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Abstract: In this paper, we shall give an explicit proof that constacyclic codes over finite commutative rings
can be realized as ideals in some twisted group rings. Also, we shall study isometries between those
codes and, finally, we shall study k-Galois LCD constacyclic codes over finite fields. In particular,
we shall characterize constacyclic LCD codes with respect to Euclidean inner product in terms of its
idempotent generators and the classical involution using the twisted group algebras structures and
find some good LCD codes.

2020 MSC: 20C05, 16S34

Keywords: Twisted group algebras, Finite groups, Galois LCD constacyclic codes

1. Introduction

Linear codes with complementary duals (abbreviated LCD) are linear codes whose intersection with
their dual is trivial. When they are binary, they play an important role in armoring implementations
against side-channel attacks and fault injection attacks.

Linear complementary dual codes have importance in data storage, communications systems and
security too.

These codes have been studied for improving the security of information on sensitive devices against
side-channel attacks (SCA) and fault non-invasive attacks, see [4], and have found use in data storage
and communications systems.

Carlet and Guilley, in [5], also investigated the application of binary LCD codes against side-channel
attacks (SCA) and fault tolerant injection attacks (FIA). Also, in [13], the authors constructed explicity
LCD codes and have explicit efficient encoding and decoding algorithms .

In [11], Fan and Zhang, introduced the concept of k-Galois form, which is a generalization of Eu-
clidean and Hermitian inner products and Liu, Fan and Liu, in [16], studied k-Galois LCD codes.
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So, this paper is devoted to study constacyclic codes in terms of twisted group rings of cyclic groups
and to classify the k-Galois LCD constacyclic codes over finite fields in terms of idempotents. Using that
approach, we can find some good code from twisted group ring.

Also, in [6], the authors proved that linear codes are equivalent to LCD codes over finite fields Fq,
for q > 3.

Let R be a finite commutative ring, C be a linear code over Rn, that is, C is a R-submodule of Rn
and let λ be an element of U(R), the group of units of R. We say that C is a λ-constacyclic code if

(c0, c1, · · · , cn−1) ∈ C =⇒ (λcn−1, c0, · · · , cn−2) ∈ C

for all (c0, c1, · · · , cn−1) ∈ C.
When λ = 1, we have so called cyclic codes and, when λ = −1, we have negacyclic codes. Thus,

constacyclic codes are generalization of cyclic and negacyclic codes and they have been studied for many

authors ([1], [2], [10]). Also, constacyclic codes can be realized as ideals in polinomial factor ring
R[x]

〈xn − λ〉
.

Given x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) two elements of a linear code C, the Hamming
distance between x and y is the number

dH(x, y) = |{i : xi 6= yi, 0 ≤ i ≤ n− 1}|.

and the weight of x is

wH(x) = d(x, 0) = |{i : xi 6= 0, 0 ≤ i ≤ n− 1}|.

It is well known that, for a linear code C, we have dH(x, y) = wH(x− y), for all x, y ∈ C.
Let G be a group and A be an abelian group. A map

α : G×G −→ A

is a 2-cocycle if , for all x, y and z in G, we have

α(x, y)α(xy, z) = α(y, z)α(x, yz).

and a map t : G×G −→ A is a 2-coboundary if there is a map δ : G −→ A such that

t(x, y) = δ(x)δ(y)δ(xy)−1.

As usual, the set of all 2-cocycles will be denoted by Z2(G,A) and the set of all 2-coboundary will be
denoted by B2(G,A). Finally, we say that a 2-cocycle α is normalized if α(x, 1) = α(1, x) = α(1, 1) = 1,
for all x ∈ G. Notice that, if α is a 2-cocycle, we can replace α by α′ given by

α′(x, y) =
α(x, y)

α(1, 1)

which is a normalized 2-cocycle. From now on, we assume that all 2-cocycle are normalized.

Let R be a commutative ring and G be a group. The twisted group ring RγG of G over R is the
associative ring with basis G = {g, g ∈ G}, which is a copy of G, and the multiplication is defined on the
basis as
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g · h = γ(g, h)gh

where γ(g, h) is an element of U(R), the group of units of R.

