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Abstract: Let Z, be the ring of integers modulo a prime integer p, where p — 1 is a quadratic residue modulo p.

This paper presents the study of constacyclic codes over chain rings R = Z@ [21;] and S = Zéi[;)] . We also
study additive constacyclic codes over RS and Z,RS using the generator polynomials over the rings
R and S, respectively. Further, by defining Gray maps on R, S and Z,RS, we obtain some results
on the Gray images of additive codes. Then we provide the weight enumeration and MacWilliams

identities corresponding to the additive codes over Z,RS.

2020 MSC: 94B05, 94B15, 94B60

Keywords: Constacyclic code, Chain ring, Frobenius ring, Gray image, MacWilliams identity

1. Introduction

Initially, in algebraic coding theory, codes were studied over finite fields. From 1970 onward, the
study of codes over rings has been started [7]. However, this study over rings found momentum and
created a lot of interest among the researchers after the extraordinary work by Hammons et al. [14] in
1993. Recently, noncommutative rings have been considered in many works to study and obtain better
codes. Still, the study has been done mostly on commutative rings for ease of computation. In 1997,

* This author is supported by the Council of Scientific & Industrial Research (CSIR) (under grant no.
09/1023(0030)/2019-EMR-1) for financial support and the Indian Institute of Technology Patna for providing
research facilities.

Indibar Debnath, Ashutosh Singh, Om Prakash (Corresponding Author); Department of Mathematics, Indian
Institute of Technology Patna, India (email: 1921ma07@iitp.ac.in, 1921ma05Qiitp.ac.in, om@iitp.ac.in).
** This author is supported by the Council of Scientific € Industrial Research (CSIR) (under grant no.
09/1023(0027)/2019-EMR-1) for financial support and the Indian Institute of Technology Patna for providing
research facilities.

Abdollah Alhevaz; Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box: 3816-
3619995161, Shahrood, Iran (email: a.alhevaz@gmail.com).

https://doi.org/10.13069/jacodesmath.v12i2.344 ISSN 2148-838X


https://orcid.org/0000-0002-6512-4229

I. Debnath et. al. / J. Algebra Comb. Discrete Appl. 12(2) (2025) 127-152

3]

Rifa and Pujol [22] first encountered codes over mixed alphabets. Later, Borges et al. [9] studied Z2Z,-
additive codes and defined the duality of such codes. Abualrub et al. [1] studied algebraic structures of
ZoZ4-additive cyclic codes and determined a set of generator polynomials of those codes. They showed
that the duals of ZsZ4-additive cyclic codes are also cyclic and further obtained some optimal codes from
the ZyZ4-additive cyclic codes. As a natural generalization of ZsZ,-additive codes, Aydogdu and Siap
[3] in 2013 investigated the algebraic structure of Z,Zss-additive codes and presented the standard form
of the generator and parity-check matrices. Further, Aydogdu et al. determined the algebraic structure
of ZoZs[u]-additive codes [4] and ZyZo[u®]-linear and cyclic codes [5]. Later, Islam et al. [17] presented
the Z4Z4[u]-additive cyclic and constacyclic codes. On the other hand, Prakash et al. [21] considered
the ring Z4Z4[u?] to study additive cyclic and constacyclic codes. First, they obtained the generator
polynomials along with the minimal generating set of additive cyclic codes and then extended the results
to determine the structure of additive constacyclic codes. In 2022, Borges et al. thoroughly discussed
the ZyZ4-linear codes in their book entitled Z3Z4-Linear Codes [8]. The authors investigated various
properties such as dual structure, rank and kernel, and encoding and decoding of ZsZ,-linear codes to
show their importance.

One of the most important and frequently studied linear codes is the class of constacyclic codes. This
family of linear codes has a wide range of applications in information technology. Due to its rich algebraic
structure, constacyclic codes are easy to implement, and shift registers can encode them. Over the years,
researchers have considered constacyclic codes to study different aspects of coding theory extensively, see
[2, 10, 16, 19, 20, 26].

Weight distribution in coding theory is another important aspect. The weight enumerator of a
linear code of length n indicates the number of codewords of each possible weight 0,1,...,n. In 1963, a
remarkable work of MacWilliams [18] proposed a formula that relates the weight enumerator of a code
with that of its dual. Yildiz and Karadeniz 28| considered linear codes over Z4 + uZ4 and proved the
MacWilliams identities for complete, symmetrized, and Lee weight enumerators. Aydogdu et al. [4]
introduced a new class of additive codes, ZsZs[u]-additive codes and they proved a MacWilliams-type
identity on the weight enumerator of such codes. Later, Tang et al. [25] studied the existence of the
MacWilliams-type identities for the Lee and Euclidean weight enumerators and provided necessary and
sufficient conditions for the existence of those identities over Z;. In 2021, Bhaintwal and Biswas [6]
studied the algebraic structure of Z,Z,[u]/{u*)-cyclic codes and established the MacWilliams identities
for complete weight enumerators of Z,Z,[u]/(u*)-linear codes. Recently, in 2024, Sagar et al. [23]
presented the form of the generators of constacyclic codes over the ring Zso[u]/(u?) x Zs[u]/(u®). They
also derived the MacWilliams identities corresponding to several weight enumerators.

The above research works motivate us to study Z,RS-additive codes where R = Z<Z [2u>], S = Z&[s“)]

and Z, is the ring of integers modulo a prime p where p — 1 is a quadratic residue modulo p. The ring
Z,RS is a generalization of the rings such as ZoZs[u], ZoZso[u®] and Z,Z,[u]/{u*), on which additive
codes have already been studied. But the study of additive constacyclic codes over the ring Z,RS is
not yet available in the literature. Specifically, we study the Z,RS-additive constacyclic codes of block
length (g, s) and derive the form of generators of these codes. First, we derive the form of generators
of additive constacyclic codes over R and S each. Then using these generators, we find the generator of
ZyRS-additive constacyclic codes. We define a suitable inner product on both R"S* and ZIR"S*, and
use them to find a relation between an additive constacyclic code and its dual. Next, we define Gray maps
on R", §° and ZIR"S?, respectively, and study the Gray images of additive cyclic codes and additive
constacyclic codes over R, S and Z,RS. Then we obtain the MacWilliams identities of Z,RS-additive
codes corresponding to the complete, Hamming, Symmetrized, and Lee weight enumerators.

This paper is arranged as follows: In Section 2, we recall some basic definitions and results, which
will be required later. Section 3 deals mainly with the generators of additive constacyclic codes over R,
S and Z,RS each. Section 4 revolves around the Gray maps defined over R", §* and ZJR"S*, and also
their images. In Section 5, we obtain the MacWilliams identities of Z,RS-additive codes over several
weight enumerators. Section 6 concludes our work.
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2. Preliminaries

In this section, we state some basic definitions and results. Let R = Z@[;;] and § = Z@—%L where Z,, is

a ring of integers modulo a prime p which is chosen in such a way that p — 1 becomes a quadratic residue
in Z,. Note that R and S are chain rings of order p? and p?, respectively.

For any two positive integers r and s, R” x §* is an additive group and R" x §* forms an S-module
with the scalar multiplication

da- (Jl,y) =d- (.130,.231,. -y Tr—15Y0, Y1, - - - ays—l)
= (d//and”xh s ,d/lmrfl;dy()adyl) .. '7dysfl)a
where d € S, z € R", y € §%, d’ = d (mod u?).

Similarly, for any three positive integers ¢, and s, ZI x R" x §° also forms a module over § with
the scalar multiplication

d-(w,z,y) =d- (Wo,W1,. .., Wg—1520, L1,y Tr15Y0, Y1+ Ys—1)
= (d'wo, d'wr, ..., d'wg_1;d"xo,d"21,...,d" T, _1;5dyo, dys, . .., dys—1),
where d € S, we Zi, x € R", y € S°, d =d (mod u) and d” = d (mod u?).

Throughout the paper, we denote the direct product of R and & by RS and the direct product of
Zyp, R and S by Z,RS. Now, we define an RS-additive code and a Z,RS-additive code.

Definition 2.1. An RS-additive code of block length (r,s) is an S-submodule of R"S*® and similarly, a
ZyRS-additive code of block length (q,r,s) is an S-submodule of ZIR"S®.

Example 2.2. Consider the code €; = ({(1,0;0,u;1 + u?2,0),(0,1;1 4+ u,0;0,1 + u)}) of block length
(2,2,2) over ZoRS. Then

¢ = ({(1,0;0,u;1 + u?,0),(0,0;0,0;u,0), (0,0;0,0;u*0), (0,11 +u,0;0,1 + u),
(0,0;u,0;0,u 4+ u?), (0,0;0,0;0,u%)})

over Zas, i.e., €1 is a vector space over Lo of dimension 6.

Next, we recall the definition of a Frobenius ring.

Definition 2.3. [18] Let R be a ring with unity. Then R is called a Frobenius ring if R is Artinian and
R/Rad(R) = Soc(R) (both left as well as right R-modules). Rad(R) denotes the Jacobson radical of R
and Soc(R) denotes the socle of R as an R-module.

Lemma 2.4. The rings R, S and Z,RS are Frobenius.

Definition 2.5. [11] A character x of a ring R is a group homomorphism from R to C* where C* is the
group of all non-zero complexr numbers.

Definition 2.6. [27] Let R be a finite ring and let R be the set of all characters of R. If there exists an
R-module isomorphism f: R — R, then x = f(1) is said to be a generating character of R.

