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Abstract: In this paper, we introduce a class of plane trees whose vertices receive labels from the set {1, 2, . . . , k}
such that the sum of labels of adjacent vertices does not exceed k + 1 and all vertices of label 1 are always
on the left of all other vertices. Using generating functions, we enumerate these trees by number of
vertices and label of the root, root degree, label of the eldest or youngest child of the root and forests.
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1. Introduction

One of the many structures counted by the famous Catalan numbers is the set of plane trees [22].
See sequence A000108 of Neil Sloane’s celebrated online encyclopaedia [20] for a list of these structures.
A plane tree, also called ordered tree, is a rooted tree drawn in the plane such that the positions of all
children of internal vertices are taken into consideration. Given a plane tree, vertex u is a child of vertex
v if u is adjacent to v but is on a lower level. Vertex v is the parent of u and all the children of v are called
siblings. The child that appears on the far left is the eldest child and the youngest child is the one that is
on the far right. So, ages of siblings decrease from left to right. The number of children of a vertex is
its degree and a collection of trees is a forest. Plane trees have been enumerated by number of vertices,
number of leaves, root degree, vertices of a given degree which reside on a certain level [2, 3], degree
sequence and forests [18, 21].

Schröder numbers, both little and large, have been studied for decades [1, 16, 19]. They are known
to enumerate Schröder paths [4], plane trees in which leaves come in two colours [21], block graphs
[8, 13, 15], dissections of regular polygons [8, 23], categories of lattice paths [1] among many other
structures listed in [20] as A001003 and A006318. In [7], Kariuki, Okoth and Nyamwala introduced and
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enumerated a class of plane trees in which vertices are labelled 1 or 2 such that there are no edges whose
end points are labelled 2 and with a further condition that the labels of siblings are weakly increasing
from left to right. They coined the name non-decreasing 2-plane trees for these trees. See Figure 1 for an
example of a non-decreasing 2-plane tree. The number of non-decreasing 2-plane trees whose roots are
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Figure 1: A non-decreasing 2-plane
tree on 16 vertices with root label 1.
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Figure 2: A 2-plane tree on 16
vertices with root label 1.

labelled 1 (resp. 2) is given by large (resp. little) Schröder numbers. The authors not only obtained
the number of these trees by the number of vertices and label of the root but also by the degree of the
root and label of the eldest child of the root. For non-decreasing 2-plane trees with roots labelled 2, the
authors constructed bijections with little Schröder paths, plane trees whose leaves are labelled 1 or 2,
lattice paths which allow unit vertical steps, unit horizontal steps and unit diagonal steps such that the
paths lie weakly below the line y = x, and increasing tableaux. When the roots are labelled 1, bijections
with large Schröder paths and row-increasing tableaux were obtained. Non-decreasing 2-plane trees are
a special kind of 2-plane trees that were introduced and studied by Gu and Prodinger [5]. A 2-plane tree
is a plane tree in which vertices are given labels from the set {1, 2} such that there are no edges with
both end points labelled 2. Figure 2 is a 2-plane tree on 16 vertices with root labelled 1.

The number of 2-plane trees on n vertices is given by

3 − j
3n − j

(
3n − j
n − 1

)
[5], where j = 1, 2 is the label of the root. The set of 2-plane trees has also been enumerated by degree of
the root [12], label of the eldest child of the root [9] and number of vertices of each kind [12, 14]. In [12],
these trees were related to noncrossing trees (trees drawn in the plane with vertices on the boundary of
a circle such that edges do not cross inside the circle), ternary trees, certain Dyck paths and lattice paths
which allow unit vertical steps and unit horizontal steps such that the paths never go above the line
y = 2x. The set of 2-plane trees was generalized by Gu, Prodinger and Wagner [6] to the set of k-plane
trees. These are plane trees in which vertices are labelled with integers in the set {1, 2, . . . , k} such that
the sum of labels of any two adjacent vertices is no more than k + 1. The number of these trees on n
vertices such that the root is labelled j was proved by Gu, Prodinger and Wagner [6] (using generating
functions) to be

k − j + 1
(k + 1)n − j

(
(k + 1)n − j

n − 1

)
. (1)

Setting j = k in (1), we find that the number of k-plane trees on n vertices with root labelled k is given
by the Fuss-Catalan number,

1
k(n − 1) + 1

(
(k + 1)(n − 1)

n − 1

)
. (2)

Formula (2) also counts (k+ 1)-ary trees with n− 1 internal vertices or Dyck paths consisting of n− 1 up-
steps of size k and unit k(n − 1) down-steps that start at (0, 0), stays above the line y = 0 and terminates
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at (2k(n − 1), 0). Bijections between the set of k-plane trees on n with roots labelled k and the sets of
(k + 1)-ary trees and Dyck paths described above were constructed in [6]. Bijections involving the set
of k-plane trees have also been constructed by Okoth [11], and Nyariaro and Okoth [10]. In [14], Okoth
and Wagner enumerated k-plane trees according to the number of vertices of each kind. In this paper,
we are interested in a variant of k-plane trees which we shall call k1-plane trees. We now formally define
this class of combinatorial structures.