The mapping γ : G × G −→ U(R) is called twisting and there are many different possibilities for
RγG depending on the choice of the twisting. For instance, the group ring RG of G over R is a twisted
group ring with γ(g, h) = 1. Furthermore, the associative condition on the multiplication implies that

γ(g, h)γ(gh, k) = γ(h, k)γ(g, hk)

and, for this reason, γ is a 2-cocycle.

When G = Cn = 〈g〉, a cyclic group of order n and R = F, a field, we have the following well-known
result. See for example, [14], Theorem 3.1.

Lemma 1.1. Let Cn = 〈g〉 be a cyclic group of order n and A be a finite Cn-module, i.e., A is a finite
abelian group with an action of Cn in A. Let ACn = {a ∈ A : ag

i

= a for all gi ∈ Cn}. Also, define the
norm map N : A→ ACn by N(a) =

∏n−1
i=0 a

gi .

Then, for every λ ∈ ACn , we have that γλ : Cn × Cn → A defined by

γλ(g
i, gj) =

{
1, i+ j < n

λ, i+ j ≥ n

is a 2-cocycle and H2(Cn, A) = {[γλ] : λ ∈ A} ∼= ACn/Im(N).

It is possible make a diagonal change of basis by replacing each g by g̃ = δ(g)g for some δ(g) ∈ U(R)
and, with this change of basis, RγG is realized in a second way as a twisted group ring of G over R with
twisting

γ̃(g, h) = δ(g)δ(h)δ(gh)−1γ(g, h).

In this case, we say that γ and γ̃ are cohomologous.

Lemma 1.2. [17, Lemma 2.1] The following relations hold in RγG

i. 1 = γ(1, 1)−11

ii. For all g ∈ G,

g−1 = γ(g, g−1)−1γ(1, 1)−1g−1 = γ(g−1, g)−1γ(1, 1)−1g−1

Let Cn = 〈g | gn = 1〉 be a cyclic group of order n, R be a commutative ring and RγCn the twisted
group algebra with

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n

where λ is a unit element of R. Thus, g2 = g · g = γ(g, g)g2, so we can make a diagonal change of basis
and replace gk by gk, for all k, 1 ≤ k ≤ n. Thus, there exists a unit element a ∈ R such that gn = a · 1
which implies that RγCn is a commutative ring.
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2. Constacyclic codes over finite commutative rings

In this section, we shall study constacyclic codes over a finite commutative ring. The next result
was proved for finite fields in [8], Example 2.5. We shall generalize this result and give an explicit proof
for finite commutative rings.

Theorem 2.1. Let R be a finite commutative ring , Cn = 〈g | gn = 1〉 a cyclic group of order n and C
be a linear code over Rn. Consider the linear mapping ϕ : Rn −→ RγCn given by ϕ(c0, c1, · · · , cn−1) =
c01+ c1g+ · · ·+ cn−1gn−1. Then, C is a λ-constacyclic code if and only if ϕ(C) is an ideal of RγCn where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

Proof. Let C be a linear code over F. Suppose that C is a λ-constacyclic code and let x =
ϕ(c0, c1, · · · , cn−1). Then, x = c01 + c1g + · · ·+ cn−1gn−1 and

g · x =

= g · (c01 + c1g + · · ·+ cn−1gn−1) = c0g · 1 + c1g · g + · · ·+ cn−1g · gn−1

= c0 · g + c1g2 + · · ·+ cn−1λ · 1
= ϕ(λcn−1, c0, · · · , cn−2).
Since C is λ-constacyclic, by hypothesis, we have (λcn−1, c0, · · · , cn−2) ∈ C, this implies ϕ(C) is an

ideal of RγCn.

On the other hand, if (c0, c1, · · · , cn−1) ∈ C, then g · ϕ(c0, c1, · · · , cn−1) ∈ ϕ(C), so
(λcn−1, c0, · · · , cn−2) ∈ C and C is λ-constacyclic.

Now, we shall study isometries between constacyclic codes.

