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1. Introduction

Quadratic residue codes (QRC) over the finite field Fl are cyclic codes of prime length p where l is
another prime which is a quadratic residue mod p. QRCs have been extensively studied because they
have a rate close to 1

2 and in many cases have a large minimum distance [15]. Over Z2 = F2 = {0, 1} and
Z3 = F3 = {0, 1, 2}, we have the binary [7, 4, 3] Hamming code, and the binary [23, 12, 7] and ternary
[11, 6, 5] Golay codes as examples of QRCs [14].

QRCs over the finite ring Z4 = {0, 1, 2, 3} were introduced in [13]. In [17], important properties of
QRCs over Z4 such as idempotent generators, duals, and extended codes were studied.

Additive codes of length n = α+ 2β over the mixed alphabet Z2Z4 were introduced in [6] and have
subsequently received significant attention. A Z2Z4-additive code C is defined to be a subgroup of Zα2Z

β
4
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where α + 2β = n [6]. Note that if α = 0, then C is a quaternary linear code over Z4 and if β = 0,
then C is a binary linear code. In [16], it was shown that additive codes of length n = α+ 2β over Z2Z4

have applications in steganography. Moreover, in [1], binary linear codes with good parameters were
constructed as images of Z2Z4-additive cyclic codes. Double cyclic codes over the mixed alphabet Z2Z2

were studied in [7]. In [11], double QRCs over Z2Z2 were examined and important properties of these
codes such as idempotent generators, and self-dual and extended codes, were investigated. In this paper,
we introduce the class of separable additive QRCs over Z2Z4. The generating polynomials of these codes
are presented and their idempotent generators are given. It is shown that additive complementary dual
(ACD) codes and self-orthogonal codes can be constructed as applications of separable QRCs over Z2Z4.
We also give examples of self-orthogonal codes and ACD codes over Z2Z4 generated from separable QRCs
over Z2Z4.

2. Preliminaries

To make the paper self-contained, this section presents the necessary definitions and required prior
results. The reader is referred to [6] for more details about Z2Z4-additive codes and [10] and [17] for
more details about binary and quaternary QRCs over Z2 = {0, 1} and Z4 = {0, 1, 2, 3}, respectively.

2.1. Z2Z4-additive codes

Consider the finite rings Z2 = {0, 1} and Z4 = {0, 1, 2, 3}. Let n = α + 2β where α is odd and
Rα,β = Z2[X]/ 〈Xα − 1〉 ×Z4 [X] /

〈
Xβ − 1

〉
. A subset C of Zα2 is called a linear code of length α if C is

a subspace of Zα2 . A subset C of Zβ4 is called a linear code of length β if C is a subgroup of Zβ4 . If C is
a linear code over Z2 or Z4, then the hull of C is the linear code H = hull (C) = C ∩ C⊥, where C⊥ is
the Euclidian dual of C [2]. A subset C of Zα2 × Zβ4 is called a Z2Z4-additive code if C is a subgroup of
Zα2 × Zβ4 , i.e. C is isomorphic to Zγ2×Z

δ
4 [6]. C is called a separable Z2Z4-additive code if C =CX × CY ,

where CX is a binary linear code and CY is a quaternary linear code [6]. Note that if C is a Z2Z4-additive
code, then |C| = 2r for some nonnegative integer r. The next two definitions introduce the dual of an
additive code C over Z2Z4.

Definition 2.1. [6] Let u = (a0a1 . . . aα−1|b0b1 . . . bβ−1) and v = (d0d1 . . . dα−1|e0e1 . . . eβ−1) ∈ Zα2 ×Zβ4 .
The inner product u · v is defined as

u · v =

[
2

α−1∑
i=0

aidi +

β−1∑
i=0

biei

]
mod 4.

Definition 2.2. Let C be a Z2Z4-additive code. Then the dual of C is the code

C⊥ =
{
v ∈ Zα2 × Zβ4 : u · v = 0 ∀u ∈ C

}
.

In [5], it was shown that if C is a Z2Z4-additive code, then C⊥ is also a Z2Z4-additive code, and if
C =CX × CY is a separable Z2Z4-additive code, then C⊥ = C⊥X × C⊥Y .

