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Abstract: Let Zp be the ring of integers modulo a prime integer p, where p− 1 is a quadratic residue modulo p.
This paper presents the study of constacyclic codes over chain rings R =

Zp[u]

〈u2〉 and S =
Zp[u]

〈u3〉 . We also
study additive constacyclic codes over RS and ZpRS using the generator polynomials over the rings
R and S, respectively. Further, by defining Gray maps on R, S and ZpRS, we obtain some results
on the Gray images of additive codes. Then we provide the weight enumeration and MacWilliams
identities corresponding to the additive codes over ZpRS.
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1. Introduction

Initially, in algebraic coding theory, codes were studied over finite fields. From 1970 onward, the
study of codes over rings has been started [7]. However, this study over rings found momentum and
created a lot of interest among the researchers after the extraordinary work by Hammons et al. [14] in
1993. Recently, noncommutative rings have been considered in many works to study and obtain better
codes. Still, the study has been done mostly on commutative rings for ease of computation. In 1997,
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Rifà and Pujol [22] first encountered codes over mixed alphabets. Later, Borges et al. [9] studied Z2Z4-
additive codes and defined the duality of such codes. Abualrub et al. [1] studied algebraic structures of
Z2Z4-additive cyclic codes and determined a set of generator polynomials of those codes. They showed
that the duals of Z2Z4-additive cyclic codes are also cyclic and further obtained some optimal codes from
the Z2Z4-additive cyclic codes. As a natural generalization of Z2Z4-additive codes, Aydogdu and Siap
[3] in 2013 investigated the algebraic structure of Z2Z2s-additive codes and presented the standard form
of the generator and parity-check matrices. Further, Aydogdu et al. determined the algebraic structure
of Z2Z2[u]-additive codes [4] and Z2Z2[u

3]-linear and cyclic codes [5]. Later, Islam et al. [17] presented
the Z4Z4[u]-additive cyclic and constacyclic codes. On the other hand, Prakash et al. [21] considered
the ring Z4Z4[u

3] to study additive cyclic and constacyclic codes. First, they obtained the generator
polynomials along with the minimal generating set of additive cyclic codes and then extended the results
to determine the structure of additive constacyclic codes. In 2022, Borges et al. thoroughly discussed
the Z2Z4-linear codes in their book entitled Z2Z4-Linear Codes [8]. The authors investigated various
properties such as dual structure, rank and kernel, and encoding and decoding of Z2Z4-linear codes to
show their importance.

One of the most important and frequently studied linear codes is the class of constacyclic codes. This
family of linear codes has a wide range of applications in information technology. Due to its rich algebraic
structure, constacyclic codes are easy to implement, and shift registers can encode them. Over the years,
researchers have considered constacyclic codes to study different aspects of coding theory extensively, see
[2, 10, 16, 19, 20, 26].

Weight distribution in coding theory is another important aspect. The weight enumerator of a
linear code of length n indicates the number of codewords of each possible weight 0, 1, . . . , n. In 1963, a
remarkable work of MacWilliams [18] proposed a formula that relates the weight enumerator of a code
with that of its dual. Yildiz and Karadeniz [28] considered linear codes over Z4 + uZ4 and proved the
MacWilliams identities for complete, symmetrized, and Lee weight enumerators. Aydogdu et al. [4]
introduced a new class of additive codes, Z2Z2[u]-additive codes and they proved a MacWilliams-type
identity on the weight enumerator of such codes. Later, Tang et al. [25] studied the existence of the
MacWilliams-type identities for the Lee and Euclidean weight enumerators and provided necessary and
sufficient conditions for the existence of those identities over Zl. In 2021, Bhaintwal and Biswas [6]
studied the algebraic structure of ZpZp[u]/〈uk〉-cyclic codes and established the MacWilliams identities
for complete weight enumerators of ZpZp[u]/〈uk〉-linear codes. Recently, in 2024, Sagar et al. [23]
presented the form of the generators of constacyclic codes over the ring Z2[u]/〈u2〉 × Z2[u]/〈u3〉. They
also derived the MacWilliams identities corresponding to several weight enumerators.

The above research works motivate us to study ZpRS-additive codes where R =
Zp[u]
〈u2〉 , S =

Zp[u]
〈u3〉

and Zp is the ring of integers modulo a prime p where p − 1 is a quadratic residue modulo p. The ring
ZpRS is a generalization of the rings such as Z2Z2[u], Z2Z2[u

3] and ZpZp[u]/〈uk〉, on which additive
codes have already been studied. But the study of additive constacyclic codes over the ring ZpRS is
not yet available in the literature. Specifically, we study the ZpRS-additive constacyclic codes of block
length (q, r, s) and derive the form of generators of these codes. First, we derive the form of generators
of additive constacyclic codes over R and S each. Then using these generators, we find the generator of
ZpRS-additive constacyclic codes. We define a suitable inner product on both RrSs and ZqpRrSs, and
use them to find a relation between an additive constacyclic code and its dual. Next, we define Gray maps
on Rr, Ss and ZqpRrSs, respectively, and study the Gray images of additive cyclic codes and additive
constacyclic codes over R, S and ZpRS. Then we obtain the MacWilliams identities of ZpRS-additive
codes corresponding to the complete, Hamming, Symmetrized, and Lee weight enumerators.

This paper is arranged as follows: In Section 2, we recall some basic definitions and results, which
will be required later. Section 3 deals mainly with the generators of additive constacyclic codes over R,
S and ZpRS each. Section 4 revolves around the Gray maps defined over Rr, Ss and ZqpRrSs, and also
their images. In Section 5, we obtain the MacWilliams identities of ZpRS-additive codes over several
weight enumerators. Section 6 concludes our work.
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2. Preliminaries

In this section, we state some basic definitions and results. Let R =
Zp[u]
〈u2〉 and S =

Zp[u]
〈u3〉 , where Zp is

a ring of integers modulo a prime p which is chosen in such a way that p− 1 becomes a quadratic residue
in Zp. Note that R and S are chain rings of order p2 and p3, respectively.

For any two positive integers r and s, Rr ×Ss is an additive group and Rr ×Ss forms an S-module
with the scalar multiplication

d · (x, y) = d · (x0, x1, . . . , xr−1; y0, y1, . . . , ys−1)
= (d′′x0, d

′′x1, . . . , d
′′xr−1; dy0, dy1, . . . , dys−1),

where d ∈ S, x ∈ Rr, y ∈ Ss, d′′ = d (mod u2).

Similarly, for any three positive integers q, r and s, Zqp ×Rr × Ss also forms a module over S with
the scalar multiplication

d · (w, x, y) = d · (w0, w1, . . . , wq−1;x0, x1, . . . , xr−1; y0, y1, . . . , ys−1)

= (d′w0, d
′w1, . . . , d

′wq−1; d
′′x0, d

′′x1, . . . , d
′′xr−1; dy0, dy1, . . . , dys−1),

where d ∈ S, w ∈ Zqp, x ∈ Rr, y ∈ Ss, d′ = d (mod u) and d′′ = d (mod u2).

Throughout the paper, we denote the direct product of R and S by RS and the direct product of
Zp, R and S by ZpRS. Now, we define an RS-additive code and a ZpRS-additive code.

Definition 2.1. An RS-additive code of block length (r, s) is an S-submodule of RrSs and similarly, a
ZpRS-additive code of block length (q, r, s) is an S-submodule of ZqpRrSs.

Example 2.2. Consider the code C1 = 〈{(1, 0; 0, u; 1 + u2, 0), (0, 1; 1 + u, 0; 0, 1 + u)}〉 of block length
(2, 2, 2) over Z2RS. Then

C1 = 〈{(1, 0; 0, u; 1 + u2, 0), (0, 0; 0, 0;u, 0), (0, 0; 0, 0;u2, 0), (0, 1; 1 + u, 0; 0, 1 + u),

(0, 0;u, 0; 0, u+ u2), (0, 0; 0, 0; 0, u2)}〉

over Z2, i.e., C1 is a vector space over Z2 of dimension 6.

Next, we recall the definition of a Frobenius ring.

Definition 2.3. [13] Let R be a ring with unity. Then R is called a Frobenius ring if R is Artinian and
R/Rad(R) ∼= Soc(R) (both left as well as right R-modules). Rad(R) denotes the Jacobson radical of R
and Soc(R) denotes the socle of R as an R-module.

Lemma 2.4. The rings R, S and ZpRS are Frobenius.

Definition 2.5. [11] A character χ of a ring R is a group homomorphism from R to C∗ where C∗ is the
group of all non-zero complex numbers.

Definition 2.6. [27] Let R be a finite ring and let R̂ be the set of all characters of R. If there exists an
R-module isomorphism f : R→ R̂, then χ = f(1) is said to be a generating character of R.

Lemma 2.7. [11] Let χ be a character of a finite ring R. Then χ is a generating character if and only
if ker(χ) contains no non-zero ideals of R.

Now, let us recall the definitions of a few special classes of codes.

Definition 2.8. Let R be a ring, n be a positive integer, and λ be a unit in R. We denote the λ-
constacyclic shift operator by σλ and it is defined on Rn by

σλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

where xi ∈ R for i = 0, 1, . . . , n− 1. An R-additive code C of length n is said to be a λ-constacyclic code
if C is invariant under the map σλ. In particular, when λ = 1, we denote the operator σ1 simply as σ,
known as the cyclic shift operator. An R-additive code invariant under σ is called a cyclic code.
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Definition 2.9. [12] Let R be a ring and n = lm where l,m are positive integers. We denote the
l-quasi-cyclic shift operator by θl and it is defined on Rn by

θl(x0|x1| . . . |xl−1) = (σ(x0)|σ(x1)| . . . |σ(xl−1)),

where xi ∈ Rm for i = 0, 1, . . . , l − 1 and σ is the cyclic shift operator on Rm. An R-additive code C of
length n is said to be an l-quasi-cyclic code if C is invariant under the map θl.

Definition 2.10. [15] Let R be a ring and n = lm, where l,m are positive integers. We denote the
(λ, l)-quasi-twisted shift operator by θλ,l and it is defined on Rn by

θλ,l(x0|x1| . . . |xl−1) = (σλ(x0)|σλ(x1)| . . . |σλ(xl−1)),

where λ ∈ R is a unit, xi ∈ Rm for i = 0, 1, . . . , l − 1 and σλ is the λ-constacyclic shift operator on Rm.
An R-additive code C of length n is said to be a (λ, l)-quasi-twisted code if C is invariant under the map
θλ,l.

