1 and C is

a θ-monomial code with associated vector a, then C is equivalent to a monomial code with the associated
vector ā.

Proof. Let us denote ord(θ) = t. Since gcd(n, t) = 1, there exist two integers r and s > 0 such that
rt − sn = 1. Let c = (c0, c1, . . . , cn−1) ∈ C, let us show that (an−1cn−1, a0c0, . . . , an−2cn−2) ∈ C. Using
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Lemma 2.4, we get

ϕ
rt

ā,θ(c) = ϕ
sn+1

ā,θ (c) =

(
n−1∏
i=0

ai

)s
· ϕā,θ ◦ θ

ns

(c)

=

(
n−1∏
i=0

ai

)s
· ϕā,θ ◦ θ

rt−1

(c)

=

(
n−1∏
i=0

ai

)s
· ϕā,θ ◦ θ

−1

(c)

=

(
n−1∏
i=0

ai

)s
· (an−1cn−1, a0c0, . . . , an−2cn−2).

Then (an−1cn−1, a0c0, . . . , an−2cn−2) ∈ C, therefore C is a monomial code with associated vector ā.

Exercise 2.8. Let θ be the Frobenius automorphism of F9 = F3[a] and C the θ-monomial code with
associated vector ᾱ = (2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2) generated by the following matrix

G =

 0 2 2 1 2 2 1 0 1 0 1 1 0
0 0 1 1 2 1 2 2 0 2 0 1 1
2 0 0 2 2 1 1 1 2 0 1 0 1

 .

We have C is a [13, 3, 9] linear code and its 1-Galois dual is a [13, 10, 3] θ-monomial code with associated
vector ᾱ−3 = ᾱ.
Moreover, we have gcd(13, ord(θ)) = gcd(13, 2) = 1. Then C is equivalent to a monomial code with the
associated vector ᾱ.

Definition 2.9. A linear code C of length n over Fq is said to be a generalized monomial code if and

only if there exists a permutation σ and ā = (a0, a1, . . . , an−1) ∈ Fnq such that
n−1∏
i=0

ai 6= 0 and for each

codeword c = (c0, c1, . . . , cn−1) ∈ C, the vector

c
′

=
(
aσ(0)cσ(0), aσ(1)cσ(1), . . . , aσ(n−1)cσ(n−1)

)
is also a codeword.
In this case C is said to be a (σ, ā)-monomial code.

Theorem 2.10. Let a = (a0, a1, ..., an−1) ∈
(
Fθq
)n such that

n−1∏
i=0

ai 6= 0. If gcd(n, ord(θ)) = d, where

d > 1, and C is a θ-monomial code with associated vector a, then C is equivalent to a generalized monomial
code.

Proof. Let us denote ord(θ) = t. Since gcd(n, t) = d, there exist two integers r and s > 0 such that
rt− sn = d. By Lemma 2.4, we have

ϕ
rt

ā,θ(c) = ϕ
sn+d

ā,θ (c) =

(
n−1∏
i=0

ai

)s
· ϕ

d

ā,θ ◦ θ
−d

(c).

On the other hand, if x = (x0, x1, . . . , xn−1) ∈ Fnq , we have

ϕ
d

ā,θ(x) = (bτ(0)θ
d

(xτ(0)), bτ(1)θ
d

(xτ(1)), . . . , bτ(n−1)θ
d

(xτ(n−1))).
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where

τ : {0, 1 . . . , n− 1} −→ {0, 1 . . . , n− 1}
k 7−→ n− d+ k mod n

and for all j ∈ {0, 1 . . . , n− 1}, bj =
∏
k∈Aj

aj , where Aj = {k mod n : k ∈ {j, . . . , j + d− 1}}.

Hence, if c = (c0, c1, . . . , cn−1) ∈ C, then (bτ(0)cτ(0), bτ(1)cτ(1), . . . , bτ(n−1)cτ(n−1)) ∈ C. Therefore C is
equivalent to a generalized monomial code.

Exercise 2.11. Over F16 = F2[a], let θ be the automorphism defined by x 7→ x22

. Let C the θ-monomial
code with associated vector ᾱ = (a5, a10, 1, a5) generated by the following matrix

G =

(
0 a5 a5 1
0 0 a4 a7

)
.

We have C is a [4, 2, 2] linear code. Moreover, we have gcd(4, ord(θ)) = gcd(4, 2) = 2. Then C is equivalent
to a (σ, b̄)-monomial code, where σ = (0, 2) ◦ (1, 3) and b̄ = (1, a10, a5, a).

3. θ-monomial codes and skew polynomial ring

Before starting this section, let us recall some properties of the structure of the set
Rā = Fq[x, θ]/

〈
xn −

∏n−1
i=0 ai

〉
.