Lemma 2.7. [11] Let x be a character of a finite ring R. Then x is a generating character if and only
if ker(x) contains no non-zero ideals of R.
Now, let us recall the definitions of a few special classes of codes.

Definition 2.8. Let R be a ring, n be a positive integer, and X be a unit in R. We denote the \-
constacyclic shift operator by oy and it is defined on R™ by

0'>\(Z‘0,.T1, s 71'71—1) = ()\ﬂ?n—179€07$17 s axn—2)7

where x; € R fori=0,1,...,n—1. An R-additive code C of length n is said to be a A-constacyclic code
if C is invariant under the map oy. In particular, when A = 1, we denote the operator o1 simply as o,
known as the cyclic shift operator. An R-additive code invariant under o is called a cyclic code.
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Definition 2.9. [12] Let R be a ring and n = Ilm where I,m are positive integers. We denote the
l-quasi-cyclic shift operator by 0; and it is defined on R™ by
Oi(zolza|. - |z1-1) = (o(z0)|o(z1)] . . |o(21-1)),

where ©; € R™ fori=20,1,...,1 —1 and o is the cyclic shift operator on R™. An R-additive code C of
length n is said to be an l-quasi-cyclic code if C is invariant under the map 6;.

Definition 2.10. [15] Let R be a ring and n = Im, where l,m are positive integers. We denote the
(A, 1)-quasi-twisted shift operator by 0x; and it is defined on R" by

Oxi(@olaa] .. - [x1-1) = (or(zo)loa(z1)]. . - [or(21-1)),

where A € R is a unit, x; € R™ fori=0,1,...,1 — 1 and oy is the A-constacyclic shift operator on R™.
An R-additive code C of length n is said to be a (\,1)-quasi-twisted code if C is invariant under the map
9)\71,

Definition 2.11. Let R be a rming and R; = %, i=1,2,...,1, where mi,mao,...,m; are positive

integers and A1, A, ..., A\ are units in R. Then any R[z]-submodule of Ry X Ry X -+ X Ry is called a
generalized (A1, g, ..., \)-quasi-twisted code of block length (m1,ma,...,my).

We can observe that a generalized (A1, Az, . . ., \;)-quasi-twisted code of block length (my,ma,...,my),
where \f =g ==X\ =X, my=mg=---=my =m, is a (\1)-quasi-twisted code of length Im.
Now, by using the standard inner product (Euclidean inner product), we define the dual of a linear

code, self-orthogonal code, self-dual code, and dual-containing code, respectively.

Definition 2.12. Let R be a ring and C be a linear code of length n over R. Then the dual code C+ of
code C 1is defined as

Ct={veR"|v-c=0 forallceC}.

A code C is called self-orthogonal if C C C*, dual-containing if C+ C C, and self-dual if C = C*.

3. Constacyclic codes over R, S, RS and Z,RS

In this section, first, we study additive constacyclic codes over R and S and then generalize the
results over RS and Z,RS. Here, our main objective is to find the generators of additive constacyclic
codes. We define suitable inner products, and under those inner products, we also find the generators of
the dual of additive constacyclic codes.

3.1. Constacyclic codes over R and §

Here, we first study all the units of R and S, and then we find the generators of constacyclic codes
over R and S respectively.

Let us denote the group of units of R and S by U(R) and U(S), respectively. Then U(R) = {a+ub |
a,b € Z, and a # 0} and U(S) = {a + ub + v?d | a,b,d € Z, and a # 0}. We denote the set of all
non-zero elements of Z, by Z.

Now, we define a few maps.
(a) Define ng : R = Z,, by no(a + bu) = a.

(b) Define ny : S — Z, by m1(a + bu + du?) = a.
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(c) Define 72 : S — R by n2(a + bu + du?) = a + bu.

The following lemma shows the interrelation between the units of Z,, R and S.

Lemma 3.1. Let uy € R and ps € S. Then, we have the following.

1. py € U(R) if and only if no(p1) € Zy;

2. pz € U(S) if and only if m1(u2) € Zy;
3. pe € U(S) if and only if no(p2) € U(R).

Let pig € Zy, 1 € U(R), p2 € U(S), and q, r, s are three positive integers. Then there is a one-to-one

correspondence between ZI x R" x §° and @i [TL](;) X <I7i[ﬂl> X <zf£zi2> with respect to the identification
(a07a17~-~7aq—1;b07b17---7bT—1;607cla---;cs—l) — (a(a:),b(x),c(x)),

where a(z) = ap+a1x+- - +a,-12971, b(x) = bo+biz+- - -+b,_12" 71, and c(z) = o+t o125
Now, we recall one result from [24].

Zp[u]

Theorem 3.2. Let € be a cyclic code of length n over R = Tk - If n is relatively prime to p then

= (fo(x) +ufi(z) 4+ +uF " fu_1(2)), where fo(x), fr(x), ..., frim1() € Zylz] and fr_1(z) | fr—a(z) |
| fo(x) | (2™ — 1) mod p.

Let R be a ring. We denote the multiplicative order of an element oo € R by ord(«). The following
theorem gives the form of the generator of a constacyclic code over R.

Theorem 3.3. Let R = Z<Z[2u>] and p1 € U(R). Then for any positive integer r satisfying ged(p,r) = 1
and r =1 (mod ord(p1)), every ui-constacyclic code € of length r over R is given by

= (fo(z) + ufi(x)),
where f1(x) | fo(z) | (#" = pa) mod p.

Rl REL by pr(f(x) = £(u7"@). Let a(x),bla) and h(z) be
three polynomials in R[z] such that a(z) - b( ) = (:1: —1)h ( ) Now, a( ) —b(z) = (:zzr —1h(zr) &
a(py '@) = by '2) = ((py'2)" = Dh(py 'x) < alp;'z) —

that pg is an isomorphism of rings and if I is an ideal of

Proof. We define a map pr :

(uy'z) = pit(a" — pa)h(puy M 2). This shows
5 ]1> then pr(I) is an ideal of - R[m] . Thus
if ¢ is a pj-constacyclic code over R, then p5'(€) is a cyclic code over R and by Theorem 3.27 pR Le) =
(ag(z) + uay (z)), where ai(z) | ag(x) and ag(z) | (2" — 1) mod p. Hence, € = {(ag(u; 'z) + uai (uy'2)).
Consider fo(z) = ao(py *x) and fi(x) = a1 (uy "z). Then one can easily verify that fi(z) | fo(z) | (27 —p1)
mod p. O

Next, we find the generator of a constacyclic code over S.

Theorem 3.4. Let S = u[su] and ps € U(S). Then for any positive integer s satisfying ged(p,s) = 1

and s =1 (mod ord(us2)), every usz-constacyclic code € of length s over S is given by
= (folz) +ufi(z) +u®f2(x)),
where fo(x) | fi(z) | fo(z) | (2° — p2) mod p.

131
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Proof. We define a map ps : (fli["_”]n - o Sle] .oy by ps(f(x)) = f(uy'x). Let a(z),b(x) and h(z) be
three polynomials in S[z] such that a(z) — b( ) = gx — Dh(z ) Now, a(z) — b(z) = (xs —Dh(z) &
a(py 'x) = buy 'w) = ((ny '2)* = Dh(py @) & aluy @) = b(py 'x) = py ' (@° — p2)h(py 'x). This shows
that ps is an isomorphism of rings and if I is an ideal of fs[x]m then ps(I) is an ideal of [i2>
Thus if € is a pg-constacyclic code over S then pgl(Qﬁ) is a cyclic code over S and by Theorem 3.2,
ps'(€) = (ao(x) + uay (z) + u?az(z)), where az(x) | ai(z) | ag(z) and ag(x) | (#* — 1) mod p. Hence
¢ = {ag(py ' x) + uay (py ' o) + u?az(uy ' x)). Consider fo(x) = ag(ug 'x), fi(x) = a1(uy *x) and fo(z) =
as(py tx). Then one can easily verify that fo(x) | fi(z) | fo(z) | (#® — p2) mod p. O

3.2. Constacyclic codes over Z,RS

Let po € Z5, p1 € U(R), pe € U(S) and ¢ = 1 (mod ord(ug)), © = 1 (mod ord(u1)), s = 1
(mod ord(u2)), gcd (p,q) =1, ged(p,r) =1 and ged (p,s) = 1. From here onwards, we will continue
with these conditions. Omne can check that the three maps 7y,7; and 72, defined in Section 3.1, are
ring epimorphisms and using these maps, we can define the module structures of <wqu’7[z]0> X (m?£ﬂ1>’

R[] Sla] Zyp[a] R[z] Sla] ; Zypla] R[z] s
G- X T s imo) X X Tor—y- Lt us denote MGy = gty X iy, Mij; =
Ty X (xf£132> and Mg75 = (qup,[ﬁw X (x?£ﬂ1> X (mf£7“22>. Then M| has an R[z]-module structure
with the scalar multiplication defined as

9(x) - (a(z),b(x)) = (n0(g(x))a(z), g(x)b(x)).

Similarly, M7 has an S[z]-module structure with the scalar multiplication defined as

h(z) - (b(z), d(x)) = (n2(h(x))b(z), h(z)d(x))

and Mg'7’5 has an S[z]-module structure with the scalar multiplication defined as
W) - (a(x), b(x), d(x)) = (m(h(z))a(z), n2(h(x))b(x), h(z)d(x)),

where g(z) € R[z], h(z) € S[z], a(z) € <fp[7j0>, b(x )e A d(w) € 2L Note that if g(w) =
l l

!
Zgjxj then no(g(x)) = Zn (gj)z? and if h(z Zh a2, then n;(h(z)) = Zm(hj):rj fori=1,2.