Definition 2.11. Let R be a ring and Ri =
R[x]

〈xmi−λi〉 , i = 1, 2, . . . , l, where m1,m2, . . . ,ml are positive
integers and λ1, λ2, . . . , λl are units in R. Then any R[x]-submodule of R1 × R2 × · · · × Rl is called a
generalized (λ1, λ2, . . . , λl)-quasi-twisted code of block length (m1,m2, . . . ,ml).

We can observe that a generalized (λ1, λ2, . . . , λl)-quasi-twisted code of block length (m1,m2, . . . ,ml),
where λ1 = λ2 = · · · = λl = λ, m1 = m2 = · · · = ml = m, is a (λ, l)-quasi-twisted code of length lm.

Now, by using the standard inner product (Euclidean inner product), we define the dual of a linear
code, self-orthogonal code, self-dual code, and dual-containing code, respectively.

Definition 2.12. Let R be a ring and C be a linear code of length n over R. Then the dual code C⊥ of
code C is defined as

C⊥ = {v ∈ Rn | v · c = 0 for all c ∈ C}.

A code C is called self-orthogonal if C ⊆ C⊥, dual-containing if C⊥ ⊆ C, and self-dual if C = C⊥.

3. Constacyclic codes over R, S, RS and ZpRS

In this section, first, we study additive constacyclic codes over R and S and then generalize the
results over RS and ZpRS. Here, our main objective is to find the generators of additive constacyclic
codes. We define suitable inner products, and under those inner products, we also find the generators of
the dual of additive constacyclic codes.

3.1. Constacyclic codes over R and S

Here, we first study all the units of R and S, and then we find the generators of constacyclic codes
over R and S respectively.

Let us denote the group of units of R and S by U(R) and U(S), respectively. Then U(R) = {a+ub |
a, b ∈ Zp and a 6= 0} and U(S) = {a + ub + u2d | a, b, d ∈ Zp and a 6= 0}. We denote the set of all
non-zero elements of Zp by Z∗p.

Now, we define a few maps.

(a) Define η0 : R → Zp by η0(a+ bu) = a.

(b) Define η1 : S → Zp by η1(a+ bu+ du2) = a.
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(c) Define η2 : S → R by η2(a+ bu+ du2) = a+ bu.

The following lemma shows the interrelation between the units of Zp,R and S.

Lemma 3.1. Let µ1 ∈ R and µ2 ∈ S. Then, we have the following.

1. µ1 ∈ U(R) if and only if η0(µ1) ∈ Z∗p;

2. µ2 ∈ U(S) if and only if η1(µ2) ∈ Z∗p;

3. µ2 ∈ U(S) if and only if η2(µ2) ∈ U(R).

Let µ0 ∈ Z∗p, µ1 ∈ U(R), µ2 ∈ U(S), and q, r, s are three positive integers. Then there is a one-to-one
correspondence between Zqp ×Rr ×Ss and

Zp[x]
〈xq−µ0〉 ×

R[x]
〈xr−µ1〉 ×

S[x]
〈xs−µ2〉 with respect to the identification

(a0, a1, . . . , aq−1; b0, b1, . . . , br−1; c0, c1, . . . , cs−1)→ (a(x), b(x), c(x)),

where a(x) = a0+a1x+· · ·+aq−1xq−1, b(x) = b0+b1x+· · ·+br−1xr−1, and c(x) = c0+c1x+· · ·+cs−1xs−1.
Now, we recall one result from [24].

Theorem 3.2. Let C be a cyclic code of length n over R =
Zp[u]
〈uk〉 . If n is relatively prime to p then

C = 〈f0(x)+uf1(x)+ · · ·+uk−1fk−1(x)〉, where f0(x), f1(x), . . . , fk−1(x) ∈ Zp[x] and fk−1(x) | fk−2(x) |
· · · | f0(x) | (xn − 1) mod p.

Let R be a ring. We denote the multiplicative order of an element α ∈ R by ord(α). The following
theorem gives the form of the generator of a constacyclic code over R.

Theorem 3.3. Let R =
Zp[u]
〈u2〉 and µ1 ∈ U(R). Then for any positive integer r satisfying gcd(p, r) = 1

and r ≡ 1 (mod ord(µ1)), every µ1-constacyclic code C of length r over R is given by

C = 〈f0(x) + uf1(x)〉,

where f1(x) | f0(x) | (xr − µ1) mod p.

Proof. We define a map ρR : R[x]
〈xr−1〉 →

R[x]
〈xr−µ1〉 by ρR(f(x)) = f(µ−11 x). Let a(x), b(x) and h(x) be

three polynomials in R[x] such that a(x) − b(x) = (xr − 1)h(x). Now, a(x) − b(x) = (xr − 1)h(x) ⇔
a(µ−11 x) − b(µ−11 x) = ((µ−11 x)r − 1)h(µ−11 x) ⇔ a(µ−11 x) − b(µ−11 x) = µ−11 (xr − µ1)h(µ

−1
1 x). This shows

that ρR is an isomorphism of rings and if I is an ideal of R[x]
〈xr−1〉 then ρR(I) is an ideal of R[x]

〈xr−µ1〉 . Thus
if C is a µ1-constacyclic code over R, then ρ−1R (C) is a cyclic code over R and by Theorem 3.2, ρ−1R (C) =

〈a0(x) + ua1(x)〉, where a1(x) | a0(x) and a0(x) | (xr − 1) mod p. Hence, C = 〈a0(µ−11 x) + ua1(µ
−1
1 x)〉.

Consider f0(x) = a0(µ
−1
1 x) and f1(x) = a1(µ

−1
1 x). Then one can easily verify that f1(x) | f0(x) | (xr−µ1)

mod p.

Next, we find the generator of a constacyclic code over S.

Theorem 3.4. Let S =
Zp[u]
〈u3〉 and µ2 ∈ U(S). Then for any positive integer s satisfying gcd(p, s) = 1

and s ≡ 1 (mod ord(µ2)), every µ2-constacyclic code C of length s over S is given by

C = 〈f0(x) + uf1(x) + u2f2(x)〉,

where f2(x) | f1(x) | f0(x) | (xs − µ2) mod p.
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Proof. We define a map ρS : S[x]
〈xs−1〉 →

S[x]
〈xs−µ2〉 by ρS(f(x)) = f(µ−12 x). Let a(x), b(x) and h(x) be

three polynomials in S[x] such that a(x) − b(x) = (xs − 1)h(x). Now, a(x) − b(x) = (xs − 1)h(x) ⇔
a(µ−12 x) − b(µ−12 x) = ((µ−12 x)s − 1)h(µ−12 x) ⇔ a(µ−12 x) − b(µ−12 x) = µ−12 (xs − µ2)h(µ

−1
2 x). This shows

that ρS is an isomorphism of rings and if I is an ideal of S[x]
〈xs−1〉 then ρS(I) is an ideal of S[x]

〈xs−µ2〉 .
Thus if C is a µ2-constacyclic code over S then ρ−1S (C) is a cyclic code over S and by Theorem 3.2,
ρ−1S (C) = 〈a0(x) + ua1(x) + u2a2(x)〉, where a2(x) | a1(x) | a0(x) and a0(x) | (xs − 1) mod p. Hence
C = 〈a0(µ−12 x) + ua1(µ

−1
2 x) + u2a2(µ

−1
2 x)〉. Consider f0(x) = a0(µ

−1
2 x), f1(x) = a1(µ

−1
2 x) and f2(x) =

a2(µ
−1
2 x). Then one can easily verify that f2(x) | f1(x) | f0(x) | (xs − µ2) mod p.

3.2. Constacyclic codes over ZpRS

Let µ0 ∈ Z∗p, µ1 ∈ U(R), µ2 ∈ U(S) and q ≡ 1 (mod ord(µ0)), r ≡ 1 (mod ord(µ1)), s ≡ 1
(mod ord(µ2)), gcd (p, q) = 1, gcd (p, r) = 1 and gcd (p, s) = 1. From here onwards, we will continue
with these conditions. One can check that the three maps η0, η1 and η2, defined in Section 3.1, are
ring epimorphisms and using these maps, we can define the module structures of Zp[x]

〈xq−µ0〉 ×
R[x]
〈xr−µ1〉 ,

R[x]
〈xr−µ1〉 ×

S[x]
〈xs−µ2〉 and Zp[x]

〈xq−µ0〉 ×
R[x]
〈xr−µ1〉 ×

S[x]
〈xs−µ2〉 . Let us denote Mq,r

0,1 =
Zp[x]
〈xq−µ0〉 ×

R[x]
〈xr−µ1〉 , M

r,s
1,2 =

R[x]
〈xr−µ1〉 ×

S[x]
〈xs−µ2〉 andM

q,r,s
0,1,2 =

Zp[x]
〈xq−µ0〉 ×

R[x]
〈xr−µ1〉 ×

S[x]
〈xs−µ2〉 . ThenMq,r

0,1 has an R[x]-module structure
with the scalar multiplication defined as

g(x) · (a(x), b(x)) = (η0(g(x))a(x), g(x)b(x)).

Similarly,Mr,s
1,2 has an S[x]-module structure with the scalar multiplication defined as

h(x) · (b(x), d(x)) = (η2(h(x))b(x), h(x)d(x))

andMq,r,s
0,1,2 has an S[x]-module structure with the scalar multiplication defined as

h(x) · (a(x), b(x), d(x)) = (η1(h(x))a(x), η2(h(x))b(x), h(x)d(x)),

where g(x) ∈ R[x], h(x) ∈ S[x], a(x) ∈ Zp[x]
〈xq−µ0〉 , b(x) ∈

R[x]
〈xr−µ1〉 , d(x) ∈

S[x]
〈xs−µ2〉 . Note that if g(x) =

l∑
j=0

gjx
j then η0(g(x)) =

l∑
j=0

η0(gj)x
j and if h(x) =

l∑
j=0

hjx
j , then ηi(h(x)) =

l∑
j=0

ηi(hj)x
j for i = 1, 2.

Definition 3.5. The operator Tµ0,µ1
: ZqpRr → ZqpRr defined by Tµ0,µ1

(a0, a1, . . . , aq−1|b0, b1, . . . , br−1)
= (µ0aq−1, a0, a1, . . . , aq−2|µ1br−1, b0, b1, . . . , br−2) is called the (µ0, µ1)-constacyclic shift operator. A
ZpR-additive code C having block length (q, r) is said to be a (µ0, µ1)-constacyclic code if Tµ0,µ1

(C) ⊂ C.
Similarly, one can define a (µ1, µ2)-constacyclic code of block length (r, s) over RS with the (µ1, µ2)-
constacyclic shift operator Tµ1,µ2

defined over RrSs and a (µ0, µ1, µ2)-constacyclic code of block length
(q, r, s) over ZpRS with the (µ0, µ1, µ2)-constacyclic shift operator Tµ0,µ1,µ2

defined over ZqpRrSs, respec-
tively. For q = 0, it is said to be a (µ1, µ2)-constacyclic code over RS and for q = 0, r = 0, it is said to
be a µ2-constacylic code over S, respectively.