Definition 1.1. A k1-plane tree is a k-plane tree in which all children labelled 1 have to be to the left of all others.

For an example of a k1-plane tree, see Figure 3. Note that 21-plane trees are just non-decreasing 2-
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Figure 3: A 51-plane tree on 16 vertices with root label 3.

plane trees studied by Kariuki, Okoth and Nyamwala [8]. The results of this paper, therefore generalize
the results obtained by Kariuki and her co-authors in [8]. The paper is organized as follows: We enu-
merate k1-plane trees according to the label of the root and number of vertices in Section 2 and degree
of the root in Section 3. Label of the eldest child and youngest child of the root are the parameters of
enumeration in Section 4 and formulas for the number of forests with a given number of components
are established in Section 5. This paper is concluded in Section 6 and therein we expose problems on
how this research could be extended.

The tools employed in this paper are symbolic method which helps us get generating functions,
using suitable substitutions (also used by Gu, Prodinger and Wagner [6]), application of binomial the-
orem, multinomial theorem, Vandermonde Convolution [17] , Lagrange Inversion Formula [24] and
telescoping of binomial coefficients.

Theorem 1.2 (Lagrange Inversion Formula, [21, 24]). Let f (x) be a generating function that satisfies the
functional equation f (x) = xϕ( f (x), where ϕ(0) ̸= 0. Then, we have

m[xm] f (x)k = k[gm−k]ϕ(g)m.

Theorem 1.3 (Multinomial Theorem, [17]). Let x1, x2, . . . , xn and m be integers, then

(x1 + x2 + · · ·+ xn)
m = ∑

m1+m2+···+mn=m

m!
m1!m2! · · ·mn!

xm1
1 xm2

2 · · · xmn
n .

Setting n = 2 in Theorem 1.3, we get the well known binomial theorem. We also make use of the identity:

Identity 1 ([17]). Let n and j be non-negative integers, then(
−n

j

)
(−1)j =

(
n + j − 1

j

)
.

Identity 2 (Hockey Stick Identity, [17]). Let n and j be positive integers, then

n

∑
i=j

(
i
j

)
=

(
n + 1
j + 1

)
.
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Identity 3 (Vandermonde Convolution, [17]). Let p, q and r be positive integers, then

r

∑
i=0

(
p
i

)(
q

r − i

)
=

(
p + q

r

)
.

2. Number of vertices and label of the root

Let Ti(x) = Ti be the generating function for k1-plane trees with root labelled by i such that x marks
a node. These trees have as subtrees rooted at their children, a sequence of trees rooted at vertex labelled
1 followed by a sequence of subtrees rooted at vertices labelled by an integer j ∈ {2, 3, . . . , k} such that
i + j ≤ k + 1. This is shown in Figure 4.

1

i

21 51 51 5 5 5 23 52 54 5 5 5

sequences of trees with roots

labelled 1.

sequences of trees with roots labelled

j ∈ {2, 3, . . . , k} such that i + j ≤ k + 1.

Figure 4: A k1-plane tree with root label i

The generating function Ti(x) is therefore given by

Ti(x) = x · 1
1 − T1

· 1
1 − ∑k−i+1

j=2 Tj
. (3)

We now strive to solve the system of functional equations (3). Let Ti(x) =
v

(1 + v)i−1 and x = v(1−v)
(1+v)k−1 .

Then

Ti(x) = x · 1
1 − v

· 1
1 − ∑k−i+1

j=2
v

(1+v)j−1

=
v(1 − v)
(1 + v)k−1 · 1

1 − v
· 1

1 − (1 − (1 + v)i−k)
=

v
(1 + v)i−1 .

Since the power series for Ti(x) where i = 1, 2, . . . , k are uniquely determined by the functional equa-

tions, then Ti(x) =
v

(1 + v)i−1 and x = v(1−v)
(1+v)k−1 are the right substitutions to solve the system of func-

tional equations (3).