=0 =0 =0

y and

Definition 3.5. The operator T, ., : ZJR" — ZIR" defined by Ty, 1, (a0, a1, .- ag—1/bo, b1, ..., br—1)
= (uoGg—1,00,a1, - - .,0q—2|1br_1,b0,b1,...,b,—2) is called the (po,pu1)-constacyclic shift operator. A
ZypR-additive code € having block length (q,r) is said to be a (o, p1)-constacyclic code if T, 4, (€) C €.
Similarly, one can define a (u1, pe)-constacyclic code of block length (r,s) over RS with the (u1,us2)-
constacyclic shift operator T),, ,, defined over R"S® and a (o, p1, p2)-constacyclic code of block length
(q,7,5) over Z,RS with the (po, p1, pi2)-constacyclic shift operator Ty, u, ., defined over ZIR'S®, respec-
tively. For q = 0, it is said to be a (u1, pe)-constacyclic code over RS and for ¢ = 0,7 = 0, it is said to
be a po-constacylic code over S, respectively.

Let (o : ZIR" — ./\/lq’r be deﬁned by Co(¢) = ¢(z), where ¢ = (ag,a1,...,aq-1|bo,b1,...,b.—1) and
r—1
c(z) = (a(x),b(z)) with a( Z a;x’, b(x) = Z b;x'. It is easy to observe that (j is an isomorphism.
i=0
Now, we have the following lemma

Lemma 3.6. The isomorphism (o maps the constacyclic shift T, ., of an element ¢ of Z,R to the
multiplication of its image by x, i.e.,

Co(Thgpa (¢)) = 2 - Co(0)-
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Using the above lemma, we have two equivalent statements.

Proposition 3.7. The following two statements are equivalent:

1. The Z,R-additive code € having block length (q,7) is a (o, t1)-constacyclic code.
2. (o(€) is a submodule of M over R[z].

Proof. Let € be an R-submodule of ZIR". Then by Lemma 3.6, T}, ., (€) C € & - (o(€) C (o(€) &
f(x) - () C ¢o(€) for all f(x) € Rlx]. O

Note that in a similar way as above, a (u1, ue)-constacyclic code over RS and a (uo, pi1, th2)-
constacyclic code over Z,RS can be considered as an S[x]-submodule of M7’ and an S[z]-submodule of
MET5, respectively.

In the following theorem, we find the generator of a (u1, usa)-constacyclic code over RS.

Theorem 3.8. Any (u1, t2)-constacyclic code € of block length (r,s) over RS can be given as
€ = ((go(z) +ugi(@),0), (U(z), ho() + uha (z) + u’ha())),

where go(x), g1(z) € Rz], ho(x), h1(x), ha(z) € S[z] are polynomials satisfying g1(x) | go(z) |
@Zd (p,))hg(;g:) | hi(z) | ho(z) | (2 — p2) mod p, and l(x) € Rx] is such that (I(z), ho(z) +
u“ngol(x)) € €.

(a" — )
uhy(x) +

Proof.  Consider the projection map pa : M7'5 = 3 Sle ] ; defined by pa(a(z), b(x)) = b(x). It is verified
that po is an S[z]-linear map. Denote ps = pale, the restrlctlon map of py on €. Since € is an S[z]-
submodule of M7'5, pa(€) is also an S[x]-submodule of (xﬂﬂz>. Hence, p2(€) is a pe-constacyclic code

of length s over S and hence

P2(€) = (ho(x) + uhy (z) + u?ha(z)),

where hao(z) | hi(z) | ho(z) | (° — p2) mod p. Also, ker(p2) = {(a(x),0) € € | a(z) € wr—u } is an S[x]-

submodule of €. Let I = {a(x) € R[‘T | (a(x),0) € ker(p2)}. Then I is an R[z]-submodule of <z75_ﬂ1>
and so [ is a pq-constacyclic code of length r over R. From Theorem 3.3, we have I = (go(z) + ugi(x))

where ¢1(z) | go(2) | (" — 1) mod p. Therefore,

ker(p2) = ((go(x) 4+ ug1(x),0)).

Let I(z) € R[x] be such that (I(z), ho(z) +uhi(z) +u?ha(z)) € €. Denote c1(z) = (I(z), ho( ) +uhy(z)+
u?ha(z)) and ca(x) = (go(x) + ug1(x),0). Take c(z) = (ai(z),az(x)) € €. Then ag( ) € p2(€) and thus
there exists a polynomial ¢ (z) SS[x] such that az(z) = q1(z)(ho(z) + uhi(z) + u?ha(z)). Now, c(x) —

€
a1(@)er(2) = (a1 (2) — a1 (2))1(2), 0) € ker(po) and hence ax (2) - na(a1 (2)1(2) = a2 () (g0 () + ugn ()
for some qz(7) € R[z]. Thus, c(z) = q1(z)e1(x) + go(z)c2(2). O

In the following example, we find a (po, p1, p2)-constacyclic code over RS using Theorem 3.8.

Example 3.9. Consider p=>5, 3 =1, po =4, r =2 =s. Over R, we have 2> — pu; = (z + 1)(z + 4).
Over S, the polynomial x> — pa has can be factorized as 2% — s = (z + 2)(x + 3). Also, consider
go(z) =4+ 2% gi1(z) =4+, ho(z) = 1 + 22, hi(z) = 3+ z, ha(z) = 3+, I(x) = 0. Then from
Theorem 3.8, we have
C={(4+2>+u4+1),0), (0,1+z2*+u3+z)+u*3+2))
= (4u,;0,0), (0,0;3u + 3u?, u+ u?)).

Thus, € is a (1,4)-constacyclic code of block length (2,2) over ZsRS. Moreover, € is a vector space over
Zs of dimension 3.

133
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Now, we define an inner product on R"S*.

Definition 3.10. Let v = (Yo, Y1, -+ Yr—1]20, 215+« » 2s—1)s W = (Yoo Yy« Yr_1120, 25,1 25_1) €
R™S®. Define the inner product of v and w by

r—1 s—1
<v,w> = uZylyg + Zzlz;
i=0 i=0

From hereon, for an RS-additive code €, its dual will be defined with respect to this inner product, and
the dual will be denoted by €. Note that the block length of €+ is the same as that of €.

Remark 3.11. In Definition 3.10, we have defined the inner product on R"S® in a similar way as defined
by Aydogdu et al. in [5, Section 2.2] on 75 x R, where Rs = Zg + uZo + u?Zs with u®> = 0. In the proof
of Theorem 2.5 in [5], the authors have shown that if C C Z5 x RS is a linear code then |C||Ct| = 27+35.
Thus, in our case, for an RS-additive code € C R"S*, we have |€||€*| = p?"+35. Replacing € by €+ in
|€]|et| = p? 35 we obtain |€L||(€L)H| = p? 35, Thus, |€] = |[(€1)L].

Theorem 3.12. Let pu; € U(R), ug € U(S). Then the code € is an RS-additive (u1, u2)-constacyclic
code if and only if €+ is an RS-additive (ufl,ugl)—constacyclic code.

P'r'oof. Let € be a (pl, 2)-constacyclic code of block length (r,s). Let ¢ = (yo,y1,- .-, Yr—1]20, 21, - -,
zs 1), ¢ = Yoty sy 1]20, 25,y 2h_1) € €. Let ord(u;) = I; for i = 1,2, and consider the integer

= l1l2TS Then 7))} . (c) = c and hence

T;?;,L]é (C) = (y17 vy Yr—2, yr—lnul_lyo‘zl) ce 3 R5—2yRs—1, /-1/2_12:0)-

Since ¢ € €, then € being a (u1, i2)-constacyclic code we get 777! (c) € €.
Now, we have

< TMI1=H;1 (Cl)7 c>

< (M;ly;717y(]u LR 7y:"72|/1‘27122717 Z(l)v sy s 2) (yOuylv e 7y’r‘71‘Z07Z17 ey 2871) >
=ufpr Y yo Yoy + - F Yh_oyr—1} + {uy T2l 20 + 20z + o+ 2 _gze1)
= uw{yhyr + yiye + -+ u Yot + {z0m + 2l o+ py 2 20}

= (y(),y'l,...,y;_1|26,2/1,..., Zs— 1) (yla"'7y7"—1a/1“1_1y0|213"'723—17N2_120)>
= <C’T$H12( ) >

= 0.

This implies that T, -1 71( ') € €+, and hence €+ is a (u; !, uy b)-constacylic code.

