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Abstract: This paper explores different types of skew cyclic codes by generating special subclasses with ad-
ditional desirable properties. Specifically, we are interested in skew cyclic codes over mixed rings.
We study some algebraic and structural properties of these codes and their constructions. We study
skew cyclic codes over the mixed alphabet ring Fq(F,; + vF;) under a mixed automorphism (6, 6)
and we give the structure of these codes for an arbitrary length via the non-commutative ring
Fylz, 0](Fqy + vFq)[z,0]. A condition for the existence of linear complementary dual (LCD) codes
(which play an important role in practical applications such as armoring implementations against
side-channel attacks and fault injection attacks) are explored specifically for skew cyclic codes.
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1. Introduction

The algebraic theory of error-correcting codes has traditionally taken place over finite fields, especially
the binary field. The theory of codes over finite rings was first developed in the early 1970s and study of
codes over various finite rings has received a lot of attention in the last few decades. The study of codes
over finite rings has significantly expanded the tools of coding theorists and yielded new useful results.
Among other results, new ways of constructing some of the best known or optimal classical codes have
been discovered, as well as quantum codes and DNA codes. For example, an optimal binary linear code
was obtained from the Gray image of a constacyclic code over Fy 4+ uF5 in [3]. In [8], new quantum codes
with better parameters have been obtained from cyclic codes over the ring Zs[u]Zs[u]/(u*). A method
of constructing reversible codes over the ring Fa[u]/(u?* — 1) for various values of k is given in [20].
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This allows us more freedom than the classical method of generating cyclic codes using self-reciprocal
polynomials, and more freedom in constructing DNA codes. The era of intensive research on codes over
rings started with the discovery in 1992 ([14]) and subsequent comprehensive development in 1994 ([18])
that some of the best binary nonlinear codes can be obtained as images of Z4-linear codes. Cyclic codes
are one of the most important classes of codes in coding theory for both theoretical and practical reasons.
Some of the best-known codes are cyclic or related to cyclic codes such as BCH codes, Reed-Solomon
codes, Golay codes, many Hamming codes, quadratic residue codes and more. They also have many
useful generalizations such as constacyclic codes, quasi-cyclic (QC) codes, and quasi-twisted (QT) codes.
Hundreds of best-known linear have been obtained from these generalizations of cyclic codes. A more
recent generalization of cyclic codes is skew (or theta) cyclic codes introduced in [10]. The algebraic
structure of skew cyclic codes over a field Fy gives rise to the skew polynomial ring Fg[z, 6], where 6
is an automorphism of F,, which is a non-commutative ring. Factorizations of polynomials in a skew
polynomial ring is not unique. For example, the polynomial " — 1 has many different factorizations
in F,[z,0]. Therefore, there are usually more skew cyclic codes of a given length over F, than ordinary
cyclic codes over [y of the same length. This increases the possibility of obtaining new linear codes with
better parameters from skew cyclic codes. Indeed, researchers have found new linear codes from skew
cyclic codes [10], [5] and from skew quasi-cyclic codes [2]. Boucher et al. ([10]) constructed skew cyclic
codes with the property that the order of automorphism divides the length of skew cyclic codes so that
the left ideal (2™ — 1) in Fy[z, 6] generated by ™ — 1 is a two-sided ideal. The same result was given
by Abualrub et al. [1] over the ring Fy + vFo. Siap et al [23] constructed skew cyclic codes without the
requirement that the order of automorphism divides the length of skew cyclic code. In the general case,
the left ideal (z™ — 1) in Fy[x, 0] generated by (2™ — 1) is not necessarily a two-sided ideal and the set
(the quotient space) R,, = F4[x,0]/(x™ — 1) is not ring but it is a left [z, 8] —submodule.