Linear complementary pair (LCP) of codes and linear complementary dual (LCD) codes over fi-
nite fields were introduced in [12]. Subsequently, they have been studied extensively because of their
applications in numerous areas such as cryptography and secret sharing [8, 12].

Definition 2.3. [12] Let (C,D) be a pair of binary linear codes of length n. Then the pair (C,D) is
called an LCP of codes if C +D = Zn2 and C ∩D = {0}. If D = C⊥, then C is called an LCD code.

In [9], the definition of LCD codes was generalized to linear l-intersection codes over finite fields.
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Definition 2.4. Let (C,D) be a pair of binary linear codes of length n. Then the pair (C,D) is called a
linear l-intersection pair of codes if dim(C ∩D) = l.

In [3], the above concepts were generalized from finite fields to finite principal ideal rings. In [4], the
concept of LCD codes over finite fields was generalized to ACD codes over Z2Z4.

Definition 2.5. [4] Let (C,D) be a pair of additive codes over Z2Z4.

1. The pair (C,D) is called an additive complementary pair (ACP) of codes if C +D = Zα2 × Zβ4 and
C ∩D = {0}. If D = C⊥, then C is called an additive complementary dual (ACD) code.

2. The pair (C,D) is called an additive l-intersection pair of codes if |C ∩D| = 2l.

Definition 2.6. Two Z2Z4-additive codes C1 and C2 are (permutation) equivalent if there is a permu-
tation of coordinates which sends C1 to C2.

We now give the definition of additive cyclic codes over Z2Z4.

Definition 2.7. [1] A subset C of Zα2 × Zβ4 is called a Z2Z4-additive cyclic code if

1. C is an additive code, and

2. if (a0a1 . . . aα−1|b0b1 . . . bβ−1) ∈ C, then

(aα−1a0 . . . aα−2|bβ−1b0 . . . bβ−2) ∈ C.

For an element c = (a0a1 . . . aα−1|b0b1 . . . bβ−1) ∈ Zα2 × Zβ4 , define the polynomial

c(X) =
(
a0 + a1X + . . .+ aα−1X

α−1|b0 + b1X + . . .+ bβ−1X
β−1) ,

in Rα,β . This gives a one-to-one correspondence between elements in Zα2 ×Zβ4 and elements in Rα,β . We
know that Z2Z4-additive cyclic codes are identified as Z4[X]-submodules of Rα,β [1]. The structure of
additive cyclic codes is given in the following theorem.

Theorem 2.8. [5] Let C be a Z2Z4-additive cyclic code of length n = α + β and type (α, β, γ, δ, k).
Then C = 〈(b|0) , (l|fh+ 2f)〉 where fhg = Xβ − 1, γ = α − deg (b) − deg (h) , δ = deg (g), k = α −
deg (gcd (lg, b)), and |C| = 2α−deg(b)4deg(g)2deg(h). If l = 0, then C is a separable Z2Z4-additive cyclic
code.

2.2. Binary and quaternary quadratic residue codes

Let p and q be two prime numbers satisfying p ≡ ±1 mod 8 and q ≡ ±1 mod 8, and let φ : Z2 [X]→
Z4 [X] be the Hensel mapping. Further, let Qp be the set of quadratic residue elements mod p and Np be
the set of non-residue elements mod p. It is known that (Xp − 1) = (X − 1) f (X)h (X) mod 2, where
f (X) =

∏
r∈QR

(X − wr) and h (X) =
∏

r∈NQR
(X − wr). Similarly, (Xq − 1) = (X − 1) g (X) k (X) mod 2

andXq−1 = (X − 1) g4 (X) k4 (X) mod 4, where g4 (X) = φ (g (X)) = φ

( ∏
r∈QR

(X − wr)

)
and k4 (X) =

φ (k (X)) = φ

( ∏
r∈NQR

(X − wr)

)
.