Since x = v(1−v)
(1+v)k−1 then v = x(1− v)−1(1+ v)k−1. This is in a form we can apply Lagrange Inversion

formula [21]. Note that T1 = v. So,
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[xn]T1 = [xn]v =
1
n
[tn−1](1 − t)−n(1 + t)(k−1)n

=
1
n
[tn−1] ∑

a≥0

(
−n
a

)
(−t)a ∑

b≥0

(
(k − 1)n

b

)
tb

=
1
n
[tn−1] ∑

a≥0

(
n + a − 1

a

)
∑
b≥0

(
(k − 1)n

b

)
ta+b

=
1
n

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n
n − a − 1

)
. (4)

Equation (4) is a generalization of large Schröder numbers and it counts k1-plane trees on n vertices
with root labelled 1. When we set k = 2, we get large Schröder numbers which count a number of
combinatorial structures as given in [21]. When k = 2, we get non-decreasing 2-plane trees that were
introduced by Kariuki, Okoth and Nyamwala in [8]. The aforementioned authors showed that these
structures on n vertices such that the roots are labelled 1 (resp. 2) are counted by large (resp. little)
Schröder numbers. Setting k = 3 in (4), we obtain a formula which also counts 3-Schröder numbers as
recorded in the encyclopaedia [20] as sequence A064062.

Generally, let us compute [xn]Ti(x).

[xn]Ti = [xn]v(1 + v)1−i = [xn]v
1−i

∑
s=0

(
1 − i

s

)
vs =

1−i

∑
s=0

(
1 − i

s

)
[xn]vs+1

=
1−i

∑
s=0

(
1 − i

s

)
s + 1

n
[tn−s−1](1 − t)−n(1 + t)(k−1)n.

Lagrange Inversion gives,

[xn]Ti =
1−i

∑
s=0

(
1 − i

s

)
s + 1

n
[tn−s−1] ∑

a≥0

(
−n
a

)
(−t)a ∑

b≥0

(
(k − 1)n

b

)
tb

=
1
n

1−i

∑
s=0

(
1 − i

s

)
(s + 1)

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n

n − a − s − 1

)
.

Now, we have

[xn]Ti =
1
n

1−i

∑
s=0

[
(1 − i)

(
−i

s − 1

)
+

(
1 − i

s

)] n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n

n − a − s − 1

)

=
1
n

n−1

∑
a=0

[
(1 − i)

(
(k − 1)n − i

n − a − 2

)
+

(
(k − 1)n − i + 1

n − a − 1

)](
n + a − 1

a

)

=
1
n

n−1

∑
a=0

(k − i)n + (i − 1)a
(k − 1)n − i + 1

(
(k − 1)n − i + 1

n − a − 1

)(
n + a − 1

a

)
.

The second last equality follows by Vandermonde Convolution. Let us formally advertise this result as
a theorem.

Theorem 2.1. The number of k1-plane trees on n vertices with root labelled i is given by the sum

1
n

n−1

∑
a=0

(k − i)n + a(i − 1)
(k − 1)n − i + 1

(
(k − 1)n − i + 1

n − a − 1

)(
n + a − 1

a

)
. (5)
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Setting i = k in (5), we find the following corollary:

Corollary 2.2. There are

1
n(n − 1)

n−1

∑
a=1

a
(
(k − 1)(n − 1)

n − a − 1

)(
n + a − 1

a

)
(6)

k1-plane trees on n vertices with root labelled k.

Substituting k = 2 in (6), we obtain little Schröder numbers. Bijections between the set of 21-plane
trees (also called non-decreasing 2-plane trees) with roots labelled 2 and the set of other combinatorial
structures were constructed in [8]. If k = 1 in (6) then a = n − 1, and thus we rediscover the Catalan
number which enumerates 1-plane trees (plane trees).

Theorem 2.3. There are

1
n

n−1

∑
a=0

[(
(k − 1)n
n − a − 1

)
+ (k − 1)

(
(k − 1)n − k

n − a − 1

)](
n + a − 1

a

)
(7)

k1-plane trees on n vertices.

Proof. Let T(x) be the generating function for k1-plane trees. Then

T(x) =
k

∑
i=1

v
(1 + v)i−1 = v

1 −
(

1
1+v

)k

1 − 1
1+v

= 1 + v − (1 + v)−k+1.

Now,

[xn]T(x) = [xn]v − [xn](1 + v)−k+1 = [xn]v − ∑
s≥0

(
−k + 1

s

)
[xn]vs.

By Lagrange Inversion, we get

[xn]T(x) =
1
n
[tn−1](1 − t)−n(1 + t)(k−1)n − ∑

s≥0

(
−k + 1

s

)
s
n
[tn−s](1 − t)−n(1 + t)(k−1)n

=
1
n

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n
n − a − 1

)
− ∑

a≥0
∑
s≥0

(
−k + 1

s

)
s
n

(
n + a − 1

a

)(
(k − 1)n
n − s − a

)

=
1
n

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n
n − a − 1

)
+

k − 1
n ∑

a≥0
∑
s≥0

(
−k

s − 1

)(
n + a − 1

a

)(
(k − 1)n
n − s − a

)
.