We observe that € C ((’IL) . Also, from Remark 3.11, we have |¢| = |(¢1)1]. Thus, (¢+)+ = €. Now,
by interchanging the role of € and €, we get the converse of the theorem. O

Corollary 3.13. Let € be a (1, u2)-constacyclic code of block length (r,s) over RS. Then €+ is a
(it gy b)-constacyclic code of block length (r,s) over RS and

¢t = ((go() + ugy(2),0), ('(x), ho(w) + uhy () +u®hy(2))),

where gh(), g1 (x) € Rfz], hy(w), Wi (z), hy(x) € Sla] are polynomials satisfying ¢} (x) | gb(x) | (=" — )

mod p, hh(x) | hi(x) | hy(z ) | (% — p2) mod p, and l'(x) € R[z] is such that (I'(x), h{(x) + uhi(z) +
Zh/( )) c Q:l

Proof. It follows directly from Theorem 3.8 and Theorem 3.12. 0

In the following result, we find the generator of a (1o, i1, 12)-constacyclic code over Z,RS.
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Theorem 3.14. Any (uo, p1, 12)-constacyclic code € of block length (q,r,s) over Z,RS can be given as

)-
¢= <(f0(x)’070)a( ( )790(x) + ugl(x)’o)v (b((ﬂ),lg(l’),ho(l’) + Uhl(m) + uth(x)»a
)

where fo(x) € Zplz], go(x),g1(x) € Rlz], ho(x), hi(z), ha(x) € S[z] are polynomials satisfying fo(z) |
(z? — po) mod p, gi(x ) | go(x) | (2" — p1) mod p, ha(z) | hi(x) | ho(z) | (z° — p2) mod p, and the
polynomials 1 (x),l2(x) € Zyx], I3(x) € Rlx] are such that (11(x), go(x) + ug1(x),0), (l2(x), I3(x), ho(x) +
uh1($) + ’U/th(l‘)) e c.

Proof. Consider the projection map p3 : M§75 — [ y defined as ps(a(z), b(x),d(z)) = d(z). It

(e -
can be verified that p3 is an S[z]-linear map. Denote p3 = pg\g, the restriction map of ps on €. Since

¢ is an S[z]-submodule of M5, p3(€) is also an S[z]-submodule of (Iﬂﬂ?). Therefore, p3(€) is a

ueo-constacyclic code of length s over S and hence
P3(€) = (ho(x) + uhi(z) + u?ha()),

where hy(z) | hi(z) | ho(z) | (#° — p2) mod p. Also, ker(ps) = {(a(x),b(z),0) € € | a(z) € —=2_ p(z) €

(x?—po)

Rlz] 7} is an S[z]-submodule of €. Let I = {(a(x),b(x)) € M} | (a(z),b(x),0) € ker(ps)}. Then I is

(zT—p1)
an R[r]-submodule of M and so I is a (o, p1)-constacyclic code of block length (g, ) over Z,R. Using
similar arguments as in Theorem 3.8, we have I = {(fo(x),0), (I1(2), go(z) + ugi(x))), where fo(z), 11 (z)
are polynomials over Z, with fo(x) | (7 — o) mod p and ¢1(x) | go(2) | (" — 1) mod p. Hence,

ker(ﬁ’i) = <(f0('73)7 0, 0)7 (ll(x)7 go(ﬂ;‘) + ug: (:13), 0)>

Let l2(z) € Zplz], l3(z) € R[z] are such that (Ia(z),l3(z), ho(x) + uhi(z) + u?he(x)) € €. Denote
e1(2) = (12(2), I (), h o) uha(x) (). () = (o), 0,0) an () = (1 (2). gl 413 2).0).
Note that ca(x) = (fo(2),0,0),c3(x) = (I1(x),go(z )—l—ugl( ),0) € ker(ps) C €. Take c(x) =
(a1(z),az(x),a3(x)) € €. Then az(z) € ps(€) and thus there exists a polynomial ¢ (z) € S[z] such
that az(x) = q1(2)(ho(x) + uhi(2) + uha(z)). Now c(z) — qi(z)er () = (a1 () — m(q1(2))lz(2), as(x) —

n2(q1(2))ls(x),0) € ker(ps). Hence, ai(z) — m(qi(z)l2(x) = ga(z)(fo(x) + gs3(2)h(x)) for some
q2(z) € Zplx] and az(x) — n2(q1(z )) 3(x) = g3(x)(go(x) + ugr(z)) for some ¢3(x) € R[x]. Thus,
(x) = (@Der (@) + aa()er @) + g5(2)es ) .

In the following example, we find a (o, p1, t2)-constacyclic code over Z,RS using Theorem 3.14.
Example 3.15. Consider p = 2, pip = 1 = p1, 2 = 1 +u? ¢ =2 =1r =s. Over Z, and R,

we have ¥? — p; = (x + 1)? for i = 0,1. Now, over S, the polynomial x> — ps can be factorized as
2% — o = (x+1+u)?. Also, consider fo(z) =1+, go(x) =1+ 22, g1(x) = 1+ 2, ho(x) = 1 +u? + 22,
hi(z)=1+u+z, ho(x) =14+ u+x, lo(z) =0 =11(x) = la(x). Then, from Theorem 3.14, we have
¢ = {(142,0,0), (0,1+2%+u(l+x),0), (0,0,1+v*+ 2> +u(l+ut+z)+u’*(l+u+z)))
= ((1,1;0,0;0,0), (0,0;u,u;0,0), (0,0;0,0;u, u+ u?)).

Thus, € is a (1,1,1 + u?)-constacyclic code of block length (2,2,2) over ZoRS. Moreover, € is a vector
space over Zo of dimension 4.

Similarly, as in Definition 3.10, we can define an inner product on ZIR"S* as follows.

ers o (ol o /
Definition 3.16. Let v = (20, %1, -, Tq-1[Y0, Y1, - > Yr—1]20, 21, - - -, 2s-1) and w = (x4, Y, ..., To_4|

Y05 Y1s- > Yr—1120: 21, - - - » 25_1) are two members of ZIR"S®. Define the inner product of v and w by

q—1 r—1 s—1

.2 / / /

<v,w> =u E xixi-i-ug yiyi—l—g Zi%z;
i=0 =0 =0

From here onwards, the dual of a Z,RS-additive code will be defined with respect to this inner product.



I. Debnath et. al. / J. Algebra Comb. Discrete Appl. 12(2) (2025) 127-152

Theorem 3.17. The code € is a Z,RS-additive (uo, i1, 2)-constacyclic code if and only if €4 is a
ZyRS-additive (g ", py ", py ' )-constacyclic code.

Proof. By using Definition 3.16, the proof follows similarly as in Theorem 3.12. O

The following corollary is an obvious consequence of Theorem 3.14 and Theorem 3.17.

Corollary 3.18. If € is any (uo, pi1, p2)-constacyclic code of block length (g, 7, s) over Z,RS, then €+ is
a (ugt, uyt, ps t)-constacyclic code of block length (q,r,s) over ZpRS and

¢t = ((f(2),0,0), (11 (x), go () + ug} (x),0), (ly(x), l3(x), ho () + uh () +u*hy(x))),

(
where fi(x) € Zylx], g4(x), 91 (x) € Rlz], hy(z), h(z), hy(z) € Slz] are polynomials satisfying fi(z) |
(#? — po) mod p, gi(z) | gy(z) | (a" — p1) mod p, hy(z) | Ki(z) | ho(x) | (x° — p2) mod p, and the
polynomials I} (x),15(x) € Z,[x], lI5(x) € Rlx] are such that (I} (), g((x) + ugi(x),0), (I5(z), I5(z), hi(x) +
uhy (x) + u?hh(z)) € €L,
Definition 3.19. Let € be a Z,RS-additive code of block length (q,r,s). Let €, be the code obtained
by removing all the coordinates from R and S, €, be the code obtained by removing all the coordinates

from Zy, and S, € be the code obtained by removing all the coordinates from Z, and R. Then € is called

separable if € = €, x €, x €. If € is separable then €+ = C(JI- X € x €L de., € is also separable.

It is easy to observe that &, is an additive code over Z, of length ¢, €, is an additive code over R
of length r and €, is an additive code over S of length s. Now, we have the following two results.

Proposition 3.20. Let € be a Z,RS-additive code of block length (q,r,s) and suppose € is separable.
Then € is a (o, i1, p2)-constacyclic code if and only if €, is a po-constacyclic code, €, is a pi-constacyclic
code and €4 is a ps-constacyclic code.

Proof. Since € is separable, we have € = ¢, x ¢ x &, First, suppose that €
is a (po,p1, u2)-constacyclic code. Take (ag,a1,...,aq-1) € & (bg,b1,...,0,—1) € €,
(do,dl,...,ds_l) € €, such that (ao,al,...,aq_1|bo,bl,...,br_1|d0,d1,...7d3_1) (S % Then
(Hoag—1,00,- ., aq—2|p1br_1,bo, ..., by _2|piads_1,do,...,ds_2) € € and hence (poaq—1,a0,...,0q-2) €
€y, (1br—1,b0, ..., bp—2) € € and (pads—1,do, . ..,ds—2) € €. Thus €, is a ug-constacyclic code, €, is a
pui-constacyclic code and € is a us-constacyclic code.

The converse can be proved by reversing the above arguments. O

Proposition 3.21. Let € be a Z,RS-additive code of block length (q,r,s) and suppose € is separable.
Then € is a (po, p1, po)-constacyclic code if and only if €+ is separable and it is a (ug ", py ", pyt)-
constacyclic code over Z,RS.

Proof. The proof follows from Theorem 3.17. O

4. Gray maps on R, S and Z,RS

In this section, we define a few Gray maps and then study their images.

Define the Gray map

¢1 TR — ZZ
by

¢1(1) = (LO)

qbl(u) = (LH)v
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where k € Z,, is such that x> = —1 (mod p), and thus ¢;(a + ub) = (a + b, kb) for all a,b € Z,. Such an
element x will always exist as we consider only those rings Z,, in which p —1 is a quadratic residue. One
can easily verify that the map ¢ is Zy-linear and bijective.