Definition 2.2. Let R be a finite commutative ring, G be a finite group and let λ, µ be elements of U(R).
We say that an isomorphism of R algebra

ϕ : RλG −→ RµG.

is an isometry if it preserves the Hamming distance on the algebras, i.e.,

dH(ϕ(a), ϕ(a′)) = dH(a, a′).

In [12], Ginosar and Moreno have obtained a criterion for isometries between crossed products. Since
twisted group algebras consist a particular case of crossed product, the result is also true for constacyclic
codes.

So, given a commutative ring R and a group G, we say the twisted group algebras Rγ1G, with basis
G, and Rγ2G, with basis G̃, are equivalent if there exists an R-algebra isomorphism

f : Rγ1G −→ Rγ2G

and a mapping δ : G −→ U(R) such that f(g) = δ(g)g̃, for all g ∈ G.

Lemma 2.3. [15, Lemma 1.1] Let R be a finite commutative ring and G be a group. The twisted group
algebras Rγ1G and Rγ2G are equivalent if and only if γ1 and γ2 are cohomologous.

Proposition 2.4. [12, Theorem 3.5] Let R be a commutative ring, G be a finite group of order n.
There exists an isometry between the twisted group algebras Rγ1G and Rγ2G if and only if γ1 and γ2 are
cohomologous.
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Now, we have the following

Proposition 2.5. Let R be a commutative ring, Cn = 〈g | gn = 1〉 be a cyclic group of order n and λ, β
elements of U(R). Then, the twisted group algebras RγλCn and RγβCn where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

γβ(g
j , gk) =

{
β, if j + k ≥ n
1, if j + k < n.

are equivalent if and only if there exists a unity a of R such that λ = anβ.

Proof. Suppose that RγλCn and RγβCn are equivalent. By Lemma 2.3, there exist a mapping θ :
Cn −→ U(R) such that γλ(gj , gk) = θ(gj)θ(gk)θ(gj+k)−1γβ(g

j , gk), for all 0 ≤ i, k ≤ n − 1. So,
1 = γλ(1, g) = θ(1)θ(g)θ(g)−1γβ(1, g) = θ(1). Furthermore, 1 = γλ(g, g) = θ(g)θ(g)θ(g2)−1γβ(g, g) ⇒
θ(g2) = θ(g)2. Now, 1 = γλ(g, g

2) = θ(g)θ(g2)θ(g3)−1γβ(g, g
2)⇒ θ(g3) = θ(g)3.

Consequently, for all k < n, we have

1 = γλ(g, g
k−1) = θ(g)θ(gk−1)θ(gk)−1γβ(g, g

k−1)⇒ θ(gk) = θ(g)k.

This shows us λ = γλ(g, g
n−1) = θ(g)θ(gn−1)θ(1)−1γβ(g, g

n−1) = θ(g)nβ and, taking a = θ(g), we
have λ = anβ.

On the other hand, if λ = anβ, for some a ∈ U(R), we can define θ : Cn −→ U(R) by θ(gi) = ai and
it is not difficult to see that γλ(gj , gk) = θ(gj)θ(gk)θ(gi+k)−1γβ(g

j , gk), for all 0 ≤ i, k ≤ n− 1.

Corollary 2.6. Let R be a commutative ring and let Cn = 〈g | gn = 1〉 be a cyclic group of order n.
Then, the twisted group algebra RγCn where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

is equivalent to the group algebra RCn if and only if there exists a unity a of R such that λ = an.

Notice that if we take R = Fq, a finite field with q elements, in Proposition 2.5 and Corollary 2.6, we
have Theorem 3.2 and Corollary 3.4 obtained in [3]. Also, taking λ = −1, we obtain Lemma 4.8 of [12].

Corollary 2.7. [3, Corollary 3.5] Let n be a positive integer such that gcd(n,q-1)=1, Fq be a finite field
with q elements and let Cn = 〈g | gn = 1〉 be a cyclic group of order n. Then, the twisted group algebra
FγqCn where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

is equivalent to the group algebra FqCn.

3. The k-Galois form

In this section, we shall give definitions and some known results which have elementary proofs in
twisted group algebras language.