By Vandermonde Convolution, we have

[xn]T(x) =
1
n

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n
n − a − 1

)
+

k − 1
n

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n − k

n − a − 1

)
.

The result thus follows.

Setting k = 2 in (7), we find that the sum of little and large Schröder numbers,

1
n

n−1

∑
a=0

n(n − 1) + a(a + 1)
(n − 1)(a + 1)

(
n − 1

a

)(
n + a − 1

a

)
,

counts 21-plane trees on n vertices. If k = 1 in (7) then a = n − 1 and thus we get the (n − 1)th Catalan
number,

1
n

(
2n − 2
n − 1

)
,

as the number of plane trees with n vertices.
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3. Root degree and label of eldest child

In this section, we obtain formulas for the number of k1-plane trees based on the root degree and
the label of the root. Moreover, we count these trees if the label of the eldest child of the root is also
taken into consideration.

Theorem 3.1. Let Ti,j,d be the set of k1-plane trees on n vertices with root labelled j and of degree d such that all
the children of the root are labelled i. Then,

|Ti,j,d| =
d

n − 1

n−d−1

∑
a=0

(k − i)(n − 1) + (i − 1)a
(k − 1)(n − 1)− di + d

(
(k − 1)(n − 1)− di + d

n − a − d − 1

)(
n + a − 2

a

)
. (8)

Proof. We extract the coefficient of xn in xTd
i . We have,

|Ti,j,d| = [xn]xTd
i = [xn−1]vd(1 + v)d(1−i)

= [xn−1]vd
d(1−i)

∑
s=0

(
d(1 − i)

s

)
vs =

d(1−i)

∑
s=0

(
d(1 − i)

s

)
[xn−1]vs+d

=
d(1−i)

∑
s=0

(
d(1 − i)

s

)
s + d
n − 1

[tn−s−d−1](1 − t)−(n−1)(1 + t)(k−1)(n−1).

Now, we apply Lagrange Inversion to obtain

|Ti,j,d| =
d(1−i)

∑
s=0

(
d(1 − i)

s

)
s + d
n − 1

[tn−s−d−1] ∑
a≥0

(
−(n − 1)

a

)
(−t)a ∑

b≥0

(
(k − 1)(n − 1)

b

)
tb

=
d(1−i)

∑
s=0

(
d(1 − i)

s

)
s + d
n − 1

[tn−s−d−1] ∑
a≥0

(
n + a − 2

a

)
∑
b≥0

(
(k − 1)(n − 1)

b

)
ta+b

=
1

n − 1

d(1−i)

∑
s=0

(
d(1 − i)

s

)
(s + d) ∑

a≥0

(
n + a − 2

a

)(
(k − 1)(n − 1)

n − a − s − d − 1

)

=
1

n − 1

[
d(1 − i)

d(1−i)−1

∑
s=1

(
−di + d − 1

s − 1

)
+ d

d(1−i)

∑
s=0

(
d − di

s

)]

× ∑
a≥0

(
n + a − 2

a

)(
(k − 1)(n − 1)

n − a − s − d − 1

)
.

By Vandermonde Convolution, we get

|Ti,j,d| =
d

n − 1 ∑
a≥0

[
(1 − i)

(
(k − 1)(n − 1)− di + d − 1

n − a − d − 2

)
+

(
(k − 1)(n − 1)− di + d

n − a − d − 1

)](
n + a − 2

a

)

=
d

n − 1

n−d−1

∑
a=0

(k − i)(n − 1) + (i − 1)a
(k − 1)(n − 1)− di + d

(
(k − 1)(n − 1)− di + d

n − a − d − 1

)(
n + a − 2

a

)
.

Since formula (8) is independent of j, it follows that |Ti,r,d| = |Ti,s,d| for all r and s satisfying the coherence
condition i + r ≤ k + 1 and i + s ≤ k + 1. We obtain the following result upon setting i = 1 in (8) and
using the fact that if a vertex is labelled k then its adjacent vertex is labelled 1.
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Corollary 3.2. The number of k1-plane trees on n vertices with roots labelled k and of degree d is given by

d
n − 1

n−d−1

∑
a=0

(
(k − 1)(n − 1)
n − a − d − 1

)(
n + a − 2

a

)
. (9)

By setting i = k in (8), we obtain:

Corollary 3.3. The number of k1-plane trees on n vertices with roots of degree d labelled 1 such that all children
of the root are labelled k is given by

d
n − 1

n−d−1

∑
a=1

a
n − d − 1

(
(k − 1)(n − d − 1)

n − a − d − 1

)(
n + a − 2

a

)
. (10)

Theorem 3.4. There are

1
n − 1

n−d−1

∑
a=0

(d(k − 1)− e)(n − 1) + ae
(k − 1)(n − 1)− e

(
(k − 1)(n − 1)− e

n − a − d − 1

)(
n + a − 2

a

)(
d − d1

d2, d3, . . . , dk−i+1

)
(11)

k1-plane trees on n vertices whose root is labelled i and the root has degree d such that among the children of the
root, dj are labelled j where j = 1, 2, 3, . . . , k − i + 1 and e := d2 + 2d3 + · · ·+ (k − i)dk−i+1.