The study of codes over mixed alphabet rings was introduced by Borger et al. in [9]. It has been
shown that codes over mixed alphabets have some applications in stenography and data hiding [21].
In [4] Abualrub et al. give the structure of ZsZ4-additive codes and their generators. In |7, 22],
skew cyclic codes over various mixed alphabet rings are studied. In [7] it is shown that the skew
cyclic codes over F4R are left R[x, 0]-submodules of R, g = Fy[z]/(x* — 1) x R[z;0]/(2” — 1), where the
order of the automorphism 6 does not have to divide the length of the codes and their generators are
determined. Similar results are given in [22]. In this paper, we study skew cyclic codes over a mixed
alphabet ring using a mixed automorphism 6 over a finite field F, and an automorphism 6 of the ring
F, + vF,. This is different from the cases given in [4, 7, 9, 10, 22|. If [(#)| = m does not divide «

and |(6)| = m does not divide 3, then skew cyclic codes obtained are left (F, 4+ vF,)[z, 8]-submodules of
Rop = (Fylz,0)/(z® — 1))((Fq +vF,)[2;0]/(x® — 1)). If |()||e and if |(9)]|3, then skew cyclic codes that
are generated by the mixed ideal ((z*—1), (z® —1)) in the mixed ring F,[x, §](F, +vF,)[z; ] are two-sided
ideals of the ring Rap = (Fy[x,0]/(x* — 1))((F, + vF,)[x;0]/(z® — 1)). We investigate a relationship
between the mixed ring F, [z, 6](F, + vF,)[z; 6] and the mixed ring Fy[z, 0, 8,](F, + vF,)[z;8,0.], where
0 is an additive map such that for any b, b’ € F,, 6, (bb') = 0(b)d4(0') + 6, (b)b’ and 4, is an additive map
such that for any d,d’ € F, + vFy, 6.(dd’) = 0(d)d.(d’) + d.(d)d’". In construction codes over these rings,
we potentially have more skew cyclic codes and hence greater chances to find new codes compared to
the constructions given in [4, 7, 9, 10, 17, 22]. There are several motivations for studying codes over the
mixed alphabet ring F,(F, + vF,) with mixed automorphisms, including:

e The factorization of (z® — 1) and (2 — 1) over F,[z,0,8,] and (F, + vF,)[z;0,d.], respectively, is
not unique and this leads to potentially more skew codes compared to ordinary cyclic codes.

e The existence of more skew cyclic codes increases the chances of finding new codes compared to
the constructions given in the articles [4, 7, 9, 10, 22].

We also consider skew cyclic codes that are linear complementary dual (LCD), aiming to construct skew
cyclic codes with an additional desirable property. We refer to such codes as LCD-codes. Self dual codes
have been intensively studied in coding theory for many decades. Compared to self-dual codes, LCD codes
have an opposite property in terms of the size of their hulls (the intersection of a code with its dual) and
they have received much attention recently. Hence, it is natural to study LCD codes from a mathematical
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point of view. Massey [19] first introduced them in 1992, the motivation being their application to the
so-called two-user binary adder channel. Massey showed that the unique decodability problem for this
scenario is overcome if one uses an LCD code. These codes have attracted a lot of attention since the
discovery by Carlet and Guilley [12] in 2015 of their use in counter-measures against side-channel attacks
(SCA) and fault injection attacks (FIA) in the context of direct sum masking (DSM). In this paper, we
present a condition for the existence of LCD-codes.

The paper is organized as follows. In section 2, we present some basic facts about the ring Fy(F, + vF,)
and introduce skew cyclic codes over this ring. In section 3, we study the algebraic structure of skew
cyclic codes with an arbitrary length and determine their generators in F,[z, 8, §,](F4 + vF,)[z; 0, 6.]. In
section 4 we study a necessary and sufficient condition for a skew cyclic code to be an LCD code over
the ring F,(F, + vFy). In section 5, we give examples of optimal and best-known linear codes obtained
from skew polynomial rings with derivation over the fields GF(4), GF(8) and GF(9).