Lemma 3.1. Let Fq be a finite field, θ an automorphism of Fq and n an integer divisible by the order
of θ. The ring Rā is a principal left ideal ring in which left ideals are generated by µ(G), where G is a
right divisor of xn−

∏n−1
i=0 ai in Fq[x, θ] and µ : Fq[x, θ] −→ Rā is the canonical morphism that associate

a polynomial with its remainder by the right division with xn −
∏n−1
i=0 ai in Fq[x, θ].

Proof. The similar result is showed in [1] lemma 1, then one can deduce by substituting xn − 1 by
xn −

∏n−1
i=0 ai.

Since ā = (a0, a1, . . . , an−1) ∈
(
Fθq
)n, two cases arise: the first where ord(θ) - n and the second where

ord(θ) | n.

Proposition 3.2 (Lemma 1 [5]). 1. If ord(θ) - n, then Rā is a left Fq[x, θ]-module where the multipli-

cations is defined for all

(
f(x) +

(
xn −

n−1∏
i=0

ai

))
∈ Rā and b(x) ∈ Fq[x; θ] by:

b(x)

(
f(x) +

(
xn −

n−1∏
i=0

ai

))
= b(x)f(x) +

(
xn −

n−1∏
i=0

ai

)
.

2. If ord(θ) | n, then Rā is a non commutative ring, where the multiplications is defined by:(
f(x) +

(
xn −

n−1∏
i=0

ai

))(
g(x) +

(
xn −

n−1∏
i=0

ai

))
= f(x)g(x) +

(
xn −

n−1∏
i=0

ai

)
.

The following theorems show how θ-monomial codes induced by ā relate to submodules of Rā when
ord(θ) - n, and to ideals of Rā when ord(θ) | n.
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Theorem 3.3. Let a = (a0, a1, ..., an−1) ∈
(
Fθq
)n such that

n−1∏
i=0

ai 6= 0, and consider the following map

πā,θ : Fnq −→ Rā

(v0, v1 . . . , vn−1) 7−→
n−2∑
i=0

(
vi+1

i∏
k=0

a−1
k

)
xi +

(
v0

n−1∏
i=0

a−1
i

)
xn−1.

1. If ord(θ) - n, then C is a θ-monomial code induced by ā if and only if πa,θ(C) is a left Fq[x;σ]-submodule
of Rā.
2. If ord(θ) | n, then C is a θ-monomial code induced by ā if and only if πa,θ(C) is a left ideal of Rā.

Proof. Let v = (v0, v1 . . . , vn−1) ∈ Fnq . We have

xπā,θ(v) = x

n−2∑
i=0

(
vi+1

i∏
k=0

a−1
k

)
xi + x

(
v0

n−1∏
i=0

a−1
i

)
xn−1

=
n−2∑
i=0

(
θ(vi+1)

i∏
k=0

a−1
k

)
xi+1 +

(
θ(v0)

n−1∏
i=0

a−1
i

)
xn

=

n−2∑
i=0

(
aiθ(vi)

i∏
k=0

a−1
k

)
xi +

(
an−1θ(vn−1)

n−1∏
i=0

a−1
i

)
xn−1

= πā,θ (an−1θ(vn−1), a0θ(v0), . . . , an−2θ(vn−2))

= πā,θ (ϕā,θ(v)) .

Remark 3.4. The reciprocal map of πā,θ is given by

π
−1

ā,θ : Rā −→ Fnq
n−1∑
i=0

uix
i 7−→ (v0, v1 . . . , vn−1),

where v0 =

n−1∏
j=0

aj

un−1 and for all i ∈ {1, 2, . . . , n− 1}, vi =

i−1∏
j=0

aj

ui−1.

From this point forward until the end of this section, we assume that ord(θ) | n.
As known, Rā is a principal left ideal domain. Then we have the following characterization of monomial
codes.

Proposition 3.5. Let C be a θ-monomial code of length n over F
q
. Then

1. There is a unique monic polynomial of least degree g(x) ∈ F
q
[x, θ] such that πa,θ(C) = 〈g(x)〉 and

g(x) is a right divisor of the polynomial xn −
n−1∏
i=0

ai.

2. The family {g(x), xg(x), . . . , xk−1g(x)} forms a basis of πa,θ(C), as an Fq vector space, where k =
n− deg(g).
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3. A generator matrix G of C is given by:

G =



π−1
a,θ(g(x))

π−1
a,θ (xg(x))

...

...
π−1
a,θ

(
xk−1g(x)

)


. (1)

Proof. 1. Let g(x) ∈ πa,θ(C) be a monic polynomial of minimal degree such that g(x) 6= 0. Suppose
that there is a monic polynomial f(x) ∈ πa,θ(C) of the same degree, then g(x) − f(x) ∈ πa,θ(C) and
g(x)− f(x) is of degree less than the degree of g(x), necessary g(x)− f(x) = 0, hence g(x) = f(x). Let
c(x) be any element in πa,θ(C). By the right division algorithm, there are two unique polynomials q and
r such that

c(x) = q(x)g(x) + r(x) where r(x) = 0 or deg(r(x)) < deg(g(x)).