Let ζ0 : ZqpRr → M
q,r
0,1 be defined by ζ0(c) = c(x), where c = (a0, a1, . . . , aq−1|b0, b1, . . . , br−1) and

c(x) = (a(x), b(x)) with a(x) =
q−1∑
i=0

aix
i, b(x) =

r−1∑
i=0

bix
i. It is easy to observe that ζ0 is an isomorphism.

Now, we have the following lemma.

Lemma 3.6. The isomorphism ζ0 maps the constacyclic shift Tµ0,µ1
of an element c of ZpR to the

multiplication of its image by x, i.e.,

ζ0(Tµ0,µ1
(c)) = x · ζ0(c).

132



I. Debnath et. al. / J. Algebra Comb. Discrete Appl. 12(2) (2025) 127–152

Using the above lemma, we have two equivalent statements.

Proposition 3.7. The following two statements are equivalent:

1. The ZpR-additive code C having block length (q, r) is a (µ0, µ1)-constacyclic code.

2. ζ0(C) is a submodule ofMq,r
0,1 over R[x].

Proof. Let C be an R-submodule of ZqpRr. Then by Lemma 3.6, Tµ0,µ1(C) ⊂ C⇔ x · ζ0(C) ⊂ ζ0(C)⇔
f(x) · ζ0(C) ⊂ ζ0(C) for all f(x) ∈ R[x].

Note that in a similar way as above, a (µ1, µ2)-constacyclic code over RS and a (µ0, µ1, µ2)-
constacyclic code over ZpRS can be considered as an S[x]-submodule ofMr,s

1,2 and an S[x]-submodule of
Mq,r,s

0,1,2, respectively.

In the following theorem, we find the generator of a (µ1, µ2)-constacyclic code over RS.

Theorem 3.8. Any (µ1, µ2)-constacyclic code C of block length (r, s) over RS can be given as

C = 〈(g0(x) + ug1(x), 0), (l(x), h0(x) + uh1(x) + u2h2(x))〉,

where g0(x), g1(x) ∈ R[x], h0(x), h1(x), h2(x) ∈ S[x] are polynomials satisfying g1(x) | g0(x) | (xr − µ1)
mod p, h2(x) | h1(x) | h0(x) | (xs − µ2) mod p, and l(x) ∈ R[x] is such that (l(x), h0(x) + uh1(x) +
u2h2(x)) ∈ C.

Proof. Consider the projection map p2 :Mr,s
1,2 →

S[x]
〈xs−µ2〉 defined by p2(a(x), b(x)) = b(x). It is verified

that p2 is an S[x]-linear map. Denote p̂2 = p2|C, the restriction map of p2 on C. Since C is an S[x]-
submodule ofMr,s

1,2, p̂2(C) is also an S[x]-submodule of S[x]
〈xs−µ2〉 . Hence, p̂2(C) is a µ2-constacyclic code

of length s over S and hence

p̂2(C) = 〈h0(x) + uh1(x) + u2h2(x)〉,

where h2(x) | h1(x) | h0(x) | (xs−µ2) mod p. Also, ker(p̂2) = {(a(x), 0) ∈ C | a(x) ∈ R[x]
〈xr−µ1〉} is an S[x]-

submodule of C. Let I = {a(x) ∈ R[x]
〈xr−µ1〉 | (a(x), 0) ∈ ker(p̂2)}. Then I is an R[x]-submodule of R[x]

〈xr−µ1〉
and so I is a µ1-constacyclic code of length r over R. From Theorem 3.3, we have I = 〈g0(x) + ug1(x)〉
where g1(x) | g0(x) | (xr − µ1) mod p. Therefore,

ker(p̂2) = 〈(g0(x) + ug1(x), 0)〉.

Let l(x) ∈ R[x] be such that (l(x), h0(x)+uh1(x)+u2h2(x)) ∈ C. Denote c1(x) = (l(x), h0(x)+uh1(x)+
u2h2(x)) and c2(x) = (g0(x) + ug1(x), 0). Take c(x) = (a1(x), a2(x)) ∈ C. Then a2(x) ∈ p̂2(C) and thus
there exists a polynomial q1(x) ∈ S[x] such that a2(x) = q1(x)(h0(x) + uh1(x) + u2h2(x)). Now, c(x)−
q1(x)c1(x) = (a1(x)− η2(q1(x))l(x), 0) ∈ ker(p̂2) and hence a1(x)− η2(q1(x))l(x) = q2(x)(g0(x)+ug1(x))
for some q2(x) ∈ R[x]. Thus, c(x) = q1(x)c1(x) + q2(x)c2(x).

In the following example, we find a (µ0, µ1, µ2)-constacyclic code over RS using Theorem 3.8.

Example 3.9. Consider p = 5, µ1 = 1, µ2 = 4, r = 2 = s. Over R, we have x2 − µ1 = (x+ 1)(x+ 4).
Over S, the polynomial x2 − µ2 has can be factorized as x2 − µ2 = (x + 2)(x + 3). Also, consider
g0(x) = 4 + x2, g1(x) = 4 + x, h0(x) = 1 + x2, h1(x) = 3 + x, h2(x) = 3 + x, l(x) = 0. Then from
Theorem 3.8, we have

C = 〈(4 + x2 + u(4 + x), 0), (0, 1 + x2 + u(3 + x) + u2(3 + x))〉
= 〈4u, u; 0, 0), (0, 0; 3u+ 3u2, u+ u2)〉.

Thus, C is a (1, 4)-constacyclic code of block length (2, 2) over Z5RS. Moreover, C is a vector space over
Z5 of dimension 3.
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Now, we define an inner product on RrSs.

Definition 3.10. Let v = (y0, y1, . . . , yr−1|z0, z1, . . . , zs−1), w = (y′0, y
′
1, . . . , y

′
r−1|z′0, z′1, . . . , z′s−1) ∈

RrSs. Define the inner product of v and w by

< v,w > = u

r−1∑
i=0

yiy
′
i +

s−1∑
i=0

ziz
′
i.

From hereon, for an RS-additive code C, its dual will be defined with respect to this inner product, and
the dual will be denoted by C⊥. Note that the block length of C⊥ is the same as that of C.

Remark 3.11. In Definition 3.10, we have defined the inner product on RrSs in a similar way as defined
by Aydogdu et al. in [5, Section 2.2] on Zr2×Rs3, where R3 = Z2 + uZ2 + u2Z2 with u3 = 0. In the proof
of Theorem 2.5 in [5], the authors have shown that if C ⊆ Zr2 ×Rs3 is a linear code then |C||C⊥| = 2r+3s.
Thus, in our case, for an RS-additive code C ⊆ RrSs, we have |C||C⊥| = p2r+3s. Replacing C by C⊥ in
|C||C⊥| = p2r+3s, we obtain |C⊥||(C⊥)⊥| = p2r+3s. Thus, |C| = |(C⊥)⊥|.

Theorem 3.12. Let µ1 ∈ U(R), µ2 ∈ U(S). Then the code C is an RS-additive (µ1, µ2)-constacyclic
code if and only if C⊥ is an RS-additive (µ−11 , µ−12 )-constacyclic code.

Proof. Let C be a (µ1, µ2)-constacyclic code of block length (r, s). Let c = (y0, y1, . . . , yr−1|z0, z1, . . . ,
zs−1), c′ = (y′0, y

′
1, . . . , y

′
r−1|z′0, z′1, . . . , z′s−1) ∈ C⊥. Let ord(µi) = li for i = 1, 2, and consider the integer

m = l1l2rs. Then Tmµ1,µ2
(c) = c and hence

Tm−1µ1,µ2
(c) = (y1, . . . , yr−2, yr−1, µ

−1
1 y0|z1, . . . , zs−2, zs−1, µ−12 z0).

Since c ∈ C, then C being a (µ1, µ2)-constacyclic code we get Tm−1µ1,µ2
(c) ∈ C.

Now, we have

< Tµ−1
1 ,µ−1

2
(c′), c >

= < (µ−11 y′r−1, y
′
0, . . . , y

′
r−2|µ−12 z′s−1, z

′
0, . . . , z

′
s−2), (y0, y1, . . . , yr−1|z0, z1, . . . , zs−1) >

= u{µ−11 y′r−1y0 + y′0y1 + · · ·+ y′r−2yr−1}+ {µ−12 z′s−1z0 + z′0z1 + · · ·+ z′s−2zs−1}
= u{y′0y1 + y′1y2 + · · ·+ µ−11 y′r−1y0}+ {z′0z1 + z′1z2 + · · ·+ µ−12 z′s−1z0}
= < (y′0, y

′
1, . . . , y

′
r−1|z′0, z′1, . . . , z′s−1), (y1, . . . , yr−1, µ−11 y0|z1, . . . , zs−1, µ−12 z0) >

= < c′, Tm−1µ1,µ2
(c) >

= 0.

This implies that Tµ−1
1 ,µ−1

2
(c′) ∈ C⊥, and hence C⊥ is a (µ−11 , µ−12 )-constacylic code.

We observe that C ⊆ (C⊥)⊥. Also, from Remark 3.11, we have |C| = |(C⊥)⊥|. Thus, (C⊥)⊥ = C. Now,
by interchanging the role of C and C⊥, we get the converse of the theorem.

Corollary 3.13. Let C be a (µ1, µ2)-constacyclic code of block length (r, s) over RS. Then C⊥ is a
(µ−11 , µ−12 )-constacyclic code of block length (r, s) over RS and

C⊥ = 〈(g′0(x) + ug′1(x), 0), (l
′(x), h′0(x) + uh′1(x) + u2h′2(x))〉,

where g′0(x), g′1(x) ∈ R[x], h′0(x), h′1(x), h′2(x) ∈ S[x] are polynomials satisfying g′1(x) | g′0(x) | (xr − µ1)
mod p, h′2(x) | h′1(x) | h′0(x) | (xs − µ2) mod p, and l′(x) ∈ R[x] is such that (l′(x), h′0(x) + uh′1(x) +
u2h′2(x)) ∈ C⊥.

Proof. It follows directly from Theorem 3.8 and Theorem 3.12.