Proof. Let Tj(x) be the generating function for k1-plane trees rooted at a vertex labelled j, where x
marks a vertex. Since there are dj subtrees rooted at the children of the root for j = 1, 2, . . . , k, there
generating function for the desired k1-plane trees in which the position of the subtrees is not taken into
consideration is xT1(x)d1 T2(x)d2 · · · Tk−i+1(x)dk−i+1 . We now proceed as follows.

[xn]xT1
d1 T2

d2 · · · Tk−i+1
dk−i+1 = [xn−1]vd1 ·

(
v

1 + v

)d2

· · ·
(

v
(1 + v)k−i

)dk−i+1

= [xn−1]vd1+d2+···+dk−i+1(1 + v)−(d2+2d3+···+(k−i)dk−i+1)

where v = x(1 − v)−1(1 + v)k−1 as given in Section 2. Now, the total root degree is d = d1 + d2 + · · ·+
dk−i+1. Define, e := d2 + 2d3 + · · ·+ (k − i)dk−i+1 so as to save us from writing the whole summation.
Then,

[xn]xT1
d1 T2

d2 · · · Tk−i+1
dk−i+1 = [xn−1]vd(1 + v)−e.

By Binomial Theorem, we get

[xn]xT1
d1 T2

d2 · · · Tk−i+1
dk−i+1 = [xn−1]vd ∑

s≥0

(
−e
s

)
vs = ∑

s≥0

(
−e
s

)
[xn−1]vs+d.

By Lagrange Inversion Formula, we have

[xn]xT1
d1 T2

d2 · · · Tk−i+1
dk−i+1 = ∑

s≥0

(
−e
s

)
s + d
n − 1

[tn−s−d−1](1 − t)−(n−1)(1 + t)(k−1)(n−1)

= ∑
s≥0

(
−e
s

)
s + d
n − 1

[tn−s−d−1] ∑
a≥0

(
−(n − 1)

a

)
(−t)a ∑

b≥0

(
(k − 1)(n − 1)

b

)
tb

=
1

n − 1

[
d ∑

s≥0

(
−e
s

)
− e ∑

s≥1

(
−e − 1
s − 1

)]
∑
a≥0

(
n + a − 2

a

)(
(k − 1)(n − 1)

n − a − s − d − 1

)
.
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By Vandermonde Convolution, we get

[xn]xT1
d1 T2

d2 · · · Tk−i+1
dk−i+1

=
1

n − 1 ∑
a≥0

[
d
(
(k − 1)(n − 1)− e

n − a − d − 1

)
− e

(
(k − 1)(n − 1)− e − 1

n − a − d − 2

)](
n + a − 2

a

)

=
1

n − 1

n−d−1

∑
a=0

(d(k − 1)− e)(n − 1) + ae
(k − 1)(n − 1)− e

(
(k − 1)(n − 1)− e

n − a − d − 1

)(
n + a − 2

a

)
.

Now, since all the all children labelled 1 for each internal vertex is on the left then there are(
d − d1

d2, d3, . . . , dk−i+1

)
ways of assigning labels to the children of the root so that there are dj children labelled j for j =
1, 2, . . . , k − i + 1. The proof follows by product rule of counting.

We obtain Theorem 8, by setting e = d(i − 1) and dr = 0 for all r ̸= i in (11). If e = 0 in Theorem 3.4
then d1 = d, d2 = d3 = · · · = dk−i+1 = 0 and thus, we find that there are

d
n − 1

n−d−1

∑
a=0

(
(k − 1)(n − 1)
n − a − d − 1

)(
n + a − 2

a

)
(12)

k1-plane trees on n vertices such that the root is labelled k and is of degree d. Equation (12) was also
obtained in Corollary 3.2. Setting k = 1 in (12), we find that there are

d
2n − d − 2

(
2n − d − 2
n − d − 1

)
plane trees on n vertices with root degree d. If k = 2 and i = 1 in (11) then d1 + d2 = d and d2 = e. This
means that d2 = d − d1 and e = d − d1. We thus obtain that there are

1
n − 1

n−d−1

∑
a=0

d1(n − a − 1) + ad
n − d + d1 − 1

(
n − d + d1 − 1
n − a − d − 1

)(
n + a − 2

a

)
(13)

21-plane trees (called non-decreasing 2-plane trees in [8]) on n vertices with root labelled 1 and has d
children of which d1 are labelled 1. Summing over all d1 and d in (13), we find the total number of
21-plane trees on n vertices with root labelled 1.