πa,θ(C) is a left ideal, then r(x) = c(x) − q(x)g(x) ∈ πa,θ(C). Since g(x) is of minimal degree in
πa,θ(C), then r(x) = 0, hence c(x) = q(x)g(x). Therefore πa,θ(C) = 〈g(x)〉.

Now, let us show that g(x) is a right divisor of xn −
n−1∏
i=0

ai. Again, by the right division algorithm, there

are two unique polynomials q(x) and r(x) such that

xn −
n−1∏
i=0

ai = q(x)g(x) + r(x) where deg(r(x)) < deg(g(x)).

Since g(x) and xn−
n−1∏
i=0

ai = 0 are in πa,θ(C), then r(x) = 0 and hence g(x) is a right divisor of xn−
n−1∏
i=0

ai.

2. We have g(x) is a right divisor of xn −
n−1∏
i=0

ai, then there exist a polynomial h(x) ∈ F[x; θ] such that

h(x)g(x) = xn −
n−1∏
i=0

ai. We will show that the family {g(x), xg(x), . . . , xn−deg(g)−1g(x)} forms a basis of

πa,θ(C). Let c(x) ∈ πa,θ(C), then c(x) = f(x)g(x) for a polynomial f(x) ∈ F[x; θ]. By the right division
algorithm of f(x) by h(x), there are two polynomials q(x) and r(x) such that

f(x) = q(x)h(x) + r(x) with r(x) = 0 or deg(r(x)) < n− deg(g(x))

Multiplying by g(x) on the right, we get

f(x)g(x) = q(x)h(x)g(x) + r(x)g(x) = r(x)g(x) in Rā.

Hence c(x) = r(x)g(x), whit deg(r) ≤ n−deg(g)−1. Therefore, the set {g(x), xg(x), . . . , xn−deg(g)−1g(x)}
is a spanning set of πa,θ(C). To show that {g(x), xg(x), . . . , xn−deg(g)−1g(x)} is linearly independent,
suppose that

c0g(x) + c1xg(x) + . . .+ cn−r−1x
n−deg(g)−1g(x) = 0.

Comparing coefficients yields the fact that ci = 0 for all i = 0, 1, . . . , n − deg(g) − 1. Hence
{g(x), xg(x), . . . , xn−deg(g)−1g(x)} is linearly independent and therefore it is a basis for πa,θ(C) and
dimπa,θ(C) = n− deg(g).
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As in the case of skew cyclic and skew constacyclic codes, we give a parity check matrix of a θ-
monomial code.

Definition 3.6. Let e be an integer such that q = ph, 0 ≤ e < h and κ = h − e. Let h =
∑̀
i=0

hix
i

be a polynomial of degree ` in Rā such that h0 6= 0, the e-skew reciprocal polynomial of h is h∗e =∑̀
i=0

θi
(
hp

κ

`−i

)
xi, and the left monic e-skew reciprocal polynomial of h is h\e =

(
1/θ`

(
hp

κ

0

))
h∗e .

If a skew polynomial is equal to its left monic e-skew reciprocal polynomial, then it is called e-self-reciprocal.

Lemma 3.7. Let f ∈ Fq[x; θ] be a skew polynomial of degree m such that f = hg, where h and g are
skew polynomials of degrees m− k and k, respectively. Then

1. f∗e = θm−k (g∗e)h∗e .

2. (f∗e)
∗κ = θm(f).

Proof. 1. Let us denote g =

k∑
i=0

gix
i and h =

m−k∑
i=0

hix
i. We have f∗e =

m∑
s=0

θs(fp
κ

m−s)x
s, where

θs(fp
κ

m−s) =
∑

i+j=m−s
0≤i≤m−k

0≤j≤k

θs(hp
κ

i )θi+s
(
gp
κ

j

)
=

∑
m−k−t+k−r=m−s

0≤m−k−t≤m−k
0≤k−r≤k

θs(hp
κ

m−k−t)θ
m−k−t+s

(
gp
κ

k−r

)

=
∑
r+t=s

0≤t≤m−k
0≤r≤k

θs(hp
κ

m−k−t)θ
m−k+r

(
gp
κ

k−r

)
.

On the other hand, we have g∗e =

k∑
r=0

θi
(
gp
κ

k−r

)
xr and h∗e =

m−k∑
t=0

θt
(
hp

κ

m−k−t

)
xt. Then

θm−k (g∗e)h∗e =

m∑
s=0

csx
s, where cs =

∑
r+t=s
0≤r≤k

0≤t≤m−k

θm−k+r
(
gp
κ

k−r

)
θr+t(hp

κ

m−k−t).

Then, we get that f∗e = θm−k (g∗e)h∗e .

2. We have

(f∗e)
∗κ =

(
m∑
s=0

θs(fp
κ

m−s)x
s

)∗κ
=

m∑
s=0

θs(θm−s(fp
h

s ))xs = θm(f).