In the following result, we find the generator of a (µ0, µ1, µ2)-constacyclic code over ZpRS.
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Theorem 3.14. Any (µ0, µ1, µ2)-constacyclic code C of block length (q, r, s) over ZpRS can be given as

C = 〈(f0(x), 0, 0), (l1(x), g0(x) + ug1(x), 0), (l2(x), l3(x), h0(x) + uh1(x) + u2h2(x))〉,

where f0(x) ∈ Zp[x], g0(x), g1(x) ∈ R[x], h0(x), h1(x), h2(x) ∈ S[x] are polynomials satisfying f0(x) |
(xq − µ0) mod p, g1(x) | g0(x) | (xr − µ1) mod p, h2(x) | h1(x) | h0(x) | (xs − µ2) mod p, and the
polynomials l1(x), l2(x) ∈ Zp[x], l3(x) ∈ R[x] are such that (l1(x), g0(x)+ ug1(x), 0), (l2(x), l3(x), h0(x)+
uh1(x) + u2h2(x)) ∈ C.

Proof. Consider the projection map p3 : Mq,r,s
0,1,2 →

S[x]
〈xs−µ2〉 defined as p3(a(x), b(x), d(x)) = d(x). It

can be verified that p3 is an S[x]-linear map. Denote p̂3 = p3|C, the restriction map of p3 on C. Since
C is an S[x]-submodule of Mq,r,s

0,1,2, p̂3(C) is also an S[x]-submodule of S[x]
〈xs−µ2〉 . Therefore, p̂3(C) is a

µ2-constacyclic code of length s over S and hence

p̂3(C) = 〈h0(x) + uh1(x) + u2h2(x)〉,

where h2(x) | h1(x) | h0(x) | (xs−µ2) mod p. Also, ker(p̂3) = {(a(x), b(x), 0) ∈ C | a(x) ∈ Zp[x]
〈xq−µ0〉 , b(x) ∈

R[x]
〈xr−µ1〉} is an S[x]-submodule of C. Let I = {(a(x), b(x)) ∈ Mq,r

0,1 | (a(x), b(x), 0) ∈ ker(p̂3)}. Then I is
an R[x]-submodule ofMq,r

0,1 and so I is a (µ0, µ1)-constacyclic code of block length (q, r) over ZpR. Using
similar arguments as in Theorem 3.8, we have I = 〈(f0(x), 0), (l1(x), g0(x) + ug1(x))〉, where f0(x), l1(x)
are polynomials over Zp with f0(x) | (xq − µ0) mod p and g1(x) | g0(x) | (xr − µ1) mod p. Hence,

ker(p̂3) = 〈(f0(x), 0, 0), (l1(x), g0(x) + ug1(x), 0)〉.

Let l2(x) ∈ Zp[x], l3(x) ∈ R[x] are such that (l2(x), l3(x), h0(x) + uh1(x) + u2h2(x)) ∈ C. Denote
c1(x) = (l2(x), l3(x), h0(x)+uh1(x)+u

2h2(x)), c2(x) = (f0(x), 0, 0) and c3(x) = (l1(x), g0(x)+ug1(x), 0).
Note that c2(x) = (f0(x), 0, 0), c3(x) = (l1(x), g0(x) + ug1(x), 0) ∈ ker(p̂3) ⊂ C. Take c(x) =
(a1(x), a2(x), a3(x)) ∈ C. Then a3(x) ∈ p̂3(C) and thus there exists a polynomial q1(x) ∈ S[x] such
that a3(x) = q1(x)(h0(x) + uh1(x) + u2h2(x)). Now c(x)− q1(x)c1(x) = (a1(x)− η1(q1(x))l2(x), a2(x)−
η2(q1(x))l3(x), 0) ∈ ker(p̂3). Hence, a1(x) − η1(q1(x))l2(x) = q2(x)(f0(x) + q3(x)l1(x)) for some
q2(x) ∈ Zp[x] and a2(x) − η2(q1(x))l3(x) = q3(x)(g0(x) + ug1(x)) for some q3(x) ∈ R[x]. Thus,
c(x) = q1(x)c1(x) + q2(x)c2(x) + q3(x)c3(x).

In the following example, we find a (µ0, µ1, µ2)-constacyclic code over ZpRS using Theorem 3.14.

Example 3.15. Consider p = 2, µ0 = 1 = µ1, µ2 = 1 + u2, q = 2 = r = s. Over Zp and R,
we have x2 − µi = (x + 1)2 for i = 0, 1. Now, over S, the polynomial x2 − µ2 can be factorized as
x2−µ2 = (x+1+ u)2. Also, consider f0(x) = 1+ x, g0(x) = 1+ x2, g1(x) = 1+ x, h0(x) = 1+ u2 + x2,
h1(x) = 1 + u+ x, h2(x) = 1 + u+ x, l0(x) = 0 = l1(x) = l2(x). Then, from Theorem 3.14, we have

C = 〈(1 + x, 0, 0), (0, 1 + x2 + u(1 + x), 0), (0, 0, 1 + u2 + x2 + u(1 + u+ x) + u2(1 + u+ x))〉
= 〈(1, 1; 0, 0; 0, 0), (0, 0;u, u; 0, 0), (0, 0; 0, 0;u, u+ u2)〉.

Thus, C is a (1, 1, 1 + u2)-constacyclic code of block length (2, 2, 2) over Z2RS. Moreover, C is a vector
space over Z2 of dimension 4.

Similarly, as in Definition 3.10, we can define an inner product on ZqpRrSs as follows.

Definition 3.16. Let v = (x0, x1, . . . , xq−1|y0, y1, . . . , yr−1|z0, z1, . . . , zs−1) and w = (x′0, x
′
1, . . . , x

′
q−1|

y′0, y
′
1, . . . , y

′
r−1|z′0, z′1, . . . , z′s−1) are two members of ZqpRrSs. Define the inner product of v and w by

< v,w > = u2
q−1∑
i=0

xix
′
i + u

r−1∑
i=0

yiy
′
i +

s−1∑
i=0

ziz
′
i.

From here onwards, the dual of a ZpRS-additive code will be defined with respect to this inner product.
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Theorem 3.17. The code C is a ZpRS-additive (µ0, µ1, µ2)-constacyclic code if and only if C⊥ is a
ZpRS-additive (µ−10 , µ−11 , µ−12 )-constacyclic code.

Proof. By using Definition 3.16, the proof follows similarly as in Theorem 3.12.

The following corollary is an obvious consequence of Theorem 3.14 and Theorem 3.17.

Corollary 3.18. If C is any (µ0, µ1, µ2)-constacyclic code of block length (q, r, s) over ZpRS, then C⊥ is
a (µ−10 , µ−11 , µ−12 )-constacyclic code of block length (q, r, s) over ZpRS and

C⊥ = 〈(f ′0(x), 0, 0), (l′1(x), g′0(x) + ug′1(x), 0), (l
′
2(x), l

′
3(x), h

′
0(x) + uh′1(x) + u2h′2(x))〉,

where f ′0(x) ∈ Zp[x], g′0(x), g′1(x) ∈ R[x], h′0(x), h′1(x), h′2(x) ∈ S[x] are polynomials satisfying f ′0(x) |
(xq − µ0) mod p, g′1(x) | g′0(x) | (xr − µ1) mod p, h′2(x) | h′1(x) | h′0(x) | (xs − µ2) mod p, and the
polynomials l′1(x), l′2(x) ∈ Zp[x], l′3(x) ∈ R[x] are such that (l′1(x), g′0(x)+ ug′1(x), 0), (l

′
2(x), l

′
3(x), h

′
0(x)+

uh′1(x) + u2h′2(x)) ∈ C⊥.

Definition 3.19. Let C be a ZpRS-additive code of block length (q, r, s). Let Cq be the code obtained
by removing all the coordinates from R and S, Cr be the code obtained by removing all the coordinates
from Zp and S, Cs be the code obtained by removing all the coordinates from Zp and R. Then C is called
separable if C = Cq × Cr × Cs. If C is separable then C⊥ = C⊥q × C⊥r × C⊥s , i.e., C⊥ is also separable.

It is easy to observe that Cq is an additive code over Zp of length q, Cr is an additive code over R
of length r and Cs is an additive code over S of length s. Now, we have the following two results.

Proposition 3.20. Let C be a ZpRS-additive code of block length (q, r, s) and suppose C is separable.
Then C is a (µ0, µ1, µ2)-constacyclic code if and only if Cq is a µ0-constacyclic code, Cr is a µ1-constacyclic
code and Cs is a µ2-constacyclic code.

Proof. Since C is separable, we have C = Cq × Cr × Cs. First, suppose that C
is a (µ0, µ1, µ2)-constacyclic code. Take (a0, a1, . . . , aq−1) ∈ Cq, (b0, b1, . . . , br−1) ∈ Cr,
(d0, d1, . . . , ds−1) ∈ Cs such that (a0, a1, . . . , aq−1|b0, b1, . . . , br−1|d0, d1, . . . , ds−1) ∈ C. Then
(µ0aq−1, a0, . . . , aq−2|µ1br−1, b0, . . . , br−2|µ2ds−1, d0, . . . , ds−2) ∈ C and hence (µ0aq−1, a0, . . . , aq−2) ∈
Cq, (µ1br−1, b0, . . . , br−2) ∈ Cr and (µ2ds−1, d0, . . . , ds−2) ∈ Cs. Thus Cq is a µ0-constacyclic code, Cr is a
µ1-constacyclic code and Cs is a µ2-constacyclic code.

The converse can be proved by reversing the above arguments.

Proposition 3.21. Let C be a ZpRS-additive code of block length (q, r, s) and suppose C is separable.
Then C is a (µ0, µ1, µ2)-constacyclic code if and only if C⊥ is separable and it is a (µ−10 , µ−11 , µ−12 )-
constacyclic code over ZpRS.

Proof. The proof follows from Theorem 3.17.

4. Gray maps on R, S and ZpRS

In this section, we define a few Gray maps and then study their images.

Define the Gray map

φ1 : R → Z2
p

by

φ1(1) = (1, 0)

φ1(u) = (1, κ),
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where κ ∈ Zp is such that κ2 ≡ −1 (mod p), and thus φ1(a+ ub) = (a+ b, κb) for all a, b ∈ Zp. Such an
element κ will always exist as we consider only those rings Zp in which p− 1 is a quadratic residue. One
can easily verify that the map φ1 is Zp-linear and bijective.

The Lee weight of an element x ∈ R is defined as wtL(x) = wtH(φ1(x)), where wtH(y) denotes
the Hamming weight of y and the Lee distance between two elements x, y ∈ R is defined as dL(x, y) =
wtL(x− y). The Gray map φ1 can be extended to φ1 : Rr → Z2r

p by

φ1(a0 + ub0, a1 + ub1, . . . , ar−1 + ubr−1)

= (a0 + b0, a1 + b1, . . . , ar−1 + br−1|κb0, κb1, . . . , κbr−1),

where κ ∈ Zp is such that κ2 ≡ −1 (mod p).