The binary QRCs are the following four binary cyclic codes of prime length p over F2 where 2 is a
quadratic residue modulo p

Q = 〈f (X)〉 ,
N = 〈h (X)〉 ,
Q′ = 〈(X − 1) f (X)〉 ,
N ′ = 〈(X − 1)h (X)〉 .
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From [17], it is known that Q⊥ = Q′ and N⊥ = N ′ if p ≡ −1 mod 8, and Q⊥ = N ′ and N⊥ = Q′ if
p ≡ 1 mod 8. Q and N are equivalent codes and Q′ and N ′ are also equivalent codes.

The quaternary QRCs are the following four cyclic codes of prime length q over Z4

Q4 = 〈g4 (X)〉 ,
N4 = 〈k4 (X)〉 ,
Q′4 = 〈(X − 1) g4 (X)〉 ,
N ′4 = 〈(X − 1) k4 (X)〉 .

In [17], it was proven that Q⊥4 = Q′4 and N⊥4 = N ′4 if p ≡ −1 mod 8 and Q⊥4 = N ′4 and N⊥4 = Q′4 if
p ≡ 1 mod 8. Q4 and N4 are equivalent codes and Q′4 is equivalent to N ′4.

Let e1(X) =
∑
r∈Qp

Xr, e2 (X) =
∑
r∈Np

Xr, e′1(X) =
∑
r∈Qq

Xr, and e′2 (X) =
∑
r∈Nq

Xr. Further, let

j2 (X) = 1 + X + X2 + . . . + Xp−1 ∈ Z2 [X] / 〈Xp − 1〉 with corresponding codeword 1 = (1, 1, . . . , 1)
in Zp2, and j4 (X) = 1 + X + X2 + . . . + Xq−1 ∈ Z4 [X] / 〈Xq − 1〉 with corresponding codeword 1 =
(1, 1, . . . , 1) in Zq4. Note that e1(X) + e2 (X) + j2 (X) = 1 in Z2 [X] and j4 (X)− e′1(X)− e′2 (X) = 1 in
Z4 [X]. The following two lemmas give the idempotent generators for binary and quaternary QRCs.

Lemma 2.9. [10] Suppose that p ≡ ±1 mod 8. Then the idempotent generators for the binary QRCs are
as follows

p = −1 mod 8 p = 1 mod 8

1. Q = 〈e1(X)〉 Q = 〈1 + e2(X)〉
2. N = 〈e2(X)〉 N = 〈1 + e1(X)〉
3. Q′ = 〈1 + e2(X)〉 Q′ = 〈e1(X)〉
4. N ′ = 〈1 + e1(X)〉 N ′ = 〈e2(X)〉

Lemma 2.10. [17] Suppose that p ≡ ±1 mod 8. Then the idempotent generators for the quaternary
QRCs are as follows

q = −1 + 8l, l odd q = −1 + 8l, l even
1. Q4 = 〈e′1(X) + 2e′2(X)〉 Q4 = 〈3e′1(X))〉
2. N4 = 〈2e′1(X) + e′2(X)〉 N4 = 〈3e′2(X))〉
3. Q′4 = 〈1 + 2e′1(X) + 3e′2(X)〉 Q′4 = 〈1 + e′2(X))〉
4. N ′4 = 〈1 + 3e′1(X) + 2e′2(X)〉 N4 = 〈1 + e′1(X))〉

q = 1 + 8l, l odd q = 1 + 8l, l even
1. Q4 = 〈1 + 3e′2(X) + 2e′1(X)〉 Q4 = 〈1 + e′2(X)〉
2. N4 = 〈1 + 3e′1(X) + 2e′2(X)〉 N4 = 〈1 + e′1(X)〉
3. Q′4 = 〈2e′2(X) + e′1(X)〉 Q′4 = 〈3e′1(X)〉
4. N ′4 = 〈e′2(X) + 2e′1(X)〉 N ′4 = 〈3e′2(X)〉

3. Separable Z2Z4-additive QRCs and their properties

In this section, we define and study the properties of separable Z2Z4-additive QRCs.