If k = 2 and i = 2 in (11) then d1 = d and e = 0. It follows that there

d
n − 1

n−d−1

∑
a=0

(
n − 1

n − a − d − 1

)(
n + a − 2

a

)
21-plane trees on n vertices with root labelled 1 and has d children all labelled 2.

4. Eldest or youngest child of the root

In this section we enumerate k1-plane trees by label of the root and label of the eldest or youngest
child of the root. We prove the following result:

Theorem 4.1. The number of k1-plane trees on n vertices with roots labelled i such that the eldest child of the root
is labelled 1 is

1
n

n−2

∑
a=0

(2k − i − 1)n + (i − 1)a
(k − 1)n − i + 1

(
(k − 1)n − i + 1

n − a − 2

)(
n + a − 1

a

)
. (14)
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1

1

5

i

5 T1(x)

5 Ti(x)

Figure 5: Decomposition of k1-plane trees with root labelled i and eldest child of the root is labelled 1.

Proof. The decomposition is as shown in Figure 5.

By the decomposition, we find that the generating function is T1(x)Ti(x). We extract the coefficient of
xn.

[xn]T1(x)Ti(x) = [xn]v2(1 + v)1−i =
1−i

∑
s=0

(
1 − i

s

)
[xn]vs+2.

Lagrange Inversion gives,

[xn]T1Ti =
1−i

∑
s=0

(
1 − i

s

)
s + 2

n
[tn−s−2](1 − t)−n(1 + t)(k−1)n

=
1−i

∑
s=0

(
1 − i

s

)
s + 2

n
[tn−s−2] ∑

a≥0

(
−n
a

)
(−t)a ∑

b≥0

(
(k − 1)n

b

)
tb

=
1
n

1−i

∑
s=0

(
1 − i

s

)
(s + 2)

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n

n − a − s − 2

)
.

Now, we have

[xn]T1Ti =
1
n

1−i

∑
s=0

[
(1 − i)

(
−i

s − 1

)
+ 2

(
1 − i

s

)] n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n

n − a − s − 2

)

=
1
n

n−2

∑
a=0

(2k − i − 1)n + (i − 1)a
(k − 1)n − i + 1

(
(k − 1)n − i + 1

n − a − 2

)(
n + a − 1

a

)
.

Corollary 4.2. There are

1
n

n−2

∑
a=0

(2k − i − 1)n + (i − 1)a
(k − 1)n − i + 1

(
(k − 1)n − i + 1

n − a − 2

)(
n + a − 1

a

)
k1-plane trees on n vertices whose root is labelled 1 such that the eldest child of the root is also i.

Proof. Detach the root and all the subtrees rooted at the children of the root except the eldest child and
attach then to the eldest child of the root in a way that the initial root becomes the eldest child of the tree
having the initial eldest child of the root as the root. This process is easily reversible. The formula thus
follows from Theorem 4.1.

Setting i = 1 in Theorem 4.1, we get the following corollary.
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Corollary 4.3. The number of k1-plane trees on n vertices with roots labelled 1 such that the eldest child of the
root is also labelled 1 is

2
n

n−2

∑
a=0

(
(k − 1)n
n − a − 2

)(
n + a − 1

a

)
. (15)

We give an alternative proof.

Bijective proof of Corollary 4.3. Let T be a k1-plane tree on n vertices with root labelled 1 such that the
eldest child of the root is also labelled i. Let g be the edge connecting the root and its eldest child. We
delete this edge to obtain an ordered pair of k1-plane trees whose roots are all labelled by 1. The first
k1-plane tree, T1, is the subtree of T whose root is the eldest child of the root of T. The second k1-plane
tree, T2, is the subtree whose root is the root of T. Now, connect the roots of the two subtrees to a new
vertex labelled k. The resultant tree is a k1-plane tree on n + 1 vertices such that the root is labelled k and
of degree 2. Moreover, the children of the root are all labelled 1. The procedure is easily reversible. The
bijection is illustrated in Figure 6. The formula therefore results by setting n = n + 1, j = 1 and d = 2 in

T T1 T2

g

1

1 2 4 3

1
1 2

3 4 3

5 1 3

3
11

2 4 31
1 2

3 4 35

1 3

3

5

11

2 4 31
1 2

3 4 35

1 3

3

Figure 6: Bijection between a 51-plane tree with root labelled 1 such that the eldest child is labelled 1
and 51-plane tree with root labelled 5 of degree 2 and all children of the root are labelled 1.