The Lee weight of an element x = (x0, x1, . . . , xr−1) ∈ Rr is defined as wtL(x) =
r−1∑
i=0

wtL(xi) and

the Lee distance between two elements x, y ∈ Rr is defined as dL(x, y) = wtL(x− y).

From the above definition of φ1, it can be observed that φ1 is a distance preserving map from Rr
(Lee weight) to Z2r

p (Hamming weight). Further, if C is an R-additive code with parameters [r, k, d] then
φ1(C) is a [2r, k, d]-code over Zp.

Theorem 4.1. For any two elements x, x′ ∈ Rr,

φ1(x) · φ1(x′) = π1 ◦ φ1(x · x′),

where π1 : Z2
p → Zp is the projection map defined as π1(a, b) = a for a, b ∈ Zp.

Proof. Let x = (x0, x1, . . . , xr−1) and x′ = (x′0, x
′
1, . . . , x

′
r−1), where xi = ai + ubi, x

′
i = a′i + ub′i and

ai, bi, a
′
i, b
′
i ∈ Zp for i = 0, 1, . . . , r − 1. Now,

x · x′ =
r−1∑
i=0

xix
′
i

=

r−1∑
i=0

{aia′i + u(aib
′
i + a′ibi)}

⇒ φ1(x · x′) = (a0a
′
0 + a0b

′
0 + a′0b0 + · · ·+ ar−1a

′
r−1 + ar−1b

′
r−1 + a′r−1br−1 , κ(a0b

′
0 + a′0b0)

+ · · ·+ κ(ar−1b
′
r−1 + a′r−1br−1)).

Also,

φ1(x) · φ1(x′) = (a0 + b0, a1 + b1, . . . , ar−1 + br−1|κb0, κb1, . . . , κbr−1)
· (a′0 + b′0, a

′
1 + b′1, . . . , a

′
r−1 + b′r−1|κb′0, κb′1, . . . , κb′r−1)

= (a0a
′
0 + a0b

′
0 + a′0b0 + · · ·+ ar−1a

′
r−1 + ar−1b

′
r−1 + a′r−1br−1).

Thus,

φ1(x) · φ1(x′) = π1 ◦ φ1(x · x′).

The above theorem shows that the images of two orthogonal elements in Rr under the map φ1 are
also orthogonal. Now, we have the following result.

Corollary 4.2. Let C be an R-additive code of length r. Then

φ1(C
⊥) = φ1(C)

⊥.
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Proof. From Theorem 4.1, we have φ1(C⊥) ⊆ φ1(C)
⊥. Now, if we can show that |φ1(C)⊥| = |φ1(C⊥)|

then we are done. We know that φ1 is an isomorphism and hence |φ1(C)| = |C|, |φ1(C⊥)| = |C⊥|. Also,
|Z2r
p | = p2r. Thus, |φ1(C)⊥| =

p2r

|φ1(C)|
= p2r

|C| = |C
⊥| = |φ1(C⊥)|.

We define another Gray map

φ2 : S → Z3
p

by

φ2(1) = (1, 0, 0)

φ2(u) = (1, κ, 1)

φ2(u
2) = (1, κ, 0),

where κ ∈ Zp is such that κ2 ≡ −1 (mod p), and thus φ2(a+ ub+ u2d) = (a+ b+ d, κ(b+ d), b) for all
a, b, d ∈ Zp. One can easily verify that the map φ2 is Zp-linear and bijective.

The Lee weight of an element x ∈ S is defined as wtL(x) = wtH(φ2(x)), where wtH(y) denotes
the Hamming weight of y and the Lee distance between two elements x, y ∈ S is defined as dL(x, y) =
wtL(x− y). The Gray map φ2 can be extended to φ2 : Ss → Z3s

p by

φ2(a0 + ub0 + u2d0, a1 + ub1 + u2d1, . . . , as−1 + ubs−1 + u2ds−1)

= (a0 + b0 + d0, a1 + b1 + d1, . . . , as−1 + bs−1 + ds−1|κ(b0 + d0), κ(b1 + d1),

. . . , κ(bs−1 + ds−1)|b0, b1, . . . , bs−1),

where κ ∈ Zp is such that κ2 ≡ −1 (mod p).

The Lee weight of an element x = (x0, x1, . . . , xs−1) ∈ Ss is defined as wtL(x) =

s−1∑
i=0

wtL(xi) and

the Lee distance between two elements x, y ∈ Ss is defined as dL(x, y) = wtL(x− y).

From the above definition of φ2, it can be observed that φ2 is a distance preserving map from Ss
(Lee weight) to Z3s

p (Hamming weight). Further, if C is an S-additive code with parameters [s, k, d] then
φ2(C) is a [3s, k, d]-code over Zp.

Now, similar to the Theorem 4.1 and Corollary 4.2, we have the following two results.

Theorem 4.3. For any two elements x, x′ ∈ Ss,

φ2(x) · φ2(x′) = π̂1 ◦ φ2(x · x′),

where π̂1 : Z3
p → Zp is the projection map defined as π̂1(a, b, d) = a for a, b, d ∈ Zp. In particular, the

images of two orthogonal elements in Ss under the map φ2 are also orthogonal.

Proof. Similar to the proof of Theorem 4.1.

Corollary 4.4. Let C be an S-additive code of length s. Then

φ2(C
⊥) = φ2(C)

⊥.

Proof. Similar to the proof of Corollary 4.2.

Now, we define a Gray map from ZpRS to Z6
p by using the Gray maps φ1 and φ2. Define

φ : ZpRS → Z6
p
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by

φ(x, y, z) = (x, φ1(y), φ2(z)) for all x ∈ Zp, y ∈ R, z ∈ S.

Obviously, the map φ is also Zp-linear and bijective. The Lee weight of an element α = (x, y, z) ∈ ZpRS is
defined as wtL(α) = wtH(x)+wtL(y)+wtL(z). The Lee distance between two elements α = (x, y, z), α′ =
(x′, y′, z′) ∈ ZpRS, is defined as dL(α, α′) = wtL(α− α′).

The map φ can be extended to φ : ZqpRrSs → Zq+2r+3s
p by

φ(x, y, z) = (x, φ1(y), φ2(z)),

where x ∈ Zqp, y ∈ Rr, z ∈ Ss.
The Lee weight of α = (x0, x1, . . . , xq−1|y0, y1, . . . , yr−1|z0, z1, . . . , zs−1) ∈ ZqpRrSs is wtL(α) =

q−1∑
i=0

wtH(xi) +

r−1∑
i=0

wtL(yi) +

s−1∑
i=0

wtL(zi) and the Lee distance between α, α′ ∈ ZqpRrSs is dL(α, α′) =

wtL(α− α′).
We observe that φ is also a distance preserving map from ZqpRrSs (Lee weight) to Zq+2r+3s

p (Hamming
weight). Further, if C is a ZqpRrSs-additive code of block length (q, r, s), having pk codewords with
minimum distance d then φ(C) is a [q + 2r + 3s, k, d]-code over Zp.

Theorem 4.5. For any two elements α = (x, y, z), α′ = (x′, y′, z′) ∈ ZqpRrSs, we have

φ(α) · φ(α′) = x · x′ + π1 ◦ φ1(y · y′) + π̂1 ◦ φ2(z · z′),

where x, x′ ∈ Zqp, y, y′ ∈ Rr, z, z′ ∈ Ss.

Proof. We know that φ(α) = (x, φ1(y), φ2(z)) and φ(α′) = (x′, φ1(y
′), φ2(z

′)). Thus

φ(α) · φ(α′) = x · x′ + φ1(y) · φ1(y′) + φ2(z) · φ2(z′).

Now, the proof follows from Theorem 4.1 and Theorem 4.3.

Considering the inner product which we defined in Definition 3.16, we get from Theorem 4.5 that
the images of two orthogonal elements in ZqpRrSs under the map φ are also orthogonal and we have the
following corollary.

Corollary 4.6. If C is a ZpRS-additive code of block length (q, r, s) then

φ(C⊥) = φ(C)⊥.

Proof. Similar to the proof of the Corollary 4.2.

4.1. Results on Gray images of additive codes

Now, we will give a few results related to the Gray images of additive cyclic and additive constacyclic
codes.

Lemma 4.7. Let σ1, θ2, θµ1,2 and Tµ1
are respectively the cyclic shift operator, the 2-quasi-cyclic shift

operator, the (µ1, 2)-quasi-twisted shift operator and the µ1-constacyclic shift operator on Rr with µ1 ∈ Z∗p.
Then

1. φ1 ◦ σ1 = θ2 ◦ φ1;
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2. φ1 ◦ Tµ1
= θµ1,2 ◦ φ1.

Proof. Let x = (x0, x1, . . . , xr−1) ∈ Rr, where xi = ai + ubi with ai, bi ∈ Zp for i = 0, 1, . . . , r − 1.

1. We have

φ1 ◦ σ1(x) = φ1(xr−1, x0, . . . , xr−2)

= (ar−1 + br−1, a0 + b0, . . . , ar−2 + br−2|κbr−1, κb0, . . . , κbr−2),

and also

θ2 ◦ φ1(x) = θ2(a0 + b0, a1 + b1, . . . , ar−1 + br−1|κb0, κb1, . . . , κbr−1)
= (ar−1 + br−1, a0 + b0, . . . , ar−2 + br−2|κbr−1, κb0, . . . , κbr−2).

Thus, φ1 ◦ σ1 = θ2 ◦ φ1.

2. We have

φ1 ◦ Tµ1
(x) = φ1(µ1xr−1, x0, . . . , xr−2)

= (µ1(ar−1 + br−1), a0 + b0, . . . , ar−2 + br−2|κµ1br−1, κb0, . . . , κbr−2),

and

θµ1,2 ◦ φ1(x) = θµ1,2(a0 + b0, a1 + b1, . . . , ar−1 + br−1|κb0, κb1, . . . , κbr−1)
= (µ1(ar−1 + br−1), a0 + b0, . . . , ar−2 + br−2|κµ1br−1, κb0, . . . , κbr−2).

Thus, φ1 ◦ Tµ1
= θµ1,2 ◦ φ1.

Using the above lemma, we have the following theorem on the Gray image of cyclic and constacyclic
codes over R.

Theorem 4.8. Let µ1 ∈ Z∗p. Then we have the following:

1. If C is a cyclic code of length r over R then φ1(C) is a 2-quasi-cyclic code of length 2r over Zp.

2. If C is a µ1-constacyclic code of length r over R then φ1(C) is a (µ1, 2)-quasi-twisted code of length
2r over Zp.

Proof. 1. Suppose C is a cyclic code of length r over R. Then σ1(C) = C. Now from Lemma 4.7,
we have

θ2(φ1(C)) = φ1(σ1(C)) = φ1(C),

and this implies that φ1(C) is a 2-quasi-cyclic code of length 2r over Zp.