Definition 3.1. The separable Z2Z4-additive QRCs are

1. L1 = 〈(f (X) |0) , (0|g4 (X))〉,
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2. L2 = 〈(h (X) |0) , (0|k4 (X))〉,

3. L′1 = 〈((X − 1) f (X) |0) , (0| (X − 1) g4 (X))〉,

4. L′2 = 〈((X − 1)h (X) |0) , (0| (X − 1) k4 (X))〉.

We are interested in finding the idempotent generators for these separable Z2Z4-additive QRCs. Let
C = CX × CY be a separable Z2Z4-additive code of length n. The next lemma gives the idempotent
generators for C based on the idempotent generators for the codes CX and CY .

Lemma 3.2. Let C = CX × CY be a separable Z2Z4-additive code of length n. Suppose that the binary
and quaternary cyclic codes CX and CY have idempotent generators s1 and s2, respectively. Then C =
〈(s1|0) , (0|s2)〉.

Proof. Let c = (c1|c2) ∈ C = CX × CY so then c1 ∈ CX = 〈s1〉 and c2 ∈ CY = 〈s2〉. Hence,
c1 = q1s1 and c2 = q2s2 so c = (c1|c2) = q1 (s1|0) + q2 (0|s2) ⇒ C ⊆ 〈(s1|0) , (0|s2)〉. Now suppose that
c = (c1|c2) ∈ 〈(s1|0) , (0|s2)〉. Then c1 = q1s1, c2 = q2s2 and c = q1 (s1|0) + q2 (0|s2) ∈ CX × CY , and
hence C = 〈(s1|0) , (0|s2)〉.

As an application of Lemmas 3.2, 2.9, and 2.10, Propositions 3.3 and 3.4 present the idempotent
generators for all separable Z2Z4-additive QRCs.

Proposition 3.3. Suppose that p ≡ 1 mod 8 and q ≡ 1 mod 8. Then we have the following

q − 1 = 8l, l odd q − 1 = 8l, l even
1. L1 = 〈(1 + e2(X)|0) , (0|1 + 3e′2(X) + 2e′1(X))〉 L1 = 〈(1 + e2(X)|0) , (0|1 + e′2(X))〉
2. L2 = 〈(1 + e1(X)|0) , (0|1 + 3e′1(X) + 2e′2(X))〉 L2 = 〈(1 + e1(X)|0) , (0|1 + e′1(X))〉
3. L′1 = 〈(e1(X)|0) , (0|2e′2(X) + e′1(X))〉 L′1 = 〈(e1(X)|0) , (0|3e′1(X))〉
4. L′2 = 〈(e2(X)|0) , (0|e′2(X) + 2e′1(X))〉 L′2 = 〈(e2(X)|0) , (0|3e′2(X))〉

Proof. The proof follows from Lemmas 3.2, 2.9, and 2.10.

Proposition 3.4. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Then we have the following

q + 1 = 8l, l odd q + 1 = 8l, l even
1. L1 = 〈(e1(X)|0) , (0|e′1(X) + 2e′2(X))〉 L1 = 〈(e1(X)|0), (0|3e′1(X))〉
2. L2 = 〈(e2(X)|0) , (0|2e′1(X) + e′2(X))〉 L2 = 〈(e2(X)|0), (0|3e′2(X))〉
3. L′1 = 〈(1 + e2(X)|0) , (0|1 + 2e′1(X) + 3e′2(X))〉 L′1 = 〈(1 + e2(X)|0), (0|1 + e′2(X))〉
4. L′2 = 〈(1 + e1(X)|0) , (0|1 + 3e′1(X) + 2e′2(X))〉 L′2 = 〈(1 + e1(X)|0), (0|1 + e′1(X))〉

Proof. The proof follows from Lemmas 3.2, 2.9, and 2.10.

The next theorem presents some properties of separable Z2Z4-additive QRCs.

Theorem 3.5. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Then

1. L1 and L′1 are permutation equivalent to L2 and L′2, respectively,

2. |L1| = 2
p+1
2 4

q+1
2 = |L2|,

3. |L′1| = 2
p−1
2 4

q−1
2 = |L′2|.
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Proof. Part 1 follows from the fact that Q and N are equivalent, Q′ and N ′ are equivalent, Q4 and
N4 are equivalent, and Q′4 is equivalent to N ′4.