2. Preliminaries

Let IF, be the finite field with ¢ = p™ elements where p is a prime. We consider the noncommutative
ring Fg[z,0,0,] = {aaaz® + -+ a1z +ap : a; € Fy} where p is the characteristic of F,, the automorphism
6 is a power of the Frobenius map (z — 2P), and J,(b) = a(6(b) — b) is a O-derivation, where a,b € Fy,
also called an inner derivation. The addition in this ring is the usual addition of polynomials. The
multiplication is as given in [11] for a skew polynomial ring with derivation. It is defined iteratively
starting with « - b = 0(b)z + 0,(b), for all b € F,. Then it is extended to all elements of F,[z,0,d,]
recursively by associativity and distributivity.

The non-commutative ring Fy[x,0,d,] is called a skew polynomial ring with derivation, and its
elements are skew polynomials. It is a left and right Euclidean ring whose left and right ideals are
principal. A skew cyclic code C over F, is a linear code with the property that if ¢ = (cp, c1,- -+ ,ca-1) €C
then (6(ca—1),0(co),- -+ ,8(ca—2)) € C. The quotient space R, = Fy[z,8,d,]/(z* —1) is a ring if the ideal
(z® — 1) is a two-sided ideal which happens if * — 1 is in the center of the ring F,[z,6,,]. For any
f(x) 4+ (z* — 1) € Ry and r(z) € Fy[z,0,d,], one can define a multiplication x from the left as follows
r(z)* (f(z) + (* = 1)) = r(x) f(z) + (z* — 1). As usual, we consider the map

£y — Fylz,0,04]/(z% — 1)

(CosC1,+ s Cam1) = Co + 12 + C22” + -+ + Cq12® T
which is an F,[z, 0, §,]-module isomorphism, that enables us to identify vectors with polynomials.

We now consider the ring F, + vF, = {a + vb : a,b € F;} where v = v%. This is a non-chain ring

with ¢® elements. It is a semi local ring with maximal ideals (v) and (1 — v) making (F, + vF,)/(v) and
(F, +vF,)/(1 — v) isomorphic to F,. A subset C of (F, + vF,)? is a linear code over F, + vF, if C is an
(F, +vF,)-submodule. Any linear code C over F, 4 vF, can be expressed as C' = vCy @(1 — v)Cy where

Ci and Cs are linear codes over F,. For more details on skew codes over Fy + vF, see [16].

Let an automorphism 6 over F, + v, be defined by

0:F, +vF, = F, +oF,
a+vb—ad + (14 v)b?P

We define the skew polynomial ring (F, 4+ vF,)[z, 0, 0. = {bo + bz + -+ bp_12P~ 1 : b; € F, 4 vF,}
where f-derivation must be an inner derivation d, such that é.(d) = ¢(6(d) — d), where ¢,d € F, + vF,.
The multiplication is defined by 2d = 0(d)z + 6.(d) and addition is defined to be the usual addition of
polynomials. This ring is not commutative unless the automorphism 6 is trivial. The ideal (z% — 1) of
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(F,+vF,)[z,0,5.] is a two sided ideal if and only if |(6)||3, in which case the set (F,4vF,)[x, 0,/ (z’ 1)

is a residue class ring. For an arbitrary 3, (Fy +vF,)[x,8,0.]/(2® — 1) is a left (F, +vF,)[z, 0, .] module
with a multiplication defined by

r(@)(f(2) + (&7 = 1)) = r(z) f(x) + (2" — 1)

We define an (F, 4 vF,)-module isomorphism from (F, 4+ vF,)? to (F, + vF,)[z,0,0.]/(z® — 1) as

£: (F, + vIFq)B — (F, + vIFq)[x;é, Sc]/(xﬁ -1)

(607 éla e 7Eﬁ71) — 6O + Elx + 525(:2 +--- 4+ 53711‘[?_1.

Theorem 2.1. ([16, Theorem 5]) Let Cy and Cy be skew cyclic codes over F, and g1, g2 be the monic
generator polynomials of these codes respectively. Suppose that C = (1 —v)Cy @ vCs. Then there is a
unique polynomial g(x) € (Fy +vF,) [x;0;] such that C = (g(x)) and g(z) is a right divisor of 2" — 1
where g(x) = (1 = v)g1(z) + vga(z).