2. If C is a µ1-constacyclic code of length r over R then Tµ1
(C) = C. Now from Lemma 4.7, we have

θµ1,2(φ1(C)) = φ1(Tµ1(C)) = φ1(C),

which implies that φ1(C) is a (µ1, 2)-quasi-twisted code of length 2r over Zp.

Lemma 4.9. Let σ2, θ3, θµ2,3 and Tµ2
be the cyclic shift operator, the 2-quasi-cyclic shift operator, the

(µ2, 3)-quasi-twisted shift operator and the µ2-constacyclic shift operator, respectively on Ss with µ2 ∈ Z∗p.
Then
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1. φ2 ◦ σ2 = θ3 ◦ φ2;

2. φ2 ◦ Tµ2
= θµ2,3 ◦ φ2.

Proof. Let x = (x0, x1, . . . , xs−1) ∈ Ss where xi = ai + ubi + u2di with ai, bi, di ∈ Zp for i =
0, 1, . . . , s− 1.

1. We have

φ2 ◦ σ2(x) = φ2(xs−1, x0, . . . , xs−2)

= (as−1 + bs−1 + ds−1, a0 + b0 + d0, . . . , as−2 + bs−2 + ds−2|κ(bs−1 + ds−1),

κ(b0 + d0), . . . , κ(bs−2 + ds−2)|bs−1, b0, . . . , bs−2).

Also,

θ3 ◦ φ2(x) = θ3(a0 + b0 + d0, a1 + b1 + d1, . . . , as−1 + bs−1 + ds−1|κ(b0 + d0), κ(b1 + d1),

. . . , κ(bs−1 + ds−1)|b0, b1, . . . , bs−1)
= (as−1 + bs−1 + ds−1, a0 + b0 + d0, . . . , as−2 + bs−2 + ds−2|κ(bs−1 + ds−1),

κ(b0 + d0), . . . , κ(bs−2 + ds−2)|bs−1, b0, . . . , bs−2).

Thus, φ2 ◦ σ2 = θ3 ◦ φ2.

2. We have

φ2 ◦ Tµ2(x)

= φ2(µ2xs−1, x0, . . . , xs−2)

= (µ2(as−1 + bs−1 + ds−1), a0 + b0 + d0, . . . , as−2 + bs−2 + ds−2|κµ2(bs−1 + ds−1), κ(b0 + d0),

. . . , κ(bs−2 + ds−2)|µ2bs−1, b0, . . . , bs−2),

and

θµ2,3 ◦ φ2(x)
= θµ2,3(a0 + b0 + d0, a1 + b1 + d1, . . . , as−1 + bs−1 + ds−1|κ(b0 + d0), κ(b1 + d1),

. . . , κ(bs−1 + ds−1)|b0, b1, . . . , bs−1)
= (µ2(as−1 + bs−1 + ds−1), a0 + b0 + d0, . . . , as−2 + bs−2 + ds−2|κµ2(bs−1 + ds−1), κ(b0 + d0),

. . . , κ(bs−2 + ds−2)|µ2bs−1, b0, . . . , bs−2).

Thus, φ2 ◦ Tµ2
= θµ2,3 ◦ φ2.

Now, we have the following theorem on the Gray image of cyclic and constacyclic codes over S.

Theorem 4.10. Let µ2 ∈ Z∗p. Then we have the following:

1. If C is a cyclic code of length s over S, then φ2(C) is a 3-quasi-cyclic code of length 3s over Zp.

2. If C is a µ2-constacyclic code of length s over S, then φ2(C) is a (µ2, 3)-quasi-twisted code of length
3s over Zp.

Proof. 1. If C is a cyclic code of length s over S, then σ2(C) = C. Now from Lemma 4.9, we have

θ3(φ2(C)) = φ2(σ2(C)) = φ2(C),

and this implies that φ2(C) is a 3-quasi-cyclic code of length 3s over Zp.
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2. Assume that C is a µ2-constacyclic code of length s over S. Then Tµ2
(C) = C. Now from Lemma

4.9, we have

θµ2,3(φ2(C)) = φ2(Tµ2
(C)) = φ2(C),

which implies that φ2(C) is a (µ2, 3)-quasi-twisted code of length 3s over Zp.

The next result is on the Gray image of a constacyclic code over ZpRS.

Theorem 4.11. Let µ0, µ1, µ2 ∈ Z∗p and suppose C is a (µ0, µ1, µ2)-constacyclic code of block length
(q, r, s) over ZpRS. Then φ(C) is a generalized (µ0, µ1, µ1, µ2, µ2, µ2)-quasi-twisted code of block length
(q, r, r, s, s, s).

Proof. Take w ∈ φ(C). Then there exists v ∈ C such that w = φ(v). Let

v = (x0, x1, . . . , xq−1|y0, y1, . . . , yr−1|z0, z1, . . . , zs−1),

where yi = ai + ubi, zi = a′i + ub′i + u2d′i and xi, ai, bi, a′i, b′i, d′i ∈ Zp. Then

φ(v) = (x0, x1, . . . , xq−1|a0 + b0, a1 + b1, . . . , ar−1 + br−1|κb0, κb1, . . . , κbr−1|a′0 + b′0 + d′0,

a′1 + b′1 + d′1, . . . , a
′
s−1 + b′s−1d

′
s−1|κ(b′0 + d′0), κ(b

′
1 + d′1), . . . , κ(b

′
s−1 + d′s−1)|b′0, b′1, . . . , b′s−1).

Let Tµ0,µ1,µ2 be the (µ0, µ1, µ2)-constacyclic shift operator on ZqpRrSs. Then we have

φ ◦ Tµ0,µ1,µ2(v)

= φ(µ0xq−1, x0, . . . , xq−2|µ1yr−1, y0, . . . , yr−2|µ2zs−1, z0, . . . , zs−2)

= (µ0xq−1, x0, . . . , xq−2|µ1(ar−1 + br−1), a0 + b0, . . . , ar−2 + br−2|κµ1br−1, κb0, . . . , κbr−2|
µ2(a

′
s−1 + b′s−1 + d′s−1), a

′
0 + b′0 + d′0, . . . , a

′
s−2 + b′s−2 + d′s−2|κµ2(b

′
s−1 + d′s−1), κ(b

′
0 + d′0),

. . . , κ(b′s−2 + d′s−2)|µ2b
′
s−1, b

′
0, . . . , b

′
s−2).

Since C is a (µ0, µ1, µ2)-constacyclic code, φ ◦ Tµ0,µ1,µ2
(v) ∈ φ(C) and we observe that φ ◦ Tµ0,µ1,µ2

(v)

is the generalized (µ0, µ1, µ1, µ2, µ2, µ2)-quasi-twisted shift of φ(v). Therefore, φ(C) is a generalized
(µ0, µ1, µ1, µ2, µ2, µ2)-quasi-twisted code of block length (q, r, r, s, s, s).

5. The weight enumerator and MacWilliams identities

Weight enumerators play an important role in calculating the probability of an incorrect message
being received undetected by the receiver. It involves the number of codewords of a particular weight,
which can be easily obtained once the weight enumerator is known. Further, one can express the weight
enumerator of the dual code in terms of the weight enumerator of the code itself. MacWilliams identities
provide exactly this. In this section, we study different weight enumerators, such as complete weight
enumerator, symmetrized weight enumerator, etc., and establish the MacWilliams identities.

5.1. The complete weight enumerator and the Hamming weight enumerator

First, we arrange the members of each of Zp, R and S, respectively, in a particular order.

The members of Zp are arranged in increasing order by considering the members as mere integers,
i.e., {0 < 1 < 2 < · · · < p− 1}.

For any two members a0 + a1u, b0 + b1u ∈ R, we say a0 + a1u < b0 + b1u if one of the following two
conditions hold.
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1. a1 < b1;

2. a1 = b1, a0 < b0.

For any two members a0 + a1u+ a2u
2, b0 + b1u+ b2u

2 ∈ S, we say a0 + a1u+ a2u
2 < b0 + b1u+ b2u

2

if one of the following conditions hold.

1. a2 < b2;

2. a2 = b2, a1 < b1;

3. a2 = b2, a1 = b1, a0 < b0.

Using the above ordering of the members of each of Zp, R and S, now we can order the members of
ZpRS. For any two members α = (α0, α1, α2), β = (β0, β1, β2) ∈ ZpRS, where α0, β0 ∈ Zp, α1, β1 ∈ R,
and α2, β2 ∈ S, we say α < β if one of the following conditions hold.

1. α0 < β0;

2. α0 = β0, α1 < β1;

3. α0 = β0, α1 = β1, α2 < β2.

We know that any integer i with 0 ≤ i ≤ p6 − 1, can be written as i =
∑5
j=0 ajp

j , where 0 ≤ aj ≤ p− 1

for j = 0, 1, . . . , 5. If we consider all the members of ZpRS as ZpRS = {f0 < f1 < f2 < · · · < fp6−1},
then using the ordering of the members of ZpRS, we have

fi = (a5, a4u+ a3, a2u
2 + a1u+ a0),

where i =
∑5
j=0 ajp

j .

Now, we are ready to define the complete weight enumerator of a ZpRS-additive code C.

Definition 5.1. Let C be a ZpRS-additive code of length n. Then the complete weight enumerator of C
is denoted by W(C)

C and is defined by

W(C)
C (x1, x2, . . . , xp6) =

∑
c∈C

p6∏
i=1

x
wfi−1

(c)

i ,

where for each c = (c0, c1, . . . , cn−1) ∈ C, wfi(c) = |{j : cj = fi, 0 ≤ j ≤ n− 1}| for i = 1, 2, . . . , p6.

From the above definition, it is evident thatW(C)
C (x1, x2, . . . , xp6) is a homogeneous polynomial. The

total degree of each monomial inW(C)
C (x1, x2, . . . , xp6) is n. Also, we observe thatW

(C)
C (1, 1, . . . , 1) = |C|.

Now, we will investigate the MacWilliams identity corresponding to the complete weight enumerator.
First, we define a generating character on ZpRS.

Definition 5.2. Define χ : ZpRS → C∗ by

χ((a, a′ + ub′, a′′ + ub′′ + u2d′′)) = (−1)a+a
′+b′+a′′+b′′+d′′ .