Let Fq be a finite field with q = pm elements, G be a finite group and FγqG the twisted group algebra
of G over Fq. Given α =

∑
g∈G

αgg, β =
∑
g∈G

βgg two elements of FγqG, for each k, 0 ≤ k < m, we define

the k-Galois form on FγqG as
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[α, β]k =
∑
g∈G

αgβ
pk

g .

It is not difficult to see that k-Galois form is just the Euclidean inner product if k = 0. Thus, given
a twisted group code C, we can define the k-Galois dual code of C as

C⊥k = {β ∈ FγqG | [α, β]k = 0, ∀α ∈ C}.

Given two non-zero elements λ and β of Fq, we say that a linear code C is λ− β-constacyclic if C is
λ−constacyclic and β-constacyclic. Dinh, in [9], proved if λ 6= β, the only λ − β-constacyclic codes are
{0} and Fnq .

In terms of twisted group algebras, we have

Lemma 3.1. [9, Proposition ] Let Fq be a finite field with p = qm elements and let Cn = 〈g | gn = 1〉 be
a cyclic group of order n and λ, β non-zero elements of Fq. Consider the twisted group algebras Fγλq Cn
and Fγβq Cn where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

γβ(g
j , gk) =

{
β, if j + k ≥ n
1, if j + k < n.

If C is a non-zero λ-constacyclic and also β-constacyclic code, then λ = β.

Proposition 3.2. [11, Lemma 4.3 ] Let Fq be a finite field with q = pm elements, Cn = 〈g, gn = 1〉 be a
cyclic group of order n and Fγλq Cn the twisted group algebra of Cn over Fq where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

Then, if C is a λ-constacyclic code, its k-Galois dual C⊥k is a λ−p
m−k

-constacyclic code.

Definition 3.3. Let C be a constacyclic code over a finite field Fq. We say that C is a linear complemen-
tary k-Galois dual code (k-Galois LCD code for shorty) if C ∩ C⊥k = {0}.

By Lemma 3.1 and Proposition 3.2, we get

Corollary 3.4. [16, Corollary 3.3] If λ1+p
m−k 6= 1, then any λ-constacyclic code C over Fq is a k-Galois

LCD code.

Notice that, since C⊥k is a linear subspace and the k−Galois form is non-degenerate, we have that
dim C + dim C⊥k = n.

4. The classical involution

Let R be a commutative ring with identity and let G be a group. Consider the following mapping

∗ : RγG −→ RγG given by

∑
g∈G

αgg

∗ = ∑
g∈G

αgg
−1.

It is not difficult to see the mapping ∗ above defined has the following property (α+ β)∗ = α∗ + β∗

Now, since, by Lemma 1.2, g−1 = γ(g, g−1)−1g−1 = γ(g−1, g)−1g−1, we have that
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(g∗)
∗
=
(
g−1

)∗
=
(
γ(g, g−1)−1g−1

)∗
= γ(g−1, g)−1g−1

−1

= γ(g−1, g)−1γ(g−1, g)−1(g−1)−1 = γ(g, g−1)−2g

for all g ∈ G. So, we can conclude if γ(g, g−1)2 = 1, then (α∗)∗ = α, for all α ∈ RγG. Now,(
g · h

)∗
=
(
γ(g, h)gh

)∗
= γ(g, h)gh

−1

= γ(g, h)γ(gh, h−1g−1)h−1g−1

Since γ is a 2-cocycle, we get that

γ(gh, h−1g−1) = γ(g, g−1)γ(h, h−1)γ(g, h)−1γ(h−1, g−1)−1,

so
(
g · h

)∗
= γ(g, g−1)γ(h, h−1)γ(h−1, g−1)−1h−1g−1.

On the other hand,

h
∗
g∗ = h

−1 · g−1 = γ(h, h−1)γ(g, g−1)h−1 · g−1

= γ(h, h−1)γ(g, g−1)γ(h−1, g−1)h−1g−1.