Theorem 3.8. Let C be a θ-monomial code induced by the vector ā = (a0, a1, . . . , an−1) ∈
(
Fθq
)n such

that
n−1∏
i=0

ai 6= 0, and generated by the polynomial g = xk +

k−1∑
i=0

gix
i ∈ Fq[x; θ], and h ∈ Fq[x; θ] such that

xn −
n−1∏
i=0

ai = hg. Then e-Galois dual C⊥e of C is generated by h\e .
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Proof. Since ord(θ) | n and
n−1∏
i=0

ai ∈ Fθq , then xn −
n−1∏
i=0

ai = gh = hg, hence

xn −
n−1∏
i=0

a−p
κ

i =−

(
n−1∏
i=0

a−p
κ

i

)
θn−k (g∗e)h∗e

=h∗e

(
−
n−1∏
i=0

a−p
κ

i

)
θn−k (g∗e) .

Let C = π
−1

ᾱ,θ(〈h∗e(x)〉), where ᾱ = ā−p
κ

. Then C is a θ-monomial code induced by the vector ᾱ. Moreover,
dim

(
C
)

= k. Now, let us show that C = C⊥e .

For s ∈ {0, 1, . . . , k − 1} and r ∈ {0, 1, . . . n− k − 1}, let us denote xsg =

n−1∑
i=0

g̃ix
i and xrh∗e =

n−1∑
i=0

h̃ix
i.

We have

g̃i =

 0 if 0 ≤ i ≤ s− 1
θs(gi−s) if s ≤ i ≤ s+ k
0 if s+ k + 1 ≤ i

and h̃i =


0 if 0 ≤ i ≤ r − 1

θr(hp
κ

n−k−i+r) if r ≤ i ≤ r + n− k
0 if n− k + r + 1 ≤ i

Denote π
−1

ā,θ(x
sg) = (u0, u1, . . . , un−1) and π

−1

ᾱ,θ(x
rh∗e) = (v0, v1, . . . , vn−1). Then we get

〈
π
−1

ā,θ(x
sg), π

−1

ᾱ,θ(x
rh∗e)

〉
e

=

n−1∑
i=0

g̃ih̃
pe

i

=

min(n−k+r,k+s)∑
i=max(r,s)

g̃ih̃
pe

i

=

min(n−k+r−s,k)∑
i=max(0,r−s)

g̃i+sh̃
pe

(i+s−r)+r

=

min(n−k+r−s,k)∑
i=max(0,r−s)

θs(gi)θ
s+i(h(n−k+r−s)−i).

On the other hand, we have xn −
n−1∏
i=0

= gh =

n∑
i=0

µix
i, where

µ` =
∑
i+j=`
0≤i≤k

0≤j≤n−k

giθ
i(hj) =

min(`,k)∑
i=max(0,`−(n−k))

giθ
i(h`−i).

Hence, for ` = n− k + r − s we get〈
π
−1

ā,θ(x
sg), π

−1

ᾱ,θ(x
rh∗e)

〉
e

= θs(µ`).

Since ` ∈ {1, 2, . . . , n − 1}, then µ` = 0, and
〈
π
−1

ā,θ(x
sg), π

−1

ᾱ,θ(x
rh∗e)

〉
e

= θs(µ`) = 0. Then C ⊂ C⊥e .
Since they have the same dimension, then C = C⊥e . Let us show that C⊥e is generated by h\e . Since
ord(θ)|n, then we have

θn−k(hp
κ

0 )

(
xn −

n−1∏
i=0

a−p
κ

i

)
=

(
xn −

n−1∏
i=0

a−p
κ

i

)
θn−k(hp

κ

0 ).
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Then

xn −
n−1∏
i=0

a−p
κ

i = h\e

(
−
n−1∏
i=0

a−p
κ

i

)
θn−k (g∗e) θn−k(hp

κ

0 )

Hence h\e is a right divisor of xn−
n−1∏
i=0

a−p
κ

i , and the code C′ = π
−1

ᾱ,θ(〈h∗e(x)〉) is θ-monomial code induced

by the vector ᾱ, and dim (C′) = k. Let v(x) ∈ C, then v(x) = t(x)h∗e(x) for some polynomial t(x), hence
v(x) = t(x)θn−k(hp

κ

0 )h\e(x), therefor v(x) ∈ C′ and then C′ = C.

Corollary 3.9. Let C be a θ-monomial code induced by the vector ā = (a0, a1, . . . , an−1) ∈
(
Fθq
)n
, such

that
n−1∏
i=0

ai 6= 0, and generated by the polynomial g = xk +

k−1∑
i=0

gix
i ∈ Fq[x; θ], and h ∈ Fq[x; θ] such that

xn −
n−1∏
i=0

ai = hg. If the order of
n−1∏
i=0

ai in the multiplicative group F×q divides pκ + 1, then the following

holds

1. C is an e-Galois self-orthogonal if and only if h\e is a right divisor of g.

2. C is an e-Galois self-dual if and only if h\e = g.

4. Generalized θ-monomial codes

Before starting this section, let us recall some basics about permutations.