It can be easily verified that χ-image of any non-zero ideal is always non-trivial and hence by Lemma 2.7,
χ is a generating character on ZpRS. Moreover, an element a+ ub+ u2d ∈ S can be seen as an element
of ZpRS as (0, 0, a+ ub+ u2d), and we consider χ(a+ ub+ u2d) = χ((0, 0, a+ ub+ u2d)).
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Suppose P = [pij ] is a matrix of order p6 with pij = χ(< fi−1, fj−1 >) where χ is the generating
character defined above and fi−1, fj−1 ∈ ZpRS for all i, j = 1, 2, . . . , p6. It is to be noted that since
fi−1fj−1 = fj−1fi−1, the matrix P is symmetric. We find the matrix P for two different cases, p = 2 and
p 6= 2.

First, we consider the case when p = 2. Here, we have

P =

[
B B
B −B

]
,

where

B =

A A A A
A −A −A A
A −A A −A
A A −A −A


is a matrix of order p5 and A is a matrix of order p3, given by

A =



1 1 1 1 1 1 1 1
1 − 1 − 1 1 − 1 1 1 − 1
1 − 1 − 1 1 1 − 1 − 1 1
1 1 1 1 − 1 − 1 − 1 − 1
1 − 1 1 − 1 1 − 1 1 − 1
1 1 − 1 − 1 − 1 − 1 1 1
1 1 − 1 − 1 1 1 − 1 − 1
1 − 1 1 − 1 − 1 1 − 1 1


.

The matrix A is actually the submatrix of P , consisting of the first p3 rows and the first p3 columns.
Similarly, the matrix B is a submatrix of P , consisting of the first p5 rows and the first p5 columns.
In other words, the matrix A is generated by the first p3 members of ZpRS whereas the matrix B is
generated by the first p5 members of ZpRS.

Now, we discuss the case when p 6= 2. As we did in the previous case for p = 2, here as well, we
describe the matrix P in terms of its submatrices B and A. Since P is symmetric, its ith row is the same
as its ith column. First, we write P in p rows and p columns, and each one of their entries is given in
terms of the submatrix B. In this way, the first two rows of P are, respectively, (B B B · · · B) and
(B −B B −B B · · · B). Therefore, all the entries in the first row are B, and the second row has
B and −B alternatively. Since p is odd, and the matrix P has p submatrices in each of its rows, the last

entry in the second row of P is B. The penultimate row is (B

p−1
2 entries︷ ︸︸ ︷

−B −B · · · −B

p−1
2 entries︷ ︸︸ ︷

B B · · · B),
i.e., the first entry is B, and among the remaining p−1 entries, the first p−1

2 entries are −B and the next
p−1
2 entries are B. The last row is (B B −B B −B B · · · −B), i.e., the first two entries in the

last row are B each, and then −B and B appear alternatively. The appearance of the in-between rows
varies as we consider different primes p. Similarly, we can find the matrices B and A. The matrix B has
p2 rows and p2 columns, among which the first row is (A A A · · · A). The second row is

(

p entries︷ ︸︸ ︷
A −A A −A · · · A −A A −A A · · · −A︸ ︷︷ ︸

p entries

· · ·
p entries︷ ︸︸ ︷

A −A A −A · · · A),

where the first p entries and the immediate next p entries appear alternatively. The appearance of the
remaining rows varies as we take different values of the prime p. The matrix A has p3 rows and p3

columns, among which the first row is (1 1 1 · · · 1). The second row is

(

p entries︷ ︸︸ ︷
1 − 1 1 − 1 · · · 1 −1 1 − 1 1 · · · − 1︸ ︷︷ ︸

p entries

· · ·
p entries︷ ︸︸ ︷

1 − 1 1 − 1 · · · 1),
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where the first p entries and the immediate next p entries appear alternatively. The appearance of the
remaining rows varies with the different values of p.

The next Lemma follows from [4, Lemma 3.2].

Lemma 5.3. Let C be a ZpRS-additive code of length n and C⊥ be its dual. Let

f̂(z) =
∑

v∈Zn
pRnSn

χ(< z, v >)f(v).

Then ∑
v∈C⊥

f(v) =
1

|C|
∑
u∈C

f̂(u).

Now, we find the MacWilliams identity with respect to the complete weight enumerator.

Theorem 5.4. If C is a ZpRS-additive code of length n then

W(C⊥)
C (x1, x2, . . . , xp6) =

1

|C|
W(C)

C (P · (x1, x2, . . . , xp6)T ),

where (x1, x2, . . . , xp6)
T denotes the transpose of (x1, x2, . . . , xp6).

Proof. Now, using Lemma 5.3 for f(v) =
∏p6

i=1 x
wfi−1

(v)

i , the proof follows from [27, Corollary 8.2].

Example 5.5. Consider the Z2RS-additive code of length 2,

C2 = 〈{(1, 0, 1 + u2; 0, u, 0), (0, 1 + u, 0; 1, 0, 1 + u)}〉.

Then C2 is a linear code over Z2 of dimension 6 and

B1 = {(1, 0, 1 + u2; 0, u, 0), (0, 0, u; 0, 0, 0), (0, 0, u2; 0, 0, 0), (0, 1 + u, 0; 1, 0, 1 + u),

(0, u, 0; 0, 0, u+ u2), (0, 0, 0; 0, 0, u2)}

forms a Z2-basis of C2. Thus the dual code C ⊥2 is also a linear code over Z2 of dimension 6 and

B2 = {(0, 0, 0; 0, u, 0), (1, 0, 0; 0, 1, 0), (0, u, 0; 0, 0, u2), (0, u, 0; 1, 0, 0),
(0, 1 + u, 0; 0, 0, u+ u2), (1, 0, u2; 0, 0, 0)}

is a Z2-basis of C⊥2 . Now, according to Definition 5.1, the complete weight enumerator of C2 is given by

W(C2)
C (x1, x2, . . . , x64)

= x21 + x38x17 + x3x1 + x40x17 + 2x5x1 + x34x17 + x7x1 + x36x17 + x25x36 + x62x52 + x27x36+

x64x52 + x29x36 + x58x52 + x31x36 + x60x52 + x17x7 + x54x23 + x19x7 + x56x23 + x21x7 + x50x23

+ x23x7 + x52x23 + x9x38 + x46x54 + x11x38 + x48x54 + x13x38 + x42x54 + x15x38 + x44x54+

x38x21 + x3x5 + x40x21 + x25 + x34x21 + x7x5 + x36x21 + x25x40 + x62x56 + x27x40 + x64x56+

x29x40 + x58x56 + x31x40 + x60x56 + x17x3 + x54x19 + x19x3 + x56x19 + x21x3 + x50x19 + x23x3

+ x52x19 + x9x34 + x46x50 + x11x34 + x48x50 + x13x34 + x42x50 + x15x34 + x44x50.

145



I. Debnath et. al. / J. Algebra Comb. Discrete Appl. 12(2) (2025) 127–152

Similarly, the complete weight enumerator of C⊥2 is given by

W(C⊥2 )
C (x1, x2, . . . , x64)

= x21 + 2x37x1 + x25x7 + x61x7 + x17x33 + x53x33 + x9x39 + x45x39 + x17x5 + x53x5 + x9x3+

x45x3 + x237 + x25x35 + x61x35 + x33x9 + x5x9 + x57x15 + x29x15 + x49x41 + x21x41 + x41x47+

x13x47 + x49x13 + x21x13 + x41x11 + x13x11 + x33x45 + x5x45 + x57x43 + x29x43 + x1x17+

x37x17 + x25x23 + x61x23 + x17x49 + x53x49 + x9x55 + x45x55 + x17x21 + x53x21 + x9x19+

x45x19 + x1x53 + x37x53 + x25x51 + x61x51 + x33x25 + x5x25 + x57x31 + x29x31 + x49x57 + x21x57

+ x41x63 + x13x63 + x49x29 + x21x29 + x41x27 + x13x27 + x33x61 + x5x61 + x57x59 + x29x59.

Next, we define the Hamming weight enumerator and find the corresponding MacWilliams identity.

Definition 5.6. Let C be a ZpRS-additive code of length n. Then the Hamming weight enumerator of
C is denoted by W(C)

H and is defined by

W(C)
H (x, y) =

∑
c∈C

xn−wtH(c)ywtH(c) ,

where wtH(c) is the Hamming weight of c.

Like the complete weight enumerator, the Hamming weight enumerator is also a homogeneous poly-
nomial of degree n. Further, we observe that

W(C)
H (x, y) =W(C)

C (x, y, y, . . . , y),

which gives us a relation between the complete weight enumerator and the Hamming weight enumerator.

Theorem 5.7. If C is a ZpRS-additive code of length n, then

W(C⊥)
H (x, y) =

1

|C|
W(C)

H (x+ (p6 − 1)y, x− y).

Proof. The proof follows from Theorem 5.4 and uses the relation between the complete weight enu-
merator and the Hamming weight enumerator.

Example 5.8. We consider the same code C2 as in Example 5.5. Then by using the complete weight
enumerator of C2, found in Example 5.5, the Hamming weight enumerator of C2 is

W(C2)
H (x, y) = x2 + 4xy + 59y2,

and by using Theorem 5.7, the Hamming weight enumerator of C⊥2 is given by

W(C⊥2 )
H (x, y) =

1

64
W(C2)

H (x+ 63y, x− y)

=
1

64
[(x+ 63y)2 + 4(x+ 63y)(x− y) + 59(x− y)2]

= x2 + 4xy + 59y2.

5.2. The symmetrized weight enumerator and the Lee weight enumerator

First, we find the value of wtL(fi), the Lee weight of fi, i = 0, 1, 2, . . . , p6 − 1, where fi are the
members of ZpRS in the same order as we have considered earlier. Let i =

∑5
j=0 ajp

j , where 0 ≤ aj ≤
p− 1 for j = 0, 1, . . . , 5. Then 0 ≤ i ≤ p6 − 1, and the Lee weight of fi is given by

wtL(fi) = wtH(a5) + wtL(a3 + ua4) + wtL(a0 + ua1 + u2a2)

= wtH(a5) + wtH(a3 + a4, κa4) + wtH(a0 + a1 + a2, κ(a1 + a2), a1).

146



I. Debnath et. al. / J. Algebra Comb. Discrete Appl. 12(2) (2025) 127–152

Thus, the Lee weights of the elements of ZpRS can vary from 0 to 6.

Now, we define the symmetrized weight enumerator.

Definition 5.9. Let C be a ZpRS-additive code of length n. Then the symmetrized weight enumerator
of C is denoted by W(C)

S and is defined by

W(C)
S (W0,W1,W2, . . . ,W6) =W(C)

C

(
WwtL(f0),WwtL(f1),WwtL(f2), . . . ,WwtL(fp6−1)

)
,

where Wi represents the variable corresponding to the Lee weight i.