Next, we extend the notion of skew cyclic codes over Fy[z, 6, d,] to the ring (F, 4+ vF,)[z,8,0.]. We
first define the ring Fy(F, + vFy) = {(c,a + vb) : a,b,c € F,}. It is a commutative ring of characteristic
p. The finite ring F,(F, + vF,) is not a chain ring and it is not local because it has three maximal ideals
((0,1)),{(1,v)) and {(1,1 — v)). We consider the natural homomorphism:

U (F, +vF,) = F,

a+vb—b.
It is straightforward to verify that the ring F,(F, +vF,) is an (F, + vF,)-module under the multiplication
d* (a,b) = (¥(d)a,db) with d € (F, + vF,) and (a,b) € Fy(F, + vF,). (1)

This scalar multiplication extends naturally to Fg (F, + vF,)?. Let x = (ag, a1, ..., aa—1,b0, b1, ..., bg_1) €
F(F, + vFq)?, for v and 8 € N, and d € (F, + vF;). Then

d*x = (U(d)ag, U(d)ay, ..., ¥(d)aq_1, dbo, dby, ..., dbs_1). (2)

Definition 2.2. A nonempty subset C' of Fg(F, + vF,)? is called an Fy(F, + vF,)-linear code if it is an
(Fy + vFy)-submodule of Fg(F, + vF,)? with respect to the scalar multiplication in equation (2).

An inner product of x = (ag,a1,...,0a0-1,b00,b1,...,bp—1) and y = (do, d1,...,da—1,€0,€1,...,€5-1)
in F¢(F, + vF,)” is given by

a—1 B—1
(x,y)=(1=0) ) aidi + Y _bje; € Fy+vF,. (3)
i=0 =0

The dual code of an F,(F, +vF,)-linear code C, denoted by C*, is also F,(F, + vF,)-linear and is defined
in the usual way as

ct={ye Fg(Fy + vF,)? | (x,y) = 0 for all x € C}.
Let

f(x) =ao+ a1+ ...+ ag_12°" 1 € Fylz,0,8,]/(x™ — 1) and
fl@)=bo+biz+...4+bs12°7 € (F, +ovF,)[z,0,5.]/(z" —1).
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Then any codeword x = (ao, A1y eeey A—1, bo, bl, ceey b,@,]_) S Fg (]Fq + ’I)Fq)’g can be identified with a module
element consisting of two polynomials such that

c(w) = (f(=), f(x)). (4)
This identification gives a one-to-one correspondence between F¢ (F, + vF,)” and
Rop = F,[2,0,0,]/(x® — 1)(F, + vF,)[z,0,5.]/(z® — 1). (5)
The product of r(z) =r¢ + 712 + ... + rat € (Fy +vF,)[x, 0,0, and (f(z), f(x)) € Rap is
r(a) * (f(x), f(2)) = (U(r(2)) f(2),r(2) f(2)), (6)

where U(r(z)) = ¥(rg)+¥(r1)z+...+ V(ry)z" € Fylz,0]. Here, U(r(z))f(z) is the polynomial multipli-
cation in [z, 0]/(z* — 1) while r(x) f(z) is the polynomial multiplication in (F, +vF,)[z,8,0.]/(z” — 1)
where z(a + vb) = (a? + (1 4 v)bP) x + dc(a + vb).

We define a Gray map

¢ :Fy+vF, — F2

a+vb— (a,a+0b)

As usual, the Hamming weight of a vector x € Fg is the number of non-zero coordinates. The Lee
weight on (F, + vFy) is wr(a + vb) = wg(a,a + b). The Lee distance dj(x,y) between x and y
is wr(x —y) and the Hamming distance dg(x,y) is wg(x —y). The weight of x = (x4,%g) in
F,(F, + vF,) is defined to be w(x) = wy(xs) + wr(Xz). The map ¢ can be extended to vectors
X = (X0, X1, -+ Xa—1,%X0,X1, ..., Xg-1) € Fg x (Fy + vF,)?. A Gray map is defined by