Thus,
(
g · h

)∗
= h

∗
g∗ if and only if γ(h−1, g−1)−1 = γ(h−1, g−1), for all g, h ∈ G. Consequently, we

conclude (αβ)∗ = β∗α∗, for all α, β ∈ RγG if, and only if, γ(g, h)2 = 1, for all g, h ∈ G.

Definition 4.1. Let R be a commutative ring with identity and let G be a group. The mapping ∗ :

RγG −→ RγG given by

∑
g∈G

αgg

∗ = ∑
g∈G

αgg
−1 with γ(g, h)2 = 1, is called the classical involution of

RγG.

Lemma 4.2. Let Fq be a finite field with q = pm elements, Cn = 〈g, gn = 1〉 be a cyclic group of order
n and Fγλq Cn the twisted group algebra of Cn over Fq where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

Given two arbitrary elements α =

n−1∑
i=0

αig
i and β =

n−1∑
i=0

βig
i of Fγλq Cn, let us denote by β(pk) the

element
n−1∑
i=0

βp
k

i gi. If α
(
β(pk)

)∗
= 0 and λ2 = 1, then [α, β]k = 0.

Proof. It is not difficult to see, the coefficient of 1 = 1 in the product α
(
β(pk)

)∗
is exactly [α, β]k.

Since, by hypothesis, α
(
β(pk)

)∗
= 0, we have [α, β]k = 0.

5. Euclidean constacyclic LCD codes

In this section, we shall characterize negacyclic LCD codes in terms of its idempotent generator with
respect to Euclidean inner product.

Let Fq be a finite field, Cn = 〈g, gn = 1〉 be a cyclic group of order n and Fγλq Cn the twisted group
algebra of Cn over Fq where
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γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

for some non-zero λ ∈ Fq. Given α =
∑
g∈Cn

αgg, β =
∑
g∈Cn

βgg two elements of Fγλq Cn, we define the

Euclidean inner product on Fγλq Cn as

[α, β] =
∑
g∈G

αgβg.

Let C be a constacyclic code over FγqCn, that is, an ideal of Fγλq Cn . It is well-known that the set
C⊥ = {x ∈ RγG | [x, α] = 0,∀α ∈ C} is an ideal in the twisted group algebra Fγλ−1

q Cn where

γλ−1(gj , gk) =

{
λ−1, if j + k ≥ n
1, if j + k < n.

Definition 5.1. Let C be a constacyclic code over a finite field Fq. We say that C is a linear complemen-
tary dual code (LCD code for shorty) if C ∩ C⊥ = {0}.

Notice that, the Corollary 3.4 shows us if λ2 6= 1, any λ-constacyclic code C is LCD. Also, the proof
o the next result is similar to the proof in the case of cyclic codes given by [7] in Theorem 3.1.

Proposition 5.2. Let Fq be a finite field, Cn = 〈g, gn = 1〉 be a cyclic group of order n and Fγλq Cn the
twisted group algebra of Cn over Fq where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

for some non-zero λ ∈ Fq. If λ2 = 1, then C is a λ-constacyclic LCD code if and only if C is generated
by an idempontent e such that e = e∗.

Corollary 5.3. [7, Theorem 3.1 ] Let Fq be a finite field with q = pm elements, Cn = 〈g, gn = 1〉 be a
cyclic group of order n. A cyclic code C is a LCD code with respect the Euclidean inner product if and
only if C = 〈e〉 such that e2 = e and e = e∗.

6. Some good LCD codes

In this section, we shall exhibit some LCD codes obtained from twisted group algebras. These codes
have the same weight of the best codes known, thus they are good LCD codes.

Example 6.1. Let C10 =
〈
g, g10 = 1

〉
be a cyclic group of order 10 and let F3 be a finite field with 3

elements. Consider the twisted group algebra Fγ23 C10, thus in this case, we have g10 = 2. Finally, taking
the elements e = g8 + 2g6 + g4 + 2g2 + 2 and f = 2g8 + g6 + 2g4 + g2 + 2.

It is not difficult to see e2 = e and e∗ = 2 · 2g2 + 2 · g4 + 2 · 2 · g6 + 2 · g8 + 2 = e.