From the above definition, we have

W(C)
S (W0,W1,W2, . . . ,W6) =

∑
c∈C

W
n0(c)
0 W

n1(c)
1 W

n2(c)
2 · · ·Wn6(c)

6 , (1)

where ni(c) = |{j : wtL(cj) = i, 0 ≤ j ≤ n− 1}| for c = (c0, c1, . . . , cn−1) ∈ C and i = 0, 1, . . . , 6.

Remark 5.10. Interestingly, we observe that the Lee weight of an element in the same position, say fi,
which is in the (i+ 1)-th position, can be different for different choices of p. For example,

wtL(fp2+p) =

{
1 for p = 2

3 otherwise
, wtL(fp2+p+1) =

{
2 for p ∈ {2, 3}
3 otherwise

,

wtL(fp5−1) =


3 for p = 2

4 for p = 3

5 otherwise
, and so on.

This makes the task of characterizing the Lee weights of all the p6 elements of ZpRS for all primes p
in general, very complicated. Below, we find the Lee weights of the elements of ZpRS for two different
primes, p = 2 and p = 3, in Table 1 and Table 2, respectively.

Table 1. Lee weights of the members of Z2RS

Members of Z2RS Lee weights

f0 0

f1, f5, f6, f8, f24, f32 1

f3, f4, f7, f9, f13, f14, f16, f25, f29, f30, f33, f37, f38, f40, f56 2

f2, f11, f12, f15, f17, f21, f22, f27, f28, f31, f35, f36, f39, f41, f45, f46, f48, f57, f61, f62 3

f10, f19, f20, f23, f26, f34, f43, f44, f47, f49, f53, f54, f59, f60, f63 4

f18, f42, f51, f52, f55, f58, 5

f50 6

Due to the presence of a large number of elements, precisely 36 = 729, in Z3RS, we take a different
approach to present the Lee weights of Z3RS in Table 2. Keeping the ascending order, we break the set
Z3RS in 33 number of sets, each one of the sets containing 33 number of elements. Let L(3) represents
the sequence of Lee weights of the first 27 elements of Z3RS, i.e., wtL(f0), wtL(f1), . . . , wtL(f26). Then,
we have

L(3) := 0, 1, 1, 3, 3, 2, 3, 2, 3, 2, 2, 1, 3, 2, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 3, 2.
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For any positive integer i, let L(3)
+i represents the sequence

L
(3)
+i := 0 + i, 1 + i, 1 + i, 3 + i, 3 + i, 2 + i, 3 + i, 2 + i, 3 + i, 2 + i, 2 + i, 1 + i, 3 + i, 2 + i, 3 + i,

1 + i, 2 + i, 2 + i, 2 + i, 1 + i, 2 + i, 1 + i, 2 + i, 2 + i, 3 + i, 3 + i, 2 + i.

Now, from Table 2, one can obtain the Lee weights of the elements of Z3RS.

Table 2. Lee weights of the members of Z3RS

Members of Z3RS Lee weights
f0, f1, f2, . . . , f26 L(3)

f27, f28, f29, . . . , f53 L
(3)
+1

f54, f55, f56, . . . , f80 L
(3)
+1

f81, f82, f83, . . . , f107 L
(3)
+2

f108, f109, f110, . . . , f134 L
(3)
+2

f135, f136, f137, . . . , f161 L
(3)
+1

f162, f163, f164, . . . , f188 L
(3)
+2

f189, f190, f191, . . . , f215 L
(3)
+1

f216, f217, f218, . . . , f242 L
(3)
+2

f243, f244, f245, . . . , f269 L
(3)
+1

f270, f271, f272, . . . , f296 L
(3)
+2

f297, f298, f299, . . . , f323 L
(3)
+2

f324, f325, f326, . . . , f350 L
(3)
+3

f351, f352, f353, . . . , f377 L
(3)
+3

Members of Z3RS Lee weights
f378, f379, f380, . . . , f404 L

(3)
+2

f405, f406, f407, . . . , f431 L
(3)
+2

f432, f433, f434, . . . , f458 L
(3)
+2

f459, f460, f461, . . . , f485 L
(3)
+3

f486, f487, f488, . . . , f512 L
(3)
+1

f513, f514, f515, . . . , f539 L
(3)
+2

f540, f541, f542, . . . , f566 L
(3)
+2

f567, f568, f569, . . . , f593 L
(3)
+3

f594, f595, f596, . . . , f620 L
(3)
+3

f621, f622, f623, . . . , f647 L
(3)
+2

f648, f649, f650, . . . , f674 L
(3)
+2

f675, f676, f677, . . . , f701 L
(3)
+2

f702, f703, f704, . . . , f728 L
(3)
+3

Using the same notations as used in Definition 5.9, we find the MacWilliams identity for the sym-
metrized weight enumerator.

Theorem 5.11. If C is a ZpRS-additive code of length n, then

W(C⊥)
S (W0,W1,W2, . . . ,W6) =

1

|C|
W(C)

S (Q · (W0,W1,W2, . . . ,W6)
T ),

where Q is a matrix of order 7, and it is the coefficient matrix of the linearly independent non-zero rows
of the matrix

P ·
(
WwtL(f0),WwtL(f1),WwtL(f2), . . . ,WwtL(fp6−1)

)T
.

Proof. The proof follows from Theorem 5.4 and Definition 5.9.

Example 5.12. For the code C2, defined in Example 5.5, the symmetrized weight enumerator of C2 is
given by

W(C2)
S (W0,W1,W2, . . . ,W6)

= W 2
0 + 5W 2

2 +W3W0 + 8W3W2 + 2W2W0 +W1W0 + 3W1W3 + 7W3W5 + 11W4W3

+ 6W4W5 + 3W 2
3 + 4W2W1 +W5W1 +W4W1 + 4W4W2 + 4W 2

4 + 2W 2
5 ,
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and the symmetrized weight enumerator of C⊥2 is given by

W(C⊥2 )
S (W0,W1,W2, . . . ,W6)

= W 2
0 + 2W3W0 + 3W 2

1 + 5W4W1 + 4W2W1 + 2W5W1 + 8W4W2 + 3W 2
2 + 3W5W2 + 2W1W3+

6W4W3 + 5W 2
3 + 2W 2

4 + 8W3W2 +W0W2 + 4W3W5 + 2W5W4 +W0W5 +W1W6 +W4W6.

Next, we define the Lee weight enumerator.

Definition 5.13. Let C be a ZpRS-additive code of length n. Then the Lee weight enumerator of C is
denoted by W(C)

L and is defined by

W(C)
L (x, y) =W(φ(C))

H (x, y) =
∑
c∈C

x6n−wtL(c)ywtL(c).

The following result gives a relation between the Lee weight enumerator and the symmetrized weight
enumerator.

Theorem 5.14. Let C be a ZpRS-additive code of length n. Then

W(C)
L (x, y) =W(C)

S (x6, x5y, x4y2, x3y3, x2y4, xy5, y6).

Proof. Take c ∈ C. We have wtL(c) = n1(c) + 2n2(c) + 3n3(c) + · · ·+ 6n6(c) and n = n0(c) + n1(c) +
n2(c) + · · ·+ n6(c). Then

W(C)
L (x, y) =

∑
c∈C

x6n−wtL(c)ywtL(c)

=
∑
c∈C

x6n0(c)+5n1(c)+4n2(c)+3n3(c)+2n4(c)+n5(c) yn1(c)+2n2(c)+3n3(c)+···+6n6(c)

=
∑
c∈C

(x6)n0(c)(x5y)n1(c)(x4y2)n2(c)(x3y3)n3(c)(x2y4)n4(c)(xy5)n5(c)(y6)n6(c)

= W(C)
S (x6, x5y, x4y2, x3y3, x2y4, xy5, y6). (From Eq. (1))

Using Theorem 5.11 and Theorem 5.14, we find the MacWilliams identity corresponding to the Lee
weight enumerator.

Theorem 5.15. If C is a ZpRS-additive code of length n, then

W(C⊥)
L (x, y) =

1

|C|
W(C)

L (x+ y, x− y).

Example 5.16. Again, we consider the code C2, defined in Example 5.5. Then using Theorem 5.14 and
Example 5.12, the Lee weight enumerator of C2 is

W(C2)
L (x, y)

= x12 + 5x8y4 + x9y3 + 8x7y5 + 2x10y2 + x11y + 3x8y4 + 7x4y8 + 11x5y7 + 6x3y9 + 3x6y6 + 4x9y3

+ x6y6 + x7y5 + 4x6y6 + 4x4y8 + 2x2y10

= x12 + x11y + 2x10y2 + 5x9y3 + 8x8y4 + 9x7y5 + 8x6y6 + 11x5y7 + 11x4y8 + 6x3y9 + 2x2y10.
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Now, using the above expression and Theorem 5.15, the Lee weight enumerator of C⊥2 is given by

W(C⊥2 )
L (x, y) =

1

64
W(C2)

L (x+ y, x− y)

=
1

64

[
(x+ y)12 + (x+ y)11(x− y) + 2(x+ y)10(x− y)2 + 5(x+ y)9(x− y)3

+ 8(x+ y)8(x− y)4 + 9(x+ y)7(x− y)5 + 8(x+ y)6(x− y)6 + 11(x+ y)5(x− y)7

+ 11(x+ y)4(x− y)8 + 6(x+ y)3(x− y)9 + 2(x+ y)2(x− y)10
]

= x12 + 4x10y2 + 6x9y3 + 5x8y4 + 14x7y5 + 15x6y6 + 10x5y7 + 6x4y8 + 2x3y9 + x2y10.

6. Conclusion

We have considered the Frobenius rings R, S, RS, and ZpRS, and studied the additive constacyclic
codes over these rings. By defining suitable inner products, we have determined the generators of the
constacyclic codes and their duals. Later, we have defined Gray maps on R, S, and ZpRS, and studied
the images under these maps. We have established a few results on the Gray images of additive cyclic and
additive constacyclic codes. Weight enumerators have a significant role in calculating the probability of an
incorrect message being received undetected by the receiver. Motivated by the importance of the weight
enumerators, we have defined several weight enumerators, such as the complete weight enumerator, the
Hamming weight enumerator, the symmetrized weight enumerator, and the Lee weight enumerator, and
obtained the MacWilliams identities corresponding to each of these weight enumerators for the ZpRS-
additive codes.

There is a matrix P which appears in Theorem 5.4, in the MacWilliams identity for the complete
weight enumerator. We have given the exact form of the matrix P for p = 2. However, for odd primes,
we have provided only partially the form of P as it becomes quite challenging to present a general form
of P for all odd primes. Thus, a complete general form of P for p 6= 2 is still open. Further, one may also
consider more general rings such as Zp× Zp[u]

〈u2〉 × · · · ×
Zp[u]
〈uk〉 with k > 3, as the code alphabet to study the

additive constacyclic codes and the various weight enumerators.
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