¢ 1 FS(Fy + vF,)f — Fot20

(Xa:Xp) = (Xa, (Xp))

3. Skew cyclic codes over the ring F,(F, + vF,)

In this section we study algebraic properties of skew cyclic codes over F (F, + vF,) which depend
on the elements of finite field F,, the finite ring (F, + vF,), and the pair of automorphisms (6, 6) over
F,(Fq + vF,) where

O : Fy(F, + vFy) — Fy(Fy + vF,)

(c,a+vb) = (P,aP + (1 +v)bP)
For any a vector ¢ = (co, 1, -+, Ca—1, €0, €1, - -, €g—1), we define its afS-skew cyclic shift
Tap 1 FE(Fq + vF,)’ — F(F, + vF,)”
by
Tag(€) = (0(cam1), 0(c1), - - 0(co), 0(E5-1), 0(c1), - - -, 6())
We investigate a relationship between the mixed ring Fy [z, 6](Fq + vFg)[z, 0] and F,[z,6,0,)(F, +
vlFy) [z, 8, 0.] using the change of variables z =  +a and y = 2 + b to transform the ring Fy[x, 0, 6,](F, +

vF,)[z, 0,0, into the pure-automorphism ring F, [z, 0](F, + vF,)[y,0]. If 6, = 6. = 0, then these two
rings become the same. For more details see [13]. In the following theorem we determine the centre

zZ (Fq [x,0](F, + vF,)[x, é]) of the mixed skew polynomial ring with 8, = . = 0.
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Theorem 3.1. The center Z(Fq[x,0](Fq—|—v]Fq)[x,é])~oqu[ac,¢9](IFq+qu)[x,67}) is (Fylx™],Fq+vF,[x™])
where m is the order of the mized automorphism (0,0).

Proof. Let m be the order of the mixed automorphism (6,0). For any element a € (F, + vF,), we
have (™, 2™)a = (™y(a),z™a) = (0™ (¢ (a ))m’f,ém(a)mm) = (Y(a)z™, az™) = a(z™,z™). Therefore,
(™, x™) is in the center Z(F,[z, 0](Fq + vF,)[x,0]) of Fy[z, 0](Fy + vFy)[z, 0]). Similarly, for any f(z) =

ap +arz+ - z®, f(z) = ao + a1 + - —i—a@x'B is in the center where (a;,a;) € Fy(Fy + vFy).
Conv?rsely, for any (f,f) € Z(F,[z, 9](IF + oF,)[z,6]) and a € (F, + vF,), if a(f,f) = (f,f)a and
o(f, f) = (f,f)z. Then (f, f) € (Fy[a™], Fy + vFy[z™]). B

In the following theorem, we give a necessary and sufficient condition for (z* — 1, 2% — 1) to be in
Z(Fy[x, 0](F, + vF,)[x,0]), with §, = o, = 0.

Theorem 3.2. (z® — 1,27 — 1) € Z(F,[z,0)(F, + vF,)[x,0]) if and only if |(0 )| and |(0 ||5 where
Z(F,[z,0)(F, + vF,)[x,0]) is the centre of B[z, 0](F, 4 vF,)[z, f]).

Proof. Let f(z) = ag + aix + - - - + ayx” € (F, + vF,)[z,6]. Since | (0)]|c and | (0 Hﬁ, we have