Definition 4.1. Let ` be an integer such that ` ≥ 2, and τ ∈ Sn. We say that τ is a `-cycle if there are
integers a1, a2, ..., a` ∈ {1, 2, . . . , n} such that τ(a1) = a2, . . . , τ(a`−1) = a`, and τ(a`) = a1 and τ fixes
every other integers. In this case τ will be denoted by

τ = (a1, a2, . . . , a`) and supp(τ) = {i : τ(i) 6= i} = {a1, a2, . . . , a`}.

Based on the notion of `-cycles, we give the following theorem, which gives the decomposition of a
permutation into disjoint cycles.

Theorem 4.2. Let σ be any element of Sn. Then σ can be uniquely factored as a product of disjoint
cycles, this factorization is unique.

σ = τ1τ2 . . . τr

Definition 4.3. Let σ = (a1, . . . , a`) be an `-cycle of Sn. We call the index of σ the smallest integer ai
and we denote it by

ind(σ) = min{ai : i ∈ {1, . . . , `}}.

Now, we will give the definition of a generalized θ-monomial code.

Definition 4.4. A linear code C of length n over Fq is said to be a generalized θ-monomial code if and

only if there exists a permutation σ ∈ Sn and ā = (a1, a2, . . . , an) ∈
(
Fθq
)n such that

n∏
1

ai 6= 0 and for

each codeword c = (c1, c2, . . . , cn) ∈ C, the vector

c
′

=
(
aσ(1)θ(cσ(1)), aσ(2)θ(cσ(2)), . . . , aσ(n)θ(cσ(n))

)
.
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is also a codeword.
In this case C is said to be a (θ, σ, ā)-monomial code.

Exercise 4.5. 1. A θ-cyclic code is a (θ, σ, ā)-monomial code, where σ = (n, n − 1, . . . , 1) and ā =
(1, 1, . . . , 1).

2. A θ-λ-constacyclic code is a (θ, σ, ā)-monomial code, where σ = (n, n− 1, . . . , 1), ā = (1, 1, . . . , λ)
and θ = Id.

3. A θ-monomial code induced by the vector ā = (a1, a2, . . . , an) is a (θ, σ, ā)-monomial code, where
σ = (n, n− 1, . . . , 1) and ā = (a1, a2, . . . , an)

4. A θ-quasi-cyclic codes of length n = `m is a (θ, σ, ā)-monomial code, where σ is defined for all
i ∈ {1, 2, . . . ,m} by σ(i) = (` − 1)m + i and for all i ∈ {m + 1, . . . , `m} : σ(i) = i − m and
ā = (1, 1, . . . , 1).

5. Let C be a θ-generalized quasi-cyclic codes of length n = n1 +n2 + . . .+nr. Denote n0 = 0, and for

all i ∈ {0, 1, . . . , r} : si =

i∑
j=0

nj. Then C is a (θ, σ, ā)-monomial code, where σ = σ1σ2 . . . σr such

that σi = (si, si − 1, . . . , si−1 + 1) and ā = (1, 1, . . . , 1).

6. A θ-multi-twisted codes of length n = n1 + n2 + . . . + nr and parameters (λ1, . . . , λr) is a
(θ, σ, ā)-monomial code, where σ = σ1σ2 . . . σr such that σi = (si, si − 1, . . . , si−1 + 1), for

all i ∈ {0, 1, . . . , r} : si =

i∑
j=0

nj where n0 = 0. And ā = (a1, a2 . . . , an) such that for

j ∈ {si : i ∈ {1, 2 . . . , r}} aj = λj and aj = 1 otherwise.

Remark 4.6. 1. C is a θ-monomial code induced by the vector ā = (a0, a1, . . . , an−1) ∈
(
Fθq
)n

such

that
n−1∏
i=0

ai 6= 0, if it is invariant under the following θ-monomial shift map

Φā,θ,σ : Fnq −→ Fnq
(v1, v2 . . . , vn) 7−→

(
aσ(1)θ(vσ(1)), aσ(2)θ(vσ(2)), . . . , aσ(n)θ(vσ(n))

)
.

2. The map Φā,θ,σ is an isomorphism and its inverse map is given by

Φ
−1

ā,θ,σ : Fnq −→ Fnq
(y1, y2, . . . , yn) 7−→

(
θ−1(a−1

1 yτ(1)), θ
−1(a−1

2 yτ(2)), . . . , θ
−1(a−1

n yτ(n))
)
,

where τ = σ−1

Lemma 4.7. Using the same notation as in Remark 4.6, suppose that σ = τ1τ2 . . . τr the decomposition
into disjoint cycles, where `i is the length of the cycle τi and J = {j ∈ {1, 2, . . . , n} : σ(j) = j}. If we
denote ord(σ) = m

and for all i ∈ {1, . . . , r} and we define si =
m

`i
, then for v = (v1, v2, . . . , vn) ∈ Fnq , we have

Φ
m

ā,θ,σ(v) = (µ1, µ2, . . . , µn), where

∀k ∈ J : µk = amk θ
m(vk) and ∀i ∈ {1, . . . , r} : µi =

 ∏
j∈supp(τi)

aj

si

θm(vi).