For Part 2, |L1| = |Q| |Q4| = 2
p+1
2 4

q+1
2 and |L2| = |N | |N4| = 2

p+1
2 4

q+1
2 .

The proof of Part 3 is similar to that of Part 2.

We also have the following theorem.

Theorem 3.6. Suppose that p ≡ 1 mod 8 and q ≡ 1 mod 8. Then

1. L1 and L′1 are permutation equivalent to L2 and L′2, respectively,

2. |L1| = 2
p+1
2 4

q+1
2 = |L2|,

3. |L′1| = 2
p−1
2 4

q−1
2 = |L′2|.

Proof. The proof is similar to that of Theorem 3.5.

4. Classification of separable additive QRCs over Z2Z4

In this section, we provide a classification of separable additive QRCs over Z2Z4. Some applications
are also given. Recall the following theorems from [10] and [13].

Theorem 4.1. [10] Let Ci be a cyclic code of length n over Fq with idempotent generators fi (X), i = 1, 2.
Then C1 ∩ C2 and C1 + C2 have idempotent generators f1(X)f2(X) and f1(X) + f2(X)− f1(X)f2(X),
respectively.

Theorem 4.2. [13] Let Ci be a cyclic code of length n over Z4 with idempotent generators fi (X), i = 1, 2.
Then C1 ∩ C2 and C1 + C2 have idempotent generators f1(X)f2(X) and f1(X) + f2(X)− f1(X)f2(X),
respectively.

Theorem 4.3. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Then L⊥1 = L′1, L⊥2 = L′2, and L′1 and
L′2 are self-orthogonal.

Proof. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Since L1 = 〈(f (X) |0) , (0|g4 (X))〉 = Q ×Q4

is a separable additive code over Z2Z4, then

L⊥1 = Q⊥ ×Q⊥4 = Q′ ×Q′4 = 〈((X − 1) f (X) |0) , (0| (X − 1) g4 (X))〉 = L′1.

Similarly, we have L2 = 〈(h (X) |0) , (0|k4 (X))〉 = N × N4 and L⊥2 = N⊥ × N⊥4 = N ′ × N ′4 =
〈((X − 1)h (X) |0) , (0| (X − 1) k4 (X))〉 = L′2. Note that

L′1 = 〈((X − 1) f (X) |0) , (0| (X − 1) g4 (X))〉 ⊆ 〈(f (X) |0) , (0|g4 (X))〉 = L1,

and

L′2 = 〈((X − 1)h (X) |0) , (0| (X − 1) k4 (X))〉 ⊆ 〈(h (X) |0) , (0|k4 (X))〉 = L2.

Hence, L′1 and L′2 are self-orthogonal.

Theorem 4.4. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Then

1. L1 + L2 = Zp2Z
q
4,

2. L1∩L2 = 〈(j2(X)|0) , (0|j4 (X))〉 and the pair of codes L1 and L2 are a 3-intersection pair of codes,
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3. the codes L′1 and L′2 are a 0-intersection pair of codes and L′1+L′2 = 〈(1+ j2(X)|0), (0|1+ j4(X))〉.

Proof. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. We will prove Parts 1 and 2. The proof of
Part 3 is similar.

For Part 1, let q = −1 + 8l where l is an odd integer. By Proposition 3.4, we have L1 =
〈(e1(X)|0) , (0|e′1(X) + 2e′2(X))〉 and L2 = 〈(e2(X)|0) , (0|2e′1(X) + e′2(X))〉. Since (e′1(X))2 = e′1(X) +
2e′2(X), (e′2(X))2 = e′2(X) + 2e′1(X) and e′1(X)e′2(X) = e′1(X) + e′2(X) + 3, we get

(e′1 (X) + 2e′2 (X)) (2e′1 (X) + e′2 (X)) = 2 (e′1 (X))
2
+ e′1 (X) e′2 (X) + 4e′1 (X) e′2 (X) + 2 (e′2 (X))

2

= 2 (e′1 (X))
2
+ e′1 (X) e′2 (X) + 2 (e′2 (X))

2

= 2e′1(X) + 4e′2(X) + e′1(X) + e′2(X) + 3 + 4e′1 (X)

+2e′2 (X)

= 3e′1(X) + 3e′2(X) + 3

= −j4 (X) .