The Lee weight of an element x € R is defined as wtr(z) = wty(p1(z)), where wty(y) denotes
the Hamming weight of y and the Lee distance between two elements z,y € R is defined as dp(z,y) =
wtr,(x —y). The Gray map ¢, can be extended to ¢, : R" — fo by

&1 (aop + ubg, a1 +uby, ..., ar_1 + uby_1)
= (ao + bO,al + bla ey Qp—q + br—1|/€b03 K:blv ey Hbr—l)v

where € Z,, is such that k? = —1 (mod p).

r—1
The Lee weight of an element & = (g, x1,...,2,—1) € R" is defined as wty(z) = Zth(a:i) and
i=0

the Lee distance between two elements z,y € R" is defined as dr(z,y) = wir(x — y).

From the above definition of ¢, it can be observed that ¢, is a distance preserving map from R"
(Lee weight) to fo (Hamming weight). Further, if € is an R-additive code with parameters [r, k, d| then

¢1(€) is a [2r, k, d]-code over Z,,.

Theorem 4.1. For any two elements x,2’ € R",

51(55) '$1(33I) =m0 ¢y (- a'),

where 7y : Zg — Z,, is the projection map defined as m(a,b) = a for a,b € Zy,.

Proof. Let xz = (zo,21,...,2r—1) and &’ = (z(,x],...,z._1), where x; = a; + ub;, x} = a} + ub} and
ai, b, al, b, € Z,, for i =0,1,...,r — 1. Now,

(R
r—1
! !/
r-r = g Tix;
1=0
r—1

= Z{aiag + u(a;b; + aib;)}
i=0

= ¢1(z-2') = (aoag + aoby + agbo + - - - + ar_1ay,_; + ar_1b,._; +ay_1br—1 , K(aoby + agbo)
+ o+ m(ar_1b_ +a._1b._1)).

Also,
() - ¢y(a) = (ao +bo,a1 +by,...,ar—1 + bp_q|kbo, kb1, ..., Kby_1)
' (aé) + bé)aall + bllv e 7a;*—1 + b;—1|’€b6a /{b/la ceey nb;”—l)
= (apag + apby + apbo + -+ + ar—1a,._y + ar_1b._ +al._1b._1).
Thus,

é1(x) o1 (a) =m0 ¢ (x-af).
O

The above theorem shows that the images of two orthogonal elements in R” under the map ¢, are
also orthogonal. Now, we have the following result.

Corollary 4.2. Let € be an R-additive code of length r. Then
61(€h) = 61 (O).
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r00f. rom eorem 4.1, we have b Co . Now, if we can show that b = o

Proof. From Th 4.1 have ¢, (€+) C ¢, (€)*. N f we . how that |¢,(€)*] = |¢, (¢t

then we are done. We know that ¢, is an isomorphism and hence |¢,(€)| = |€], [¢,(€1)| = |€+]. Also,
— 27 2r —_

727 = 9. Thus, [6,(€)] = Lo = ey = [€4] = (8, (€)]. O

We define another Gray map

by

where k € Z, is such that £ = —1 (mod p), and thus ¢2(a + ub + u?d) = (a + b + d, s(b + d), b) for all
a,b,d € Z,,. One can easily verify that the map ¢, is Z,-linear and bijective.

The Lee weight of an element z € S is defined as wtr(x) = wty(pa2(x)), where wty(y) denotes
the Hamming weight of y and the Lee distance between two elements z,y € S is defined as dp(x,y) =
wtr(x —y). The Gray map ¢, can be extended to ¢, : S* — Z3* by

o (ao + uby + u’dy, a1 +uby +u?dy,. .., as_1 + ubs_1 + u2d5,1)
= (ag+bo+do,a1 +by +di,...,a5—1 4+ bs_1 +ds_1]k(bo + do), k(b1 + dy),
ceey K(bs_l + d3_1)|b0, bl, ceey bs—1)7

where k € Z,, is such that k? = —1 (mod p).

s—1
The Lee weight of an element z = (g, 21,...,25—1) € S* is defined as wtr(z) = Zwt,;(xi) and
=0

the Lee distance between two elements =,y € S° is defined as dr(x,y) = wtp(z — y).

From the above definition of ¢,, it can be observed that ¢, is a distance preserving map from S*
(Lee weight) to ng (Hamming weight). Further, if € is an S-additive code with parameters [s, k, d] then

5(€) is a [3s, k, d]-code over Z,.

Now, similar to the Theorem 4.1 and Corollary 4.2, we have the following two results.

Theorem 4.3. For any two elements x,z’ € S%,
Go(x) - Po(a’) = 1 0 o(a - ),

where 71 : Zg — Zy, is the projection map defined as 71(a,b,d) = a for a,b,d € Z,. In particular, the
images of two orthogonal elements in S* under the map ¢, are also orthogonal.

Proof. Similar to the proof of Theorem 4.1. O

Corollary 4.4. Let € be an S-additive code of length s. Then
52(9?) = 52(¢)l-
Proof. Similar to the proof of Corollary 4.2. O
Now, we define a Gray map from Z,RS to Zg by using the Gray maps ¢; and ¢. Define

¢ : ZyRS — Zy
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by
oz, y,2) = (x,01(y), p2(2)) forallz €Z,, yeR, z€S.

Obviously, the map ¢ is also Z-linear and bijective. The Lee weight of an element o = (z,y, 2) € Z,RS is

defined as wtp () = wtg(z)+wtr (y)+wtr(z). The Lee distance between two elements « = (z,y, 2), o' =

(«',y',2") € Z,RS, is defined as dy (o, o) = wtp(a — ).
P s 2r+3s
The map ¢ can be extended to ¢ : ZIR"S* — ZIT2"+35 by

(b(x?y’ Z) = (33, d)l(y)’ ¢2(z)),

where z € Z], y € R", 2z € S°.

The Lee weight of o = (%o, 21,...,%¢-1[%0, Y1, -, Yr—1]20, 21, .-, 25-1) € ZIR"S® is wtp(a) =
g—1 r—1 s—1
Zth(xi) + Zth(yi) + Zth(Zi) and the Lee distance between a,a’ € ZIR"S® is dr(a,a’) =
i=0 =0 =0
wtr(a—a').

We observe that ¢ is also a distance preserving map from Z{R"S* (Lee weight) to Z2™2"3¢ (Hamming
weight). Further, if € is a ZZR"S%-additive code of block length (g, 7, s), having p* codewords with
minimum distance d then ¢(€) is a [¢ + 2r + 3s, k, d]-code over Z,.

Theorem 4.5. For any two elements a = (z,y,2), o' = (2,y',2") € ZER"S*, we have
@) -p(a) =z -2’ +mopi(y-y) + 71 oda(z-2),

where x, 2’ € 24, y,y' € R", 2,2/ € S*.

Proof. We know that ¢(a) = (x,¢,(y), ¢2(2)) and ¢(e’) = (¢, ¢, (y'), ¢2(2')). Thus
#(a) - g(a’) = - 2"+ 61(y) - $1(Y) + Pa(2) - Pa(2').
Now, the proof follows from Theorem 4.1 and Theorem 4.3. 0

Considering the inner product which we defined in Definition 3.16, we get from Theorem 4.5 that
the images of two orthogonal elements in ZZR"S® under the map ¢ are also orthogonal and we have the
following corollary.

Corollary 4.6. If € is a Z,RS-additive code of block length (g, r,s) then
() = d(@)*.

Proof. Similar to the proof of the Corollary 4.2. O

4.1. Results on Gray images of additive codes

Now, we will give a few results related to the Gray images of additive cyclic and additive constacyclic
codes.

Lemma 4.7. Let 01, 03, 0,,, 2 and T}, are respectively the cyclic shift operator, the 2-quasi-cyclic shift
operator, the (u1,2)-quasi-twisted shift operator and the ui -constacyclic shift operator on R"™ with py € L.
Then

1. 51001 :92051;

139
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2. $1 OTM = 9#172 051'
Proof. Letz = (zg,x1,...,2r—1) € R", where z; = a; + ub; with a;,b; € Z, for i =0,1,...,7r — L.
1. We have

61 © 0'1(1') = al(‘rT*h Zo, .- - ,1'7«,2)
== (ar—l + br—17a0 + bOa ey Qp—2 + br—2|/{br—1; ’ibOa ey Hbr—Q)a

and also

02 O&l(l‘) = 92(&0 =+ bo, a1 + b1, e, Q1+ b7n_1|l’<,b07 Hbl, ey K,bT_l)
= (Cl,r_l +br_1,a0 +bg,...,0._o+ b,«_g‘;‘{br_h kbo, ..., Hbr_g).

Thus, ¢; 001 = 63 0 ¢;.
2. We have

@1 0Ty, (2) = ¢y (par_1,20,. .., 2r_2)
= (p1(ar—1 +bp_1),a0 +bo, ..., ar—2 + br_a|kp1by—1,Kbo, ..., Kb_2),

and

O, 2 0¢,(z) = Oy ,2(a0 +bo, a1 + b1,...,ar—1 +br_1|Kbo, Kb1,. .., Kby_1)
= (,U/l(arfl + brfl)vaO + bOv ceyQr2 + br72|’iﬂ1br717 HbOv RS "{b'r72)~

Thus, 51 © THI = 0#«1,2 o 51~

O

Using the above lemma, we have the following theorem on the Gray image of cyclic and constacyclic
codes over R.