(2% = La” = 1) f(z) =((2* = DU(f(2)), (2" = 1)f(2))
=(z°VU(ag) + 2%V (ay)x + - - - + 2°W(a,)z" — f(z), 2% (ap)+
2?(a)e+ -+ 2% (ar)a” — f(2))
=(0%(¥(ag))z™ +6%(¥(a1))z%e + - - - + 6% (¥(ar))z"z" — f(),
0% (ap)z? + 0% (ay)2x + - + 0% (a,)2P2" — f(x))
=(T(ap)z® + V(a)z®z + - - + ¥(a,)z%z" — f(x), apz’+
amzlr + -+ a2l — fx)
=(U(f(2)z* — f(x), f(x)2” — f(x))
=((f(2))(a* = 1), (f(2))(@” ~ 1))
=f(x)(z* —1,2° = 1)
Hence, (z* — 1,2° —1) € Z(F, [z, 0](F, + vF,)[z,6)).
Conversely suppose that (z* —1,2° —1) € Z(F,[x, 8](F,+vF,)[x,0]). Then we have (z*—1, 2% —1)az™ =
az™(z® — 1,27 — 1) where a € (F, + vF,). We have that
(% —1,2° — )az™ = ((z® — 1)¥(a)z™, (" — 1)az™)
= (0%(U(a)z*T™ — U(a)z™, 0% (a) 2z ™ — az™)
and
az™(z% — 1,2% — 1) = (U(a)z™(z® — 1), az™ (2" — 1)) = (¥(a)z™ — U(a)z™, azP*F — az™).
It follows that 6“(a) = a for each a € Fy and 07 (a+bv) = a+ bu for all a+ bv € F, + vF,, which implies
Ha and |(6 ||6 O
From Theorem 3.1 and Theorem 3.2 we have that R, g := F,[z,60]/(z® — 1)(F, + vF,)[z,0]/(z® — 1)
is a ring, therefore we have the following theorem.

Theorem 3.3. Let |(0)||a, (¢ Hﬂ and let (C,C) be a skew cyclic code of length a + 3 over R, 5 where
C and C are skew cyclic codes over Fy[x,0]/(z® — 1) and (F, + vF,)[z,0]/(x® — 1), respectively. Then
(C,C) is a left ideal of Ry :=TF4lz,0]/(z* — 1)(Fy + vF,)|[z, 9]/<xﬁ —1).
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Proof. Since (C,C) is a linear code, (C,C) is an additive group. Let (a(z),b(z)) € (C, C) where
a(x) =ag+ a1z + -+ ag_12°"1 € C and b(z) = by + b1z + - + bg_12P L € C

z* (a(z),b(x)) =z (ag + a1z + - + aq_12% L bo + by + - + bg_12° 1)
=(0(aa—1) + 0(ag)x + - + 0(ag_2)x* ", 0(bg_1) + O(bo)x+
S+ 0(bg2)2 )

Hence, (C,C) is a skew cyclic code, and z * (a(x),b(z)) € (C; C')N Moreover, by linearity and iteration
we have r(z) x (a(z),b(z)) € (C,C), for any r(x) € (F, + vF,)[x,0]/(z® — 1). Therefore, (C,C) is a left
ideal of R, g. O

Let C be an Fg(F, + vF,)P-skew cyclic code. Let O denote the zero polynomial. The factorization
of (z* — 1) and (2% — 1) over F,[z,0,8,] and (F, +vF,)[z, 0, ] respectively are not unique. We use the
change of variables z = x + a and y = z 4 b to transform the rings F,[z, 6, d,], (F, + vF,)[z,0,.] into
the pure-automorphism rings Fy[z, 8], (F, + vF,)[y, 6]. We then obtain the factorizations of (2 — 1) and
(y® — 1) over the new rings and they are the same as the factorizations of (z® — 1) and (2 — 1) over
F,lx,0,0,] and (Fy+uF,)[x, 0, SC] respectively. For this correspondence, we define the ring homomorphism

by:

Y Fylz,0,00)(Fy + vFy) [z, 0,0.] — Fy[Z,0)(F, + vF,)[Y,0,]

(Zaizi,Zbixi)r—)(Zazz—a Zb sz>

The ring homomorphism 1 induces a map from a (6, 0,0,,0,.)- linear code over the ring Fylz,0,00](F, +
vF,)[z,0,0.] to a (,6)-lincar code over the ring Fy[z,0](F, + vF,)[y,0]. From the result is given in
[[7], Theorem 3.3 | and the ring homomorphism 1, we have the following corollary which classifies all
F,(F, + vF,)-skew cyclic codes with mixed automorphism (6, §)-derivation.