Theorem 4.8. Let C be a (θ, σ, ā)-monomial code, where ā = (a0, a1, . . . , an−1) ∈
(
Fθq
)n

such that
n−1∏
i=0

ai 6= 0. Then C⊥ is a (θ, σ, ᾱ)-monomial code, where ᾱ =
(
a−1

0 , a−1
1 , . . . , a−1

n−1

)
.
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Proof. Let x = (x1, x2, . . . , xn−1) ∈ C⊥ and c = (c1, c2, . . . , cn) ∈ C. We have

〈Φᾱ,θ,σ(x), c〉 =
〈(
a−1
σ(1)θ(xσ(1)), a

−1
σ(2)θ(xσ(2)), . . . , a

−1
σ(n)θ(xσ(n))

)
, (c1, c2, . . . , cn)

〉
=

n∑
i=1

a−1
σ(1)θ(xσ(i))ci

=θ

(
n∑
i=1

xσ(i)θ
−1
(
a−1
σ(1)ci

))

=θ

(
n∑
i=1

xσ(i)θ
−1
(
a−1
σ(i)cσ−1σ(i)

))

=θ

(
n∑
i=1

xiθ
−1
(
a−1
i cσ−1(i)

))
=θ
(〈

(x1, x2, . . . , xn),
(
θ−1(a−1

1 cσ−1(1)), θ
−1(a−1

2 cσ−1(2)), . . . , θ
−1(a−1

n cσ−1(n))
)〉)

=θ
(
〈x,Φ−1

ᾱ,θ,σ(c)〉
)
.

Let m = ord(σ) lcm (ord(θ), ord(a1), . . . , ord(an)), where ord (ai) denotes the multiplicative order of ai
in the multiplicative group F×q , for 1 ≤ i ≤ n. Using Lemma 4.7, we get Φmᾱ,θ,σ = Id, then Φ−1

ᾱ,θ,σ(c) =

Φm−1
ᾱ,θ,σ(c) ∈ C. Hence

〈Φᾱ,θ,σ(x), c〉 = 0.

Therefore, C⊥ is a θ-monomial code with associated vector ᾱ =
(
a−1

0 , a−1
1 , . . . , a−1

n−1

)
.

Corollary 4.9. Let h be a positive integer such that q = ph, 0 ≤ e < h and κ = h− e. If C is a (θ, σ, ā)-
monomial code with a = (a0, a1, . . . , an−1) ∈ F

n

q
, then the e-Galois dual C⊥e of C is a (θ, σ, ᾱ)-monomial

code code with ᾱ
(
a−p

κ

0 , a−p
κ

1 , . . . , a−p
κ

n−1

)
.

Now, we will see θ-generalized monomial as left Fq[x, θ]-submodule of a left Fq[x, θ]-module. For
this, let us consider the following maps defined for:
1- A cycle in Sn and ā = (a1, a2, . . . , an) ∈

(
F∗q
)n

Let τ = (i`, i`−1, . . . , i1) be a cycle of length ` with index i1, we denote āτ = (ai1 , ai2 , . . . , ai`) and Λ(ā,θ,τ)

the following map

Λ(ā,θ,τ) : Fnq −→ Rāτ
(v1, v2, . . . , vn) 7−→ πāτ ,θ(vi1 , vi2 , . . . , vi`)

where πāτ,θ is given as in Theorem 3.3.
2- A permutation in Sn and ā = (a1, a2, . . . , an) ∈

(
F∗q
)n

Let σ ∈ Sn such that σ = τ1τ2 . . . τr is the decomposition into disjoint cycles, where `i is the length of
the cycle σi, and J = {j1, . . . , js} = {j ∈ {1, 2, . . . , n} : σ(j) = j} such that j1 < . . . < js. We denote
ϕ̃(ā,θ,σ) the following map

Π(ā,θ,σ) : Fnq −→
s∏
i=1

Raij ×
r∏
i=1

Rāτi

v = (v1, v2, . . . , vn) 7−→
(
vj1 , . . . , vjs ,Λ(ā,θ,τ1)(v), . . . ,Λ(ā,θ,τr)(v)

)
,

where Raji = Fq[x− aji ]/ 〈x− ai〉 for all i ∈ {1, . . . , s}.
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If J = ∅, then

Π(ā,θ,σ) : Fnq −→
r∏
i=1

Rāτi

(v1, v2, . . . , vn) 7−→
(
Λ(ā,θ,τ1)(v), . . . ,Λ(ā,θ,τr)(v)

)
.