Theorem 4.8. Let 11 € Zy,. Then we have the following:

1. If € is a cyclic code of length v over R then ¢,(€) is a 2-quasi-cyclic code of length 2r over L.

2. If € is a p1-constacyclic code of length r over R then ¢,(€) is a (1, 2)-quasi-twisted code of length
2r over Z,.

Proof. 1. Suppose € is a cyclic code of length r over R. Then 01(€) = €. Now from Lemma 4.7,
we have

02(61(€)) = 61 (01(€)) = ¢,(9),
and this implies that ¢, (€) is a 2-quasi-cyclic code of length 2r over Z,.

2. If € is a pq-constacyclic code of length r over R then T, (€) = €. Now from Lemma 4.7, we have

O 2(61(€)) = 61(T,, (€) = 64(9),

which implies that ¢, (€) is a (11, 2)-quasi-twisted code of length 2r over Z,.
O

Lemma 4.9. Let 09, 83, 0,3 and T),, be the cyclic shift operator, the 2-quasi-cyclic shift operator, the
(12, 3)-quasi-twisted shift operator and the ps-constacyclic shift operator, respectively on 8° with ps € Ly,
Then
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1. $2002 :63°$2;
2. 62 0Ty, =03 062-

Proof. Let v = (zg,21,...,25-1) € S° where z; = a; + ub; + u’d; with a;,b;,d; € Z, for i =
0,1,...,5 1.

1. We have
52 e} 0'2(%) = 62(1‘8_1,$0, e ,$S_2)
= (as—1+bs—1 +ds_1,a0 +bo +do,...,a5_2 +bs_2 + ds_2|r(bs—1 + ds_1),
"{(bO + dO)v RN "{(b572 + d572)|b5717 bOv ceey b572)~
Also,

03 0 dy(z) = O3(ao + bo + do, a1 + by +di,...,as—1 + bs_1 + ds_1|K(bo + do), k(b1 + dv),
L K/(bsfl + dsfl)‘b(h b17 ey bsfl)
= (a5,1 + b571 + ds*lv ao + bO + dOa ceeyQs—2 T+ b572 + ds,2|l€(b571 + dsfl);
H(bo + do)7 ey Ii(bs_g + ds_2)|bs_1, bo, ey bs_g).
Thus, ¢y 0 09 = 03 0 Ps.
2. We have

= 52(#2555—1,5?0, cee axS—Q)
= (p2(as—1 +bs—1 +ds—1),a0 +bo + do, ..., as—2 + bs_2 + ds_2|kp2(bs_1 + ds—1), k(bo + dyp),
] lﬂ}(bs_g + d5—2)|/’['2b8—17 b07 e ,bs—2)a

and

0.3 052(55)
= 9u273(a0 +bo+do,a1 +b1+di, ... a1 +bs—1 + ds—1|k(bo + dop), k(b1 + di),
oy bi(bs—1 +ds—1)|bo, b1,y - - bs—1)
= (po(as—1 + bs—1 + ds—1),a0 + bo +do, ..., a5_2 + bs—2 + ds_2|kpu2(bs—1 + ds_1), £(bo + do),
oy k(bs—o + ds—2)|abs—1,bo, ..., bs_2).

Thusa &2 o TMz = 6#2,3 o 52'

Now, we have the following theorem on the Gray image of cyclic and constacyclic codes over S.

Theorem 4.10. Let us € Zy,. Then we have the following:

1. If € is a cyclic code of length s over S, then ¢o(€) is a 3-quasi-cyclic code of length 3s over Z,.

2. If € is a pa-constacyclic code of length s over S, then ¢o(€) is a (uo,3)-quasi-twisted code of length
3s over Zy.

Proof. 1. If € is a cyclic code of length s over S, then o2(€) = €. Now from Lemma 4.9, we have

03(2(€)) = 5(02(€)) = d,(€),
and this implies that ¢,(€) is a 3-quasi-cyclic code of length 3s over L.
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2. Assume that € is a pp-constacyclic code of length s over S. Then T),,(€) = €. Now from Lemma
4.9, we have

012 3(02(€)) = 65(T,1, (€)) = 6,(©),

which implies that ¢, (€) is a (u2, 3)-quasi-twisted code of length 3s over Z,.

The next result is on the Gray image of a constacyclic code over Z,RS.

Theorem 4.11. Let po, p1, 2 € Zy, and suppose € is a (jio, pi1, p2)-constacyclic code of block length

Eq,r, s) over)ZpRS. Then ¢(€) is a generalized (pio, j11, j11, fi2, fha, i) -quasi-twisted code of block length
q7T7T7S7S’S -

Proof. Take w € ¢(€). Then there exists v € € such that w = ¢(v). Let

v = (x07x17"'7xq71|y07y17"'7y7‘71‘207zla--~7z871)3

where y; = a; + ub;, z; = a} + ub; + v?d} and z;,a;,b;, a, b}, d; € Z,. Then

19 79 Yo 1

a(v) = (.1‘0,.2?1, - ,a:q_1|a0 + bo,al + bl, e, Qp1 T+ bT_1|I€b0, I{bl, ceey /-@br_1|a6 =+ b6 =+ df),
a‘ll + bll + dlla tee 704271 + blsfld;71|"€(b6 + d6)7 K(bll + dl1)7 ey Fé(b/371 + dlsfl)‘béh b/17 R ;71)'

Let T iy, n b€ the (10, g1, p12)-constacyclic shift operator on ZIR"S*. Then we have

$o )
= P(HoTq—1,T0, - - -, Tqa| 1 Yr—1,Y0, - - -, Yr—2|li22s—1, 20, - -, Zs—2)
= (Ho%g—1,%0, - ., Tg—a|p1(ar_1 +br_1),a0 + bo, ..., ar_2 + br_o|kp1by_1, Kby, ..., Kby_s|
paal_y + by +di_y),ag+ by +do, o ay_o + o+ di_slrpa(by_q 4+ di_y), Kby + dp),
KDy _g +di o) |p2bl_1, b0, - b5 o).

Since € is a (o, f11, p12)-constacyclic code, @ 0 Ty 1. (V) € A(€) and we observe that ¢ o T}, 1y s (V)

is the generalized (uo, p1, p1, pi2, f2, 2 )-quasi-twisted shift of #(v). Therefore, ¢(€) is a generalized
(10, 111, [15 fi2, pi2, pi2)-quasi-twisted code of block length (g,7,7, s, s, s). O

5. The weight enumerator and MacWilliams identities

Weight enumerators play an important role in calculating the probability of an incorrect message
being received undetected by the receiver. It involves the number of codewords of a particular weight,
which can be easily obtained once the weight enumerator is known. Further, one can express the weight
enumerator of the dual code in terms of the weight enumerator of the code itself. MacWilliams identities
provide exactly this. In this section, we study different weight enumerators, such as complete weight
enumerator, symmetrized weight enumerator, etc., and establish the MacWilliams identities.

5.1. The complete weight enumerator and the Hamming weight enumerator

First, we arrange the members of each of Z,, R and S, respectively, in a particular order.

The members of Z, are arranged in increasing order by considering the members as mere integers,
e, {0<l<2<---<p-—1}

For any two members ag + aju, by + biu € R, we say ag + aju < by + byu if one of the following two
conditions hold.
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1. a1 < by;

2. a1 = by, ag < bg.

For any two members ag + a1u + asu?, by + biu + byu? € S, we say ag + aju + agu? < by + byu + byu?
if one of the following conditions hold.

1. as < bo;
2. ag = by, a1 < by;

3. as = by, a1 = by, ag < bg.

Using the above ordering of the members of each of Z,, R and S, now we can order the members of
Z,RS. For any two members a = (ap, a1, a2), 8 = (Bo, b1, B2) € ZyRS, where o, By € Zp, 01,61 € R,
and as, By € S, we say a < 3 if one of the following conditions hold.

1. ap < Bos
2. ag = Bo, a1 < Bi;

3. ag = Po, ag = B1, ag < fBa.

We know that any integer ¢ with 0 < i < p® — 1, can be written as i = Zj:o a;jp’, where 0 < a; <p—1
for j =0,1,...,5. If we consider all the members of Z,RS as Z,RS = {fo < f1 < fa < -+ < fpo_1},
then using the ordering of the members of Z, RS, we have

fi = (a5, aau + a, au® + ayu + ag),

. 5 ;
where i = 0_a;p’.
Now, we are ready to define the complete weight enumerator of a Z,RS-additive code €.

Definition 5.1. Let € be a Z,RS-additive code of length n. Then the complete weight enumerator of €
is denoted by Wée) and is defined by

6
p
wy; 4 ()
W(CQ)(xl,xg,...wpe):ZHxif ey

ce€i=1

where for each ¢ = (co,c1,...,cn-1) € €, wy,(c) =|{j:c; = fi,0<j<n—1} fori=1,2,...,p".

From the above definition, it is evident that W(ce) (1,2, ...,2ps) is a homogeneous polynomial. The
total degree of each monomial in W((f) (@1,@2,...,xp0) is n. Also, we observe that Wg)(l, 1,...,1)=1€|.

Now, we will investigate the MacWilliams identity corresponding to the complete weight enumerator.
First, we define a generating character on Z,RS.