Corollary 3.4. Let C be an Fy(F, + vF,)-skew cyclic code generated by

C = ((f(z),0), (L(x),g(x))), where £(x) is an element in Fy[x,0,0,]/{x*
divisors of (z® — 1) and (z° — 1) over Fy[z,0,5.]/(z* — 1) and (F, + vF,)[z,
Then C'is a skew cyclic code over F [z, 0](F + vF)[y, 0] generated by ((f(z),
an element in Fglz,0]/(z* — 1), z=x+a, y=2+b and f(z) and g(y) are
Y =1 over Fylz,8]/(2* — 1) and (Fy +F,)[y38)/(4° — 1), respectively,

gz

)

f(z) and g(x) are right
/(x? — 1), respectively.
z),9(y))) where £(z) is

-1
0,
)
right divisors of z* — 1 and

oc]
(£(
ght

Example 3.5. Let C = {(f(x),0), (¢(x),
18 where f(z) = 22 +wr +w, £(z) =04
(F4 + UIF4)[.’L‘, 9, (SU]

By the ring homomorphism ¥, we obtain f(z) = 2% + w?z + w, £(z) = 0 in Fy[z,0] and g(y) = y> +
(v + 1)y? 4+ wy + w?v + 1 in (Fy + vF4)[y, 0] where z = x +w and y = x +v. By Corollary 3.4 we get
C = ((f(2),0), (U(2),9(1))), a skew cyclic code over F4lz,0)(Fy + vFy)[z, 6].

))) be the skew cyclic code over Fq(Fy + vFy) of the length
Fy

[7,0,0,] and g(z) = 2% + (v + w)2? + (v + w)z + 1 in

In the table below, we give a few examples of skew cyclic codes with their parameters ( length n and
minimum distance d) over the ring Fy(Fo + vF5).

4. LCD-skew cyclic codes

In this section we give the definition of a LCD-skew cyclic code and a necessary and sufficient
condition for an skew cyclic code to be an LCD code over the ring F,(F, + vFy).

Definition 4.1. A linear code over the ring Fy(F, + vF,) is LCD if C N C*+ = {0}.
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Table 1. Construction of skew cyclic codes with the mixed automorphism over Fy(F2 + vF3)
obtained by Corollary 3.4.

The code C n|d

((2* 4+ 22 +1,0),(0,2* + (v + 1)z + 22 + vz + 1)) 15| 7

((2* 4+ 2+ 1,0),(0,2° + 1)) 17| 5

((* 4+ 2% +1,0),(0,2" + 2° + 2° + 2* + 2+ 1)) 29| 7

((2* +2+1,0), (0,2 + 2" +2° + (1 +v)z" +va® +2° + (1 +v)2® + 2+ 1)) 39|11

In the following theorem, we generalize the result from [6, Lemma 3| to F,(F, + vF,) and the
condition for the existence of the LCD skew cyclic codes over the rings Fy(IF, + vF,).

Theorem 4.2. Let C be a skew cyclic code over F,(F, 4+ vF,) of length n = a + 3. Then we have
(i) o(C) = C1®Ca®C3 is a skew cyclic code over Fy of length o+ 2 where Cy and (C2,C3) are skew
cyclic codes over F, of lengths a and 23 respectively.
(i) o(C+) = ¢(C)*. Moreover p(C+) = Cf ® C5- @ C4-.
(i11) ©(C') is an LCD skew cyclic code if and only if C1, C2 and Cs are LCD skew cyclic codes over F,.

Proof. (i) Let C be a skew cyclic code over Fy(F, + vF,) of length n = o + 8. Any codeword of C
can be written as ¢ = (co, ¢1,...,Ca—1,a0 + by, a1 + vb1,...,ag—1 +vbz_1). Applying 6, we have

0(c) = (ch_1,¢hsosChnyaly  + (1 —v)b a0+ (1 —0)bg,...,a5 o+ (L—0)bf_,) € C.
Next, applying the Gray map ¢, we have ¢(8(c)) = (ca—1,€1,-.-,¢0,9(ag—1 + vbg_1,a1 +
”Ubl,. ..,Qap +Ub0) = (Ca_l,Cl,. -.,Cp,a8-1,07 .- .ao,bﬁ_l,bl,.. bo) S Cl ®CQ ®Cg
(ii) p(C+) = o(C)* is a generalisation of the result given in [6, Lemma 3] over Fy(F, + vF,) and we
get p(C*) = p(C)*+. Moreover p(C+) = (C; ® Cy ® C3)*+ = Cf @ Cy @ C5-.