(8).

We now enumerate k1-plane trees in which the youngest child of the root is of a given label. If the
youngest child of the root is labelled 1 then all its older siblings must be labelled 1. This has already
been obtained in Corollary 2.2. So, we concentrate to determine counting formulas for k1-plane trees
in which the youngest child of the root has a specified label, different from 1. We achieve this in the
following theorem:

Theorem 4.4. The number of k1-plane trees on n vertices with roots labelled i such that the youngest child of the
root is also labelled j ̸= 1 is

1
n

n−1

∑
a=0

(2k − i − j)n + (i + j − 2)a
(k − 1)n − i − j + 2

(
(k − 1)n − i − j + 2

n − a − 2

)(
n + a − 1

a

)
. (16)

191



F. O. Oduol et. al. / J. Algebra Comb. Discrete Appl. 12(3) (2025) 181–195

Proof. The decomposition is as shown in Figure 7.

1

j

5

i

5 Tj(x)

5 Ti(x)

Figure 7: Decomposition of k1-plane trees with root labelled i and youngest child of the root is labelled
j ̸= 1.

By the decomposition, the desired generating function is Ti(x)Tj(x). We proceed to extract the coefficient
of xn in the generating function.

[xn]Ti(x)Tj(x) = [xn]v2(1 + v)2−i−j =
2−i−j

∑
s=0

(
2 − i − j

s

)
[xn]vs+2.

Lagrange Inversion gives,

[xn]TiTj =
2−i−j

∑
s=0

(
2 − i − j

s

)
s + 2

n
[tn−s−2] ∑

a≥0

(
−n
a

)
(−t)a ∑

b≥0

(
(k − 1)n

b

)
tb

=
1
n

2−i−j

∑
s=0

(
2 − i − j

s

)
(s + 2)

n−1

∑
a=0

(
n + a − 1

a

)(
(k − 1)n

n − a − s − 2

)
.

By Vandermonde Convolution, we have

[xn]TiTj =
1
n ∑

a≥0

[
(2 − i − j)

(
(k − 1)n − i − j + 1

n − a − 3

)
+ 2

(
(k − 1)n − i − j + 2

n − a − 2

)](
n + a − 1

a

)

=
1
n

n−1

∑
a=0

(2k − i − j)n + (i + j − 2)a
(k − 1)n − i − j + 2

(
(k − 1)n − i − j + 2

n − a − 2

)(
n + a − 1

a

)
.

Corollary 4.5. There are

2
n

n−1

∑
a=0

(k − i)n + (i − 1)a
(k − 1)n − 2i + 2

(
(k − 1)n − 2i + 2

n − a − 2

)(
n + a − 1

a

)
k1-plane trees on n vertices such that both the root and the youngest child of the root are labelled i.

Proof. If i ̸= 1 then the result follows by setting j = i in (16). If i = 1 then the problem is equivalent
to determining the number of k-plane trees on n + 1 vertices with root labelled k, of degree 2 and all
the children of the root are labelled 1. This is based on modification of the bijective proof of Corollary
4.3, such that the deleted edge is the one joining the root and the youngest child of the root. So, we set
n = n + 1, and d = 2 in (9).

5. Forests of k1-plane trees

In this section, we enumerate forests of k1-plane trees. The forests on n vertices considered are given
further labels 1, 2, . . . , n. These forests are called labelled forests. We enumerate labelled forests so as to
avoid redundancies.
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Theorem 5.1. There are

(n − 1)!
n−r

∑
a=0

(r(k − 1)− q)n + aq
(k − 1)n − q

(
(k − 1)n − q

n − a − r

)(
n + a − 1

a

)(
r

r1, r2, . . . , rk−i+1

)
(17)

labelled forests of k1-plane trees on n vertices with r components such that there are rj trees whose roots are labelled
j where j = 1, 2, 3, . . . , k − i + 1 and q := r2 + 2r3 + · · ·+ (k − i)rk−i+1.

Proof. Let Ti(x) be the generating function for k1-plane trees rooted at a vertex labelled i. Here x
marks a vertex. The generating function for the number of unlabelled forests of k1-plane trees with r
components is Tr1

1 Tr2
2 · · · Trk−i+1

k−i+1. So, we have

[xn]T1
r1 T2

r2 · · · Tk−i+1
rk−i+1 = [xn]vr1 ·

(
v

1 + v

)r2

· · ·
(

v
(1 + v)k−i

)rk−i+1

= [xn]vr1+r2+···+rk−i+1(1 + v)−(r2+2r3+···+(k−i)rk−i+1)

where v = x(1 − v)−1(1 + v)k−1. Since the number of components is r then r = r1 + r2 + · · ·+ rk−i+1.
We let q := r2 + 2r3 + · · ·+ (k − i)rk−i+1. Then,

[xn]Tr1
1 Tr2

2 · · · Trk−i+1
k−i+1 = [xn]vr(1 + v)−q.