Definition 5.2. Define x : Z,RS — C* by
X((a’ o + ub’, a + ub” + UQdH)) _ (_1)a+a/+b’+a”+b”+d”.
It can be easily verified that x-image of any non-zero ideal is always non-trivial and hence by Lemma 2.7,

X is a generating character on Z,RS. Moreover, an element a+ub+ u?d € S can be seen as an element
of ZyRS as (0,0,a + ub + u?d), and we consider x(a + ub + u*d) = x((0,0,a + ub + u?d)).
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Suppose P = [p;;] is a matrix of order p® with p;; = x(< fi—1, fj—1 >) where y is the generating
character defined above and fi_1, fj—1 € Z,RS for all 4,5 = 1,2,...,p% It is to be noted that since
fi—1fi—1 = fj—1fi—1, the matrix P is symmetric. We find the matrix P for two different cases, p = 2 and

p#2

First, we consider the case when p = 2. Here, we have

B B
relp )

where

A A A A
A -A —-A A
A A A —A
A A -A -A

B =

is a matrix of order p® and A is a matrix of order p3, given by

1 1 1 1 1 1 1 17
1 -1 -1 1 -1 1 1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
B EE! 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1
1 -1 1 -1 -1 1 -1 1]

The matrix A is actually the submatrix of P, consisting of the first p® rows and the first p* columns.
Similarly, the matrix B is a submatrix of P, consisting of the first p® rows and the first p® columns.
In other words, the matrix A is generated by the first p?> members of Z,RS whereas the matrix B is
generated by the first p° members of Z,RS.

Now, we discuss the case when p # 2. As we did in the previous case for p = 2, here as well, we
describe the matrix P in terms of its submatrices B and A. Since P is symmetric, its ith row is the same
as its ith column. First, we write P in p rows and p columns, and each one of their entries is given in
terms of the submatrix B. In this way, the first two rows of P are, respectively, (B B B --- B) and
(B —B B —B B --- B). Therefore, all the entries in the first row are B, and the second row has
B and —B alternatively. Since p is odd, and the matrix P has p submatrices in each of its rows, the last

—1 . -1 .
EZ= entries P== entries

2 2
entry in the second row of P is B. The penultimaterowis (B -B —-B -+ —-B B B .-+ B),

i.e., the first entry is B, and among the remaining p — 1 entries, the first prl entries are —B and the next

% entries are B. The last rowis (B B —B B —B B --- — B), ie., the first two entries in the
last row are B each, and then —B and B appear alternatively. The appearance of the in-between rows
varies as we consider different primes p. Similarly, we can find the matrices B and A. The matrix B has

p? rows and p? columns, among which the first row is (4 A A --- A). The second row is
p entries p entries
A -A A -A .- A -A A -A A4 ... —-A .- A -A A -A - A,
p entries

where the first p entries and the immediate next p entries appear alternatively. The appearance of the
remaining rows varies as we take different values of the prime p. The matrix A has p? rows and p?

columns, among which the first rowis (1 1 1 --- 1). The second row is
p entries p entries
T-11-1 -1 -11-11: -1 -+ T 11 -1 - 1),
p entries
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where the first p entries and the immediate next p entries appear alternatively. The appearance of the
remaining rows varies with the different values of p.

The next Lemma follows from [4, Lemma 3.2].

Lemma 5.3. Let € be a Z,RS-additive code of length n and €+ be its dual. Let

&= 3 x<zv>) ).

vELRRNS™

Then

S fw) = |%| S fw).

vect ued

Now, we find the MacWilliams identity with respect to the complete weight enumerator.

Theorem 5.4. If € is a Z,RS-additive code of length n then

¢t 1 ¢
W(c )($1,I2,...,$p6):@ (C)(P~(x1,sc2,...,xpa)T),
where (x1,T2,...,2,6)7 denotes the transpose of (x1,Ta,. .., Tps).

ot wy, 4 (v)

Proof. Now, using Lemma 5.3 for f(v) = [[;_; z; , the proof follows from [27, Corollary 8.2]. [

Example 5.5. Consider the ZoRS-additive code of length 2,
€ = ({(1,0,1 +u?0,u,0), (0,1 +u,0;1,0,1+u)}).
Then €5 is a linear code over Zs of dimension 6 and

By = {(1,0,1 +4?;0,u,0),(0,0,u;0,0,0), (0,0,u%0,0,0), (0,1 +u,0;1,0,1 4 u),
(0,u,0;0,0,u +u?), (0,0,0;0,0,u*)}

forms a Zo-basis of €. Thus the dual code €y is also a linear code over Zy of dimension 6 and

By = {(0,0,0;0,u,0),(1,0,0;0,1,0), (0,u,0;0,0,u2), (0,u,0;1,0,0),
(0,1+u,0;0,0,u +u?),(1,0,u*0,0,0)}

is a Zy-basis of €5 . Now, according to Definition 5.1, the complete weight enumerator of € is given by

W((jcz)(.%‘l, Loy ... ,.’1}64)

= 2% + T3sT17 + T3T1 + Ta0T17 + 2T5T1 + T34T17 + T7T1 + T3eT17 + Ta5T36 + TeaTse + TarTag+
Te4T52 + T29T36 + T58T52 + T31T36 + Te0Ts2 + T17T7 + T54%23 + T19T7 + TseT23 + T21T7 + Ts0T23
+ X327 + Ts2%23 + T9T3s + L4654 + L1138 + T48T54 + T13T38 + T42T54 + T15238 + T44T54+
T38T21 + T3T5 + T40%21 + Cﬂg + T34%21 + T7T5 + T36T21 + T25T40 + Te2T56 + L2740 + TeaTs6+
T29T40 + T58T56 + T31T40 + T60Ts6 + T17T3 + T54T19 + L1923 + Ts6L19 + L2123 + T50T19 + T23T3

+ 52019 + X934 + T46X50 + 11234 + T48T50 + T13%34 + T42%50 + T15%34 + T44T50-
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Similarly, the complete weight enumerator of (’22l is given by
Wécé)(l’l,l’g, ceeyT64)
= SE% + 2w37w1 + T2527 + Te1T7 + T17233 + T53T33 + ToT3g + T45T39 + T17T5 + T53T5 + ToXz+
Ty5T3 + $§7 + Zo5%35 + L1235 + T33%9 + T5T9 + T57X15 + T29X15 + T49X41 + T21X41 + T41T47+
T13%47 + T49T13 + 21013 + T41T11 + X13T11 + T33T45 + L5245 + L7243 + T29T43 + T1217+
T37T17 + T2sT23 + Te1T23 + T17T49 + T53Ta9 + T9Tss + TasTss + T17221 + Ts53T21 + T9T19+
T45T19 + T1T53 + T37T53 + T25T51 + Te1T51 + T33%25 + TsTas + Ts7T31 + T29T31 + Ta9Ts7 + T21Ts7

+ T41%63 + T13T63 + T49T29 + T21T29 + T41T27 + T13T27 + T33T61 + T5X61 + T57T59 + T29T59.

Next, we define the Hamming weight enumerator and find the corresponding MacWilliams identity.

Definition 5.6. Let € be a Z,RS-additive code of length n. Then the Hamming weight enumerator of
¢ is denoted by WI(;) and is defined by

WI(-IC) (:v,y) — an—wty(c)ywty(c) ’

ced

where wtg(c) is the Hamming weight of c.

Like the complete weight enumerator, the Hamming weight enumerator is also a homogeneous poly-
nomial of degree n. Further, we observe that

¢ ¢
WI(—I)('T7y) :W((j)(x7y7y?"'7y)’
which gives us a relation between the complete weight enumerator and the Hamming weight enumerator.

Theorem 5.7. If € is a Z,RS-additive code of length n, then

¢t 1 ¢
WE ) (z,y) = T @+ (0% — Dy, —y).

Proof. The proof follows from Theorem 5.4 and uses the relation between the complete weight enu-

merator and the Hamming weight enumerator. O

Example 5.8. We consider the same code €5 as in Example 5.5. Then by using the complete weight
enumerator of &, found in Example 5.5, the Hamming weight enumerator of €5 is

Wit (z,y) = @ + day + 59,

and by using Theorem 5.7, the Hamming weight enumerator of €5 is given by

1
W (2,y) = —WE (2 + 63y, — y)

64 H
= 6%[(3: +63y)? + 4(x + 63y)(x — y) + 59(z — y)?]

= 2% + day + 599>

5.2. The symmetrized weight enumerator and the Lee weight enumerator

First, we find the value of wtr(f;), the Lee weight of f;, i = 0,1,2,...,p% — 1, where f; are the
members of Z,RS in the same order as we have considered earlier. Let ¢ = Z?:o a;p’, where 0 < a; <
p—1for j=0,1,...,5. Then 0 < i < p% — 1, and the Lee weight of f; is given by

wtr (fi) = wtg(as) +wtp(az + vag) + wtr (ag + uay + ulaz)
= wty(as) + wtg(as + aq, kag) + wtg(ao + a1 + ag, k(a; + az),a1).
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Thus, the Lee weights of the elements of Z,RS can vary from 0 to 6.

Now, we define the symmetrized weight enumerator.
Definition 5.9. Let € be a Z,RS-additive code of length n. Then the symmetrized weight enumerator
of € is denoted by WE(;C) and is defined by
W (Wo, Wy, W W) = WS (W, Wot, (710, W, W,
S 0 1 PR 6 C wtr, (fo)s wtr (f1)s wtr (fa)r U)tL(fp(jil) )

where W; represents the variable corresponding to the Lee weight i.

From the above definition, we have

We™ (Wo, Wi, Wa, ... We) = 3 WOy g et (1)
ced

where n;(c) = [{j : wtr(c;) =4, 0 < j <n—1} for c = (cp,c1,...,¢n—1) €Cand : =0,1,...,6.