Remark 4.10. 1.
s∏
i=1

Rai ×
r∏
i=1

Rāτi is a left Fq[x, θ]-module.

2. The map Π(ā,θ,σ) is an Fq-isomorphism.

Theorem 4.11. Let C be a linear code of length n over Fq. Then C is a (θ, σ, ā)-monomial if and only

if Πa,θ,σ(C) is a left Fq[x;σ]-submodule of
s∏
i=1

Rai ×
r∏
i=1

Rāτi .

Proof. Let v = (v1, v2, . . . , vn) ∈ Fnq and v′ =
(
aσ(1)θ(vσ(1)), aσ(2)θ(vσ(2)), . . . , aσ(n)θ(vσ(n))

)
. Let us

show that

Π(ā,θ,σ)(v
′) = xΠ(ā,θ,σ)(v).

On one hand, we have

Π(ā,θ,σ)(v
′) =

(
aj1θ(vj1), . . . , ajsθ(vjs),Λ(ā,θ,τ1)(v

′), . . . ,Λ(ā,θ,τr)(v
′)
)
.

On the other hand, let i ∈ {1, 2 . . . , r} and denote τi = (t`, t`−1 . . . , t1), where ind(τi) = t1. We have

Λ(ā,θ,τi)(v
′) =πāτi ,θ

(
aσ(t1)θ(vσ(t1)), aσ(t2)θ(vσ(t2)), . . . , aσ(t`)θ(vσ(t`))

)
=πāτi ,θ

(
at`θ(vt`), at1θ(vt1), . . . , at`−1

θ(vt`−1
)
)

=xπāτi ,θ (vt1 , vt2 , . . . , vt`)

=xΛ(ā,θ,τi)(v).

Hence

Π(ā,θ,σ)(v
′) =

(
xvj1 , . . . , xvjs , xΛ(ā,θ,τ1)(v), . . . , xΛ(ā,θ,τr)(v)

)
= xΠ(ā,θ,σ)(v).

Therefor, C is a (θ, σ, ā)-monomial if and only if Πa,θ,σ(C) is a left Fq[x;σ]-submodule of
s∏
i=1

Rai ×

r∏
i=1

Rāτi .

5. θ-monomial codes over the ring R = Fq + vFq, where v2 = v

Let us start by given some basic results on the finite non-chain ringR = Fq + vFq = Fq[v]/
〈
v2 − v

〉
.

Clearly, R is a semilocal ring with maximal ideals 〈v〉 and 〈1− v〉. Further, by the classical ring theory,
we have that

R = vR⊕ (1− v)R = vFq ⊕ (1− v)Fq.

Then, for any element r ∈ R, there are unique a, b ∈ Fq such that r = va+ (1− v)b. We denote by
ψ the Frobenius map over R defined by

ψ : R → R
r = vx+ (1− v)y 7→ θ(r) = vxp + (1− v)yp.
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For an automorphism θ of R, we have θ = ψt, where t is the order of θ. Now we give the definition of a
linear code over R.

Definition 5.1. A nonempty subset C of Rn is said to be a linear code over R of length n if it is an
R-submodule of Rn.

Proposition 5.2 ([14]). Let C be a linear code of length n over R. Then C can be uniquely expressed as

C = vC1 ⊕ (1− v)C2.

Where

C1 =
{
x ∈ Fnq | vx + (1− v)y ∈ C, for some y ∈ Fnq

}
and

C2 =
{
y ∈ Fnq | vx + (1− v)y ∈ C, for some x ∈ Fnq

}
.

Based on the previous proposition, the following theorem gives a characterization of θ-monomial
codes over R.

Theorem 5.3. Let ā = (a0, a1, . . . , an−1) and b̄ = (b0, b1, . . . , bn−1) be in
(
Fθq
)n such that

n−1∏
i=0

ai 6= 0,

n−1∏
i=0

bi 6= 0 and
n−1∏
i=0

(ai + bi) 6= 0. Let C be a linear code of length n over R, and let C = vC1⊕ (1− v)C2,

where C1 and C2 are linear codes of length n over Fq. Then C is a θ-monomial code with respect to the
vector ā+ vb̄ = (a0 + vb0, a1 + vb1, . . . , an−1 + vbn−1) if and only if C1 and C2 are θ-monomial codes over
Fq with respect to the vectors ā+ b̄ and ā, respectively.

Proof. Let (x0, y1, . . . , yn−1) ∈ C1 and (y0, y1, . . . , yn−1) ∈ C2. For all i ∈ {0, 1, . . . , n − 1}, put
ci = vxi + (1 − v)yi. Then the vector (c0, c1, . . . , cn−1) ∈ C. Since C is a θ-monomial code with respect
to ā+ vb̄ it follows that

c′ = ((an−1 + bn−1v)θ (cn−1) , (a0 + b0v)θ (c0) , . . . , (an−2 + bn−2v)θ (cn−2)) ∈ C.