By Theorems 4.1 and 4.2, we get that L1 + L2 = 〈(w1 (X) |0) , (0|w2 (X))〉 where

w1 (X) = e1 (X) + e2 (X)− e1 (X) e2 (X)

= e1 (X) + e2 (X)− 1− e1 (X)− e2 (X) = 1,

and

w2 (X) = e′1(X) + 2e′2(X) + 2e′1(X) + e′2(X)− (e′1(X) + 2e′2(X)) (2e′1(X) + e′2(X))

= −e′1(X)− e′2(X) + j4 (X) = 1.

Thus, L1 + L2 = Zp2Z
q
4. Again by Theorems 4.1 and 4.2, we have

L1 ∩ L2 = 〈(e1 (X) e2 (X) |0) , (0| (e′1 (X) + 2e′2 (X)) (2e′1 (X) + e′2 (X))〉
= 〈(j2(X)|0) , (0| − j4 (X))〉 .

Thus, L1∩L2 = 〈(j2(X)|0) , (0|j4 (X))〉 and |L1 ∩ L2| = 2141 = 23, so L1 and L2 are a 3-intersection pair
of codes.

For Part 2, let q = −1 + 8l where l is an even integer. By Proposition 3.4, we have L1 =
〈(e1(X)|0), (0|3e′1(X))〉 and L2 = 〈(e2(X)|0), (0|3e′2(X))〉. Since (e′1(X))2 = 3e′1(X), (e′2(X))2 = 3e′2(X)
and e′1(X)e′2(X) = 3e′1(X) + 3e′2(X) + 3, we get L1 + L2 = 〈(w3 (X) |0) , (0|w4 (X))〉, where

w3 (X) = e1(X) + e2(X)− e1 (X) e2 (X)

= e1(X) + e2(X)− 1− e1(X)− e2(X) = 1,

and

w4 (X) = 3e′1(X) + 3e′2(X)− (3e′1(X)3e′2(X))

= 3e′1(X) + 3e′2(X) + j4 (X)

= 1.

Thus, L1 + L2 = 〈(w3 (X) |0) , (0|w4 (X))〉 = 〈(1|0) , (0|1)〉 = Zp2Z
q
4. Moreover, we have

L1 ∩ L2 = 〈(e1(X)e2(X)|0) , (0|e′1(X)e′2(X))〉
= 〈(j2 (X) |0) , (0|j4 (X))〉 .

Hence, L1 ∩ L2 = 〈(j2(X)|0) , (0|j4 (X))〉 and |L1 ∩ L2| = 2141 = 23. Therefore, L1 and L2 are a
3-intersection pair of codes.
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Similar to Theorems 4.3 and 4.4, we obtain the following theorem.

Theorem 4.5. Suppose that p ≡ 1 mod 8 and q ≡ 1 mod 8. Then

1. L⊥1 = L′2 and L⊥2 = L′1,

2. L1 + L2 = Zp2Z
q
4,

3. L1 ∩ L2 = 〈(j2(X)|0) , (0|j4 (X))〉 and L1 and L2 are a 3-intersection pair of codes,

4. the codes L′1 and L′2 are a 0-intersection pair of codes and L′1+L′2 = 〈(1+ j2(X)|0), (0|1+ j4(X))〉.

Proof. The proof is similar to that of Theorems 4.3 and 4.4 and so is omitted.