Remark 5.10. Interestingly, we observe that the Lee weight of an element in the same position, say f;,
which is in the (i + 1)-th position, can be different for different choices of p. For example,

1 forp=2 2 forp € {2,3}
t == t =
v L(fp2+p) {3 otherwise v L(fp2+p+1) {3 otherwise
3 forp=2
wtr(fps—1) =4 forp=3 , and so on.

5 otherwise
This makes the task of characterizing the Lee weights of all the p® elements of Z,RS for all primes p

in general, very complicated. Below, we find the Lee weights of the elements of Z,RS for two different
primes, p =2 and p =3, in Table 1 and Table 2, respectively.

Table 1. Lee weights of the members of Z>RS

Members of ZoRS Lee weights
fo 0
T, f55 fe fss foa, faz 1
I3, fa, fz, fo, f13, f14, f16, f5, f29, f30, f33, f37, f3s, fa0, f56 2
f2, f11, f12, fis, fa7, f21, f22, for, fos, f31, f35, f36, [39, fa1, fas, fas, fas, f57, fo1, fe2 3
f10, f19, f20, f23, f26, f3a, fas, faa, fa7, fa9, f53, f54, [59, fe0, fo3 4
fis, faz, f51, f52, f55, fss, 5
f50 6

Due to the presence of a large number of elements, precisely 36 = 729, in Z3RS, we take a different
approach to present the Lee weights of Z3RS in Table 2. Keeping the ascending order, we break the set
Z3RS in 3% number of sets, each one of the sets containing 3° number of elements. Let L(3) represents
the sequence of Lee weights of the first 27 elements of Z3RS, i.e., wtr(fo), wtr(f1),...,wtr(fa6). Then,
we have

L®:=0,1,1,3,3,2,3,2,3,2,2,1,3,2,3,1,2,2,2,1,2,1,2,2,3,3,2.
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)

For any positive integer i, let Lfi represents the sequence

L = 040,140, 144,344,340,240,3+0,240,3+0,2+0,2+0,1+4,3+,2+14,3+14,
14+0,24+4,240,2+4,140,2+4,14+0,240,2+0,3+0,3+14,2+1i.

Now, from Table 2, one can obtain the Lee weights of the elements of Z3RS.

Table 2. Lee weights of the members of Z3RS

Members of ZsRS |Lee weights

Members of Z3sRS |Lee weights

f07f17f27~~-7f26 L(B)

for, fos, f ¥ e fars, far9, f3s0, .-, fa0a LS_SQ)
27, J28, J29y-.., /53

fsa, f55, f f LE; fa0s, fa06, fao7, - .., fa31 Lg
545 J55, J565 -5 J80 1 =

fs1, fs2, faz, ..., fior Lfg fa32, fa33, fa34,. .., fa58 Li%

fas9, fae0, fa61, ..., fass L(f§
fase, fas7, fass, .-, 512 L)
fs13, fs14, f515, ..., f530 Lfﬁ
f540, f541, f542, - ., f566 L(f%
f567, f568, f569, - - -, f593 L
fs94, f595, f596, - - - ; f620 Lf§
fo21, fe22, fo23, - - -, foar Lf%
foas, foa9, fo50, ..., fora Lfﬁ
fers, fere, for7, - - -, fro1 Lf%
froz2, fros, froa, ..., fr2s Lf;)),

f1os, f109, f110, - -+, f134 L(f%
f135, f136, J137, - - -, f161 L)
fie2, f163, f164, ..., f1ss L(f’%
f1s9, f100, f191, ..., f215 Lff
f216, fo17, fo18, ..., foa2 Lfﬁ
f2a3, foaa, f245, ..., f269 L‘j{
faro, for1, fore, ..., fa06 Lfg
f207, f208, f209, - .-, f323 L(f%
J324, f325, f326, - -, f350 Lf’§
f351, f3s2, fas3, ..., far7 Lfg

Using the same notations as used in Definition 5.9, we find the MacWilliams identity for the sym-
metrized weight enumerator.

Theorem 5.11. If € is a Z,RS-additive code of length n, then

1 1
WéQ )(W07W1,W2, o, We) = G éc)(Q (Wo, Wi, Wa, ..., We)T),

where @ is a matriz of order 7, and it is the coefficient matriz of the linearly independent non-zero rows
of the matrix

T
p- (thL(fO)’ Wt (£1) Wuwtr(f2), -+ thL(fp6,1)> :

Proof. The proof follows from Theorem 5.4 and Definition 5.9. O

Example 5.12. For the code &5, defined in Example 5.5, the symmetrized weight enumerator of €5 is
given by
(€2)
Wy 2 (Wo, Wi, Wa, ..., W)
= W§ + 5W5 + W3Wy + 8W3Wo + 2Wa Wy + Wi Wy + 3W1 W3 + TW3 Wi + 11W, W
+ 6WaWs + 3W3 + AWo W, + WsWy + WyWy + AW, Wy + AW7E + 2W2,
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and the symmetrized weight enumerator of €5 is given by

oL
W) (W, Wy, W, ..., We)
= W + 2W3Wy + 3W7 + 5WyWy + AWo Wy + 2Ws Wy + 8Wy Wy + 3W3 + 3Ws Wy + 2W, W+
6WaWs + 5W2E + 2W3Z + 8WaWo + WoWy + 4W3 Wi 4 2Ws Wy + WoWs + W1 We + Wy W.

Next, we define the Lee weight enumerator.

Definition 5.13. Let € be a Z,RS-additive code of length n. Then the Lee weight enumerator of € is
denoted by WI(JC) and is defined by

WI(JC) (.’IJ, y) _ WI({(ZB(C))(:m y) — Z CEﬁn—th(c)yth(c).
ced

The following result gives a relation between the Lee weight enumerator and the symmetrized weight
enumerator.

Theorem 5.14. Let € be a Z,RS-additive code of length n. Then
¢ ¢
WD () = W (a5, %y, oty %y oyt 2y, o).

Proof. Take ¢ € €. We have wty(c) = ni(c) + 2nz2(c) + 3ns(c) + - - - + 6ng(c) and n = no(c) + ni(c) +
na(c) + - -+ + ng(c). Then

WI(JQ) (SL‘, y> _ Z x6n—th(c)yth(c)
ced
_ Zx6n0(c)+5n1(c)+4n2(c)+3n3(c)+2n4(c)+n5(c) ynl(c)+2n2(c)+3n3(c)+--~+6n6(c)

cel

— Z(xﬁ)m(c)(x5y)”1(c)(x4y2)"2(c)(x3y3)"3(c)(x2y4)”4(c)(a:y5)”5(c)(y6)"6(c)
ced

= W (a8, 2%y, 2y, 2%y w?y? oy® o). (From Eq. (1))

O

Using Theorem 5.11 and Theorem 5.14, we find the MacWilliams identity corresponding to the Lee
weight enumerator.

Theorem 5.15. If € is a Z,RS-additive code of length n, then
< 1
WI(:Z )(1:, y) = @WIEC)(x +y,z—y).

Example 5.16. Again, we consider the code &s, defined in Example 5.5. Then using Theorem 5.14 and
Ezxample 5.12, the Lee weight enumerator of €5 is

WL (2, y)

= 22 + 52®y* + 2% + 827y° + 22'%% + My + 328y + Taty® + 112%y" + 62°y° + 32%° + 42%y?
4280 + 2Ty + 42590 + 4oty + 222410

= 2% + oMy + 22'%2 + 52%3 + 82%y* + 927y® + 82%y° + 112°y" + 112y® + 62%y° + 227y,
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Now, using the above expression and Theorem 5.15, the Lee weight enumerator of €5 is given by

L 1
W ) = G @ty - y)

= é [(x 24 (2 + ) (@ —y) + 2z +y) 0z — )2 + 5z +y)°(x — y)3

+8(z +y)*(z — ) + 9= +9) (x —y)” +8(z +9)°(x — )" + 1(z +y)°(z — y)"
+11(z +9) (@ —y)* + 6@+ ) (@ —y)° + 2 +y)* (@ — )"
= 2" 4+ 421%? + 627 + 528y* + 1427y® + 1525y° 4 1025y 7 + 62*y® + 223y° + 22y,

6. Conclusion

We have considered the Frobenius rings R, S, RS, and Z, RS, and studied the additive constacyclic
codes over these rings. By defining suitable inner products, we have determined the generators of the
constacyclic codes and their duals. Later, we have defined Gray maps on R, &, and Z,RS, and studied
the images under these maps. We have established a few results on the Gray images of additive cyclic and
additive constacyclic codes. Weight enumerators have a significant role in calculating the probability of an
incorrect message being received undetected by the receiver. Motivated by the importance of the weight
enumerators, we have defined several weight enumerators, such as the complete weight enumerator, the
Hamming weight enumerator, the symmetrized weight enumerator, and the Lee weight enumerator, and
obtained the MacWilliams identities corresponding to each of these weight enumerators for the Z,RS-
additive codes.

There is a matrix P which appears in Theorem 5.4, in the MacWilliams identity for the complete
weight enumerator. We have given the exact form of the matrix P for p = 2. However, for odd primes,
we have provided only partially the form of P as it becomes quite challenging to present a general form
of P for all odd primes. Thus, a complete general form of P for p # 2 is still open. Further, one may also

consider more general rings such as Zj, x Z&[;)] X e X Z<Z EC“>] with k£ > 3, as the code alphabet to study the

additive constacyclic codes and the various weight enumerators.
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