So, by Proposition 5.2, the code C generated by e is a LCD code of dimension of dimension 8 and
weight 2 which are exactly the parameters of the best [10,8] code known.

Finally, notice that f = 1 − e, so it is also an idempotent with f∗ = f and the code generated by f
is LCD of dimension 2 and weight 5 and the best [10,2] code known has weight 7.
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Example 6.2. Let C9 =
〈
g, g9 = 1

〉
be a cyclic group of order 5 and let F5 be a finite field with 5

elements. Consider the twisted group algebra Fγ45 C9, thus in this case, we have g9 = 4. Finally, taking
the elements e = g8+4g7+3g6+4g5+g4+2g3+g2+4g+3 and f = 4g8+g7+2g6+g5+4g4+3g3+4g2+g+3.

It is not difficult to see e2 = e and

e∗ = 4g + 4 · 4 · g2 + 3 · 4 · g3 + 4 · 4 · g4 + 4 · g5 + 2 · 4 · g6 + 4 · g7 + 4 · 4 · g8 + 3 = e.

So, by Proposition 5.2, the code C generated by e is a LCD code of dimension of dimension 7 and
weight 2 which are exactly the parameters of the best [9,7] code known.

Finally, notice that f = 1 − e, so it is also an idempotent with f∗ = f and the code generated by f
is LCD of dimension 2 and weight 6 and the best [9,2] code known has weight 7.

Example 6.3. Let C21 =
〈
g, g21 = 1

〉
be a cyclic group of order 21 and let F5 be a finite field with 5

elements. Consider the twisted group algebra Fγ45 C21, thus in this case, we have g21 = 4. Finally, taking
the element

e = 4g19 + 4g18 + g15 + 2g14 + 4g13 + 4g12 + 4g11 + g10 + g9 + g8 + 3g7 + 4g6 + g3 + g2 + 1

and

f = g19 + g18 + 4g15 + 3g14 + g13 + g12 + g11 + 4g10 + 4g9 + 4g8 + 2g7 + g6 + 4g3 + 4g2 .

It is not difficult to see e2 = e and

e∗ = 4 · 4g2 + 4 · 4 · g3 + 4 · g6 + 2 · 4 · g7 + 4 · ·4g8 + 4 · 4 · g9 + 4 · ·4g10 + 4 · g11

+4 · g12 + 4 · g13 + 3 · 4 · g14 + 4 · 4 · g15 + 4 · g18 + 4 · g19 = e.

So, by Proposition 5.2, the code C generated by e is a LCD code of dimension of dimension 6 and
weight 12 which are exactly the parameters of the best [21,6] code known.

Finally, notice that f = 1 − e, so it is also an idempotent with f∗ = f and the code generated by f
is LCD of dimension 15 and weight 3 and the best [21,15] code known has weight 5.

Example 6.4. Let C19 =
〈
g, g19 = 1

〉
be a cyclic group of order 19 and let F7 be a finite field with 7

elements. Consider the twisted group algebra Fγ67 C19, thus in this case, we have g19 = 6. Finally, taking
the elements

e = 3g18 + 6g17 + g16 + 5g15 + g14 + 5g13 + 3g12 + 4g11 + 2g10 + 5g9 + 3g8 + 4g7

+2g6 + 6g5 + 2g4 + 6g3 + g2 + 4g

and

f = 4g18 + g17 + 6g16 + 2g15 + 6g14 + 2g13 + 4g12 + 3g11 + 5g10 + 2g9 + 4g8 + 3g7

+5g6 + g5 + 5g4 + g3 + 6g2 + 3g + 1 .

It is not difficult to see e2 = e and

e∗ = 3 · 6g + 6 · 6g2 + 6g3 + 5 · 6g4 + 6g5 + 5 · 6g6 + 3 · 6g7 + 4 · 6g8

+2 · 6g9 + 5 · 6g10 + 3 · 6g11 + 4 · 6g12 + 2 · 6g13 + 6 · 6g14 + 2 · 6g15 + 6 · 6g16

+6 · g17 + 4 · 6g18 = e.