(iii) Let ¢(C) = C1 ® Cy @ C5 be a skew cyclic code of length o + 23 over F,. By (ii) we have that
o(C+) = Cf ® C5- ® C. By the definition of direct product, we have p(C UC+t) = (C; UCH) ®
(CoUCy) ® (C3UCy). o(C) Np(C)+ = {0}. Therefore ¢(C) is an LCD skew cyclic code.

O

5. Computational Results

In this section, we present examples of good linear codes obtained from skew polynomial rings
with derivation over the fields GF(4), GF(8) and GF(9). These codes are either optimal or have the
same parameters as best known linear codes available in the database [15]. These codes are principally
generated in the form C' = (g(x)) where g(z) divides 2™ — 1 in F,[z, 0, §,].
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Table 2. Examples of best known and optimal linear codes over GF(4) where z below denotes a
root of z? + z + 1 € Fyx]

[n, k,d] 0(zx) g(x) derivation’s a
(6,2,4]4 0(x) = z* x4 223 22 + P 2>

[7,3,4]4 0(x) = z* zt + 2% 4 2Px 2P z

(14,11, 3]4 0(x) = z* R i 7 1

(18,14, 3]4 0(x) = 22 4zttt 2 z

[21, 18, 3]4 0(z) = x2 3 4 2% a4 2P 2?

Table 3. Examples of best known and optimal linear codes GF(8) where z below denotes a root
of 2° + 2 +1 € Fyz]

[n, k,d] 0(x) g(x) derivation’s a
6,3,4]s O(z) = z* z® + 2522 + 252 4 2° z

[

[10,6,4]s 0(x) = z* xt 4 223 4 282?20 2

(10,5, 5]s 0(x) = x* x4 200" 2523 4 2007 + O+ 22 2*

[12,8,4]s 0(x) = «* 2t 4 a2’2® + e 4 P+ 2 z

[16,12,4]s 0(x) = «* ot 4+ 2t 4 2t 2*

[10,4, 6]s 0(x) = z* 28 + 2225 + 2at + 22 2 2t 4 28 28

[20, 14, 5]s 0(x) = x2 2% 4 2028 4o a4 20t 2 4 2% 2P 2P P

[20,11,7]s 0(x) = x? 28 4 2t 2wt 4 202 4 2P x4 22 P

Table 4. Examples of best known and optimal linear codes GF(9) where z below denotes a root
of 22 4+ + 2 € F3[x]

[n, k,d] 0(x) g(z) derivation’s a
s 9 )= T+ 2z + 2P+ 2+ 2 z

[13 974} 9( ) 3 4 2,3 5,.2 2 3
s 9 )= x + 2z + 2z 42"+ 2+ 2 z

18,12, 5] o(x) 3 6, 2.4, 3.3, 62 2 3 2
,17,4)9 )= "tz + 2z + 2"+ 20+ z

99 17.4 0 3 5 44 LT3 4 T2 90 19 2

[24, 16, 6]9 0(x) = «® 28 4 2% 270 4 22+ Pt 22t 4 P a2 P

[24,19,4]y 0(x) = z* 25+ 2Pt + 2+ 2Tt 242 28
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6. Conclusion

In this paper, we presented our study on mixed skew cyclic codes over rings . We investigated the
structural and algebraic properties of these codes, highlighting their potential for practical applications,
particularly in strengthening the defense against cryptographic attacks such as side-channel and fault
injection attacks. Additionally, we demonstrated that under a mixed automorphism, a condition for the
existence of linear complementary dual (LCD) codes can be specifically developed for skew cyclic codes,
further enhancing their utility in secure communication systems.
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