On the other hand, we have

c′ = v ((an−1 + bn−1)θ (cn−1) , (a0 + b0)θ (c0) , . . . , (an−2 + bn−2)θ (cn−2))

+ (1− v) (an−1θ (cn−1) , a0θ (c0) , . . . , an−2θ (cn−2))
.

Then ((an−1 + bn−1)θ (cn−1) , (a0 + b0)θ (c0) , . . . , (an−2 + bn−2)θ (cn−2)) ∈ C1 and
(an−1θ (cn−1) , a0θ (c0) , . . . , an−2θ (cn−2)) ∈ C2.
Conversely, let (c0, c1, . . . , cn−1) ∈ C, then for all i ∈ {0, 1, . . . n − 1}, ci = vxi + (1 − v)yi, where
(x0, x1, . . . , xn−1) ∈ C1 and (y0, y1, . . . , yn−1) ∈ C2. Let us show that
c′ = ((an−1 + bn−1v)θ (cn−1) , (a0 + b0v)θ (c0) , . . . , (an−2 + bn−2v)θ (cn−2)) ∈ C. Since C1 and C2 are
θ-monomial codes over Fq with respect to ā+ b̄ and ā, respectively. Then we have

c′ = v ((an−1 + bn−1)θ (cn−1) , (a0 + b0)θ (c0) , . . . , (an−2 + bn−2)θ (cn−2))

+ (1− v) (an−1θ (cn−1) , a0θ (c0) , . . . , an−2θ (cn−2)) ∈ vC1 ⊕ (1− v)C2 = C.

Hence, C is a θ-monomial code with respect to the vector ā+ vb̄ over the ring R.
Now, we will give some properties on the Galois dual codes.
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Definition 5.4. Let h be a positive integer such that q = ph, 0 ≤ e < h and κ = h − e. The e-Galois
inner product of two elements x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) in Rn is defined by

〈x,y〉e =

n−1∑
i=0

xiψ
e(yi)

and the e-Galois dual code of a linear code C over R of length n is defined as

C⊥e = {x ∈ Rn | 〈c,x〉e = 0 for any c ∈ C} .

If C ⊆ C⊥e , then C is called e-Galois self-orthogonal. And C is called e-Galois self-dual if C = C⊥e . Note
that C⊥0 is just the Euclidean dual code of C, which we denote by C⊥.

Theorem 5.5 ( Theorem 2 in [7]). Let C be a linear code of length n over R, and let C = vC1⊕ (1−v)C2,
where C1 and C2 are linear codes of length n over Fq. Then

C⊥ = vC⊥1 ⊕ (1− v)C⊥2 ,

where C⊥1 and C⊥2 are dual codes of C1 and C2, respectively. Furthermore, C is self-dual if and only if both
C1 and C2 are self-dual.

Corollary 5.6. Let h be a positive integer such that q = ph, 0 ≤ e < h and κ = h − e. If C = vC1⊕
(1− v)C2, where C1 and C2 are linear codes of length n over Fq then

C⊥e = vC⊥e1 ⊕ (1− v)C⊥e2 ,

where C⊥e1 and C⊥e2 are the e-Galois dual codes of C1 and C2, respectively.

Proof. For a subset A of Rn, let us denote ψ(A) = {(ψ(x1), . . . , ψ(xn)) : (x1, . . . , xn) ∈ A}. Then we
can easily show that C⊥e = (ψκ(C))⊥ and ψκ(vC1⊕ (1− v)C2) = vΓκ(C1)⊕ (1− v)Γκ(C2), where Γ is th
Frobenius automorphism of Fq. Then, by the previous Theorem we get

C⊥e = (vΓκ(C1)⊕ (1− v)Γκ(C2))
⊥

=v (Γκ(C1))
⊥ ⊕ (1− v) (Γκ(C2))

⊥

=vC⊥e1 ⊕ (1− v)C⊥e2 .

Proposition 5.7. Let C = vC1 ⊕ (1 − v)C2 be a θ-monomial code with respect to the vector ā + vb̄ over

the ring R such that
n−1∏
i=0

(ai + bi) 6= 0. Then the e-Galois dual code C⊥e = vC⊥e1 ⊕ (1 − v)C⊥e2 of C is a

θ-monomial code, where C⊥e1 and C⊥e2 are θ-monomial codes over Fq with respect to the vectors (ā+ b̄)−p
κ

and ā−p
κ

, respectively.

Proof. Since C1 and C1 are θ-monomial codes over Fq with respect to the vectors ā+b̄ and ā, respectively.
Then by Corollary 2.6, the codes C⊥e1 and C⊥e2 are θ-monomial codes over Fq with respect to the vectors
(ā + b̄)−p

κ

and ā−p
κ

, respectively . Then, by Theorem 5.3, we get that C⊥e is a θ-monomial code over
R, with respect to the vectors ā+ vb̄.
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