By Binomial Theorem, we obtain

[xn]T1
r1 T2

r2 · · · Tk−i+1
rk−i+1 = [xn]vr ∑

s≥0

(
−q
s

)
vs = ∑

s≥0

(
−q
s

)
[xn]vs+d.

Application of Lagrange Inversion Formula gives

[xn]T1
r1 T2

r2 · · · Tk−i+1
rk−i+1 = ∑

s≥0

(
−q
s

)
s + r

n
[tn−s−r](1 − t)−n(1 + t)(k−1)n

= ∑
s≥0

(
−q
s

)
s + r

n
[tn−s−r] ∑

a≥0

(
−n
a

)
(−t)a ∑

b≥0

(
(k − 1)n

b

)
tb

= ∑
s≥0

(
−q
s

)
s + r

n
[tn−s−r] ∑

a≥0

(
n + a − 1

a

)
∑
b≥0

(
(k − 1)n

b

)
ta+b

=
1
n

[
r ∑

s≥0

(
−q
s

)
− q ∑

s≥1

(
−q − 1
s − 1

)]
∑
a≥0

(
n + a − 1

a

)(
(k − 1)n

n − a − s − r

)
.

By Vandermonde Convolution, we get

[xn]T1
r1 T2

r2 · · · Tk−i+1
rk−i+1 =

1
n − 1 ∑

a≥0

[
r
(
(k − 1)n − q

n − a − r

)
− q

(
(k − 1)n − q − 1

n − a − r − 1

)](
n + a − 1

a

)

=
1
n

n−r

∑
a=0

(r(k − 1)− q)n + aq
(k − 1)n − q

(
(k − 1)n − q

n − a − r

)(
n + a − 1

a

)
.

There are (
r

r1, r2, . . . , rk−i+1

)
ways of assigning positions for the trees to form a forest and n! ways to label the vertices. By product
rule of counting the proof follows.
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If ri = r in (17) then q = r(i − 1) and rj = 0 for all j ̸= i so that

r(n − 1)!
n−r

∑
a=0

((k − i))n + a(i − 1)
(k − 1)n − r(i − 1)

(
(k − 1)n − r(i − 1)

n − a − r

)(
n + a − 1

a

)
(18)

is the number of labelled forests of k1-trees with n vertices and r components such that the roots of all
the trees are labelled i. If i = 1 in (18), we get that there are

r(n − 1)!
n−r

∑
a=0

(
(k − 1)n
n − a − r

)(
n + a − 1

a

)
(19)

labelled forests of k1-trees on n vertices and r components such that the roots of all the trees are labelled
1. Further, on setting k = 1 in (19), we obtain the number of labelled forests of 11-plane trees (plane
trees) on n vertices as

r(n − 1)!
n−r

∑
a=0

(
n + a − 1

a

)
= r(n − 1)!

2n−r−1

∑
j=n−1

(
j

n − 1

)
= r(n − 1)!

(
2n − r

n

)
.

The last equality follows by Hockey Stick Identity.

6. Conclusion and Future work

In this paper, we have introduced and enumerated k1-plane trees according to number of vertices,
label of the root, root degree, label of the eldest child of the root, label of the youngest child of the root
and number of forests of these trees. In [20, A064062], combinatorist David Callan recorded that the
sequence 1, 3, 13, 67, 381, . . . gives the number of Dyck paths with n unit up-steps such that each unit
up-step not at ground level come in two colours. The number of these paths with n unit up-steps is
given as

1
n

n−1

∑
a=0

(
n + a − 1

a

)(
2n

n − a − 1

)
.

This formula also counts 31-plane trees on n vertices with root labelled 1. It would be interesting to
obtain a bijection between the sets of these structures. Further, bijections between the set of k1-plane
trees and the set of structures listed in sequences A003645 and A151374 of [20] can also be sought.
The generalised forms of structures which are in bijection with non-decreasing 2-plane trees obtain by
Kariuki, Okoth and Nyamwala in [8] can also be investigated if they are in bijections with k1-plane
trees. The following other variants of k-plane trees can also be considered and enumerate using various
parameters.

(i) All children of internal vertices are such that the ones labelled r where r = 1, 2, . . . , k, are on the
left of all others. These are kr-plane trees.

(ii) All children of internal vertices are such that the ones labelled 1 are followed by those labelled 2,
then labelled 3, until the ones labelled k to be on the far right.
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