So, by Proposition 5.2, the code C generated by e is a LCD code of dimension of dimension 7 and
weight 10 which are exactly the parameters of the best [19,7] code known.

Finally, notice that f = 1 − e, so it is also an idempotent with f∗ = f and the code generated by f
is LCD of dimension 12 and weight 6 which are exactly the parameters of the best [19,12] code known.

Now, we shall summarize those codes obtained above in the following table.
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Field Best [n, k, d] code known [n, k, d] code obtained
F3 [10,8,2] [10,8,2]
F3 [10,2,7] [10,2,5]
F5 [9,7,2] [9,7,2]
F5 [9,2,7] [9,2,6]
F5 [21,6,12] [21,6,12]
F5 [21,15,5] [21,15,3]
F7 [19,7,10] [19,7,10]
F7 [19,12,6] [19,12,6]

7. k-Galois constacyclic LCD codes

In this section, we shall prove some results about k-Galois constacyclic LCD codes.

Theorem 7.1. Let Fq be a finite field with q = pm elements, Cn = 〈g, gn = 1〉 be a cyclic group of order
n and Fγλq Cn the twisted group algebra of Cn over Fq where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

Let e be an idempotent of Fγλq Cn and λ2 = 1. Then e = e(e(p
k))∗ if, and only if [e, 1− e]k = 0.

Proof. Suppose that e is an idempotent such that e = e(e(p
k))∗. Then,

e− e(e(pk))∗ = e(1− (e(p
k))∗) = e

(
(1− e)(pk)

)∗
= 0 and, by Lemma 4.2, [e, 1− e]k = 0.

On the other hand, if [e, 1 − e]k = 0, we have that [1, e∗(1 − e)(pk)]k = 0. Now, given a =

n−1∑
i=0

aig
i

and b =
n−1∑
i=0

big
i two arbitrary elements of Fγλq Cn, since λp

k

= λ−1, then

[ga, gb]k = a0b
pk

0 + a1b
pk

1 + · · ·+ an−2b
pk

n−2 + (an−1λ)(b
pk

n−1λ
pk) = [a, b]k

So [g, ge∗(1 − e)(pk)]k = 0, for all g ∈ G. Since the k-Galois form is non-degenerated, we get that
e∗(1− e)(pk) = 0 and e∗ = e∗e(p

k). Then, e = (e∗)∗ = (e∗e(p
k))∗ = e(e(p

k))∗.

Now, we have the following

Proposition 7.2. Let Fq be a finite field with q = pm elements, Cn = 〈g, gn = 1〉 be a cyclic group of
order n and Fγλq Cn the twisted group algebra of Cn over Fq where

γλ(g
j , gk) =

{
λ, if j + k ≥ n
1, if j + k < n.

If λ2 = 1, then C is a λ-constacyclic code generated by an idempontent e such that e = e(e(p
k))∗ if,

and only if C is k-Galois LCD code.
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Proof. First of all, if C is a λ-constacyclic code which is also k-Galois LCD, we have the following
decomposition of ideals FγqCn = C ⊕ C⊥k since λ1+p

m−k
= 1.

It is well-know that there exist idempotents e and f such that 1 = e + f , e · f = 0, C = 〈e〉 and
C⊥k = 〈f〉. Then, writing f = 1− e, we get [e, 1− e]k = 0, so, by Theorem 7.1, the equality e = e(e(p

k))∗

holds.

If C is generated by an idempontent e such that e = e(e(p
k))∗, by Theorem 7.1, we have [e, 1−e]k = 0.

Then, writing 1 = e + (1 − e) we have FγqCn = C ⊕ FγqCn(1 − e). Since [e, 1 − e]k = 0 and dimFqC +
dimFqFγqCn(1− e) = n, we conclude that C⊥k = FγqCn(1− e). Thus, C is a λ-constacyclic k-Galois LCD
code.

8. Conclusion and future remarks

In this paper, we have characterized k-Galois LCD constacyclic codes over finite fields using twisted
group algebras structure and we have found some good LCD codes.

For future research, we shall consider constacyclic codes over finite commutative chain rings and
investigate if the characterization obtained for LCD codes is also true.
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