Theorem 4.6. Suppose that p ≡ −1 mod 8 and q + 1 = 8l, where l is even. Then

1. Hull(L1) = Hull (L′1) = 〈(1 + e2(X)|0) , (0|1 + e′2(X))〉,

2. Hull(L2) = Hull (L′2) = 〈(1 + e1(X)|0) , (0|1 + e′1(X))〉.

Proof. Suppose that p ≡ −1 mod 8 and q = −1 + 8l where l is even. Then by Proposition 3.4 and
Theorem 4.3, we have L1 = 〈(e1(X)|0), (0|3e′1(X))〉, L⊥1 = L′1 = 〈(1 + e2(X)|0), (0|1 + e′2(X))〉, L2 =
〈(e2(X)|0), (0|3e′2(X))〉, and L⊥2 = L′2 = 〈(1+e1(X)|0), (0|1+e′1(X))〉. Applying Theorem 4.1, we obtain
for Part 1

Hull (L1) = 〈(e1(X) (1 + e2(X)) |0), (0|3e′1(X) (1 + e′2(X)))〉
= 〈(e1(X) + e1(X)e2(X)|0), (0|3e′1(X) + 3e′1(X)e′2(X))〉
= 〈(e1(X) + 1 + e1(X) + e2(X)|0), (0|3e′1(X) + 3 (3 + 3e′1(X) + 3e′2(X)))〉
= 〈(1 + e2(X)|0), (0|1 + e′2(X))〉,

and for Part 2

Hull (L2) = 〈(e2(X) (1 + e1(X)) |0), (0|3e′2(X) (1 + e′1(X)))〉
= 〈(e2(X) + e1(X)e2(X)|0), (0|3e′2(X) + 3e′1(X)e′2(X))〉
= 〈(e2(X) + 1 + e1(X) + e2(X)|0), (0|3e′2(X) + 3 (3 + 3e′1(X) + 3e′2(X)))〉
= 〈(1 + e1(X)|0), (0|1 + e′1(X))〉.

Theorem 4.7. Suppose that p ≡ −1 mod 8 and q + 1 = 8l where l is odd. Then

1. Hull(L1) = Hull (L′1) = 〈(1 + e2(X)|0) , (0|1 + 2e′1(X) + 3e′2(X))〉,

2. Hull(L2) = Hull (L′2) = 〈(1 + e1(X)|0) , (0|1 + 3e′1(X) + 2e′2(X))〉.

Proof. The proof is similar to that of Theorem 4.6.

Corollary 4.8. Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Then the QRCs L1, L2, L′1, and L′2 are
not ACD.

Proof. By Theorems 4.6 and 4.7, C ∩ C⊥ 6= {0} for C = L1, L2, L′1, and L′2. Therefore, these codes
are not ACD.

Theorem 4.9. Suppose that p ≡ 1 mod 8 and q ≡ 1 mod 8. Then the QRCs L1, L2, L′1, and L′2 are
ACD.
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Proof. We will prove that L1 is an ACD code. The proof for the other codes is similar. Suppose that
p ≡ 1 mod 8 and q ≡ 1 mod 8.

Case 1: Assume that q − 1 = 8l, where l is an odd integer. Then by Proposition 3.3 and Theorem
4.5, we have that

L1 = 〈(1 + e2(X)|0) , (0|1 + 3e′2(X) + 2e′1(X))〉 and L⊥1 = L′2 = 〈(e2(X)|0) , (0|e′2(X) + 2e′1(X))〉.

Note that

(1 + e2(X)) (e2(X)) = e2 (X) + e22 (X) = 0,

and since e′1(X)2 = e′1(X) + 2e′2(X) and e′2(X)2 = 2e′1(X) + e′2(X), we have

(1 + 3e′2(X) + 2e′1(X)) (e′2(X) + 2e′1(X)) = e′2(X) + 2e′1(X) +

3(e′2(X))2 + 2e′2(X)e′1(X) + 2e′1(X)e′2(X)

= e′2(X) + 4e′1(X) + 3e′2(X) = 0.

Hence, by Theorems 4.1 and 4.2 we have

L1 + L⊥1 = 〈(1 + e2(X) + e2(X)− 0|0) , (0|1 + 3e′2(X) + 2e′1(X) + e′2(X) + 2e′1(X)− 0)〉
= 〈(1|0) , (0|1)〉 and L1 ∩ L⊥1 = 〈0|0〉 .

Case 2: Assume that q − 1 = 8l, where l is an even integer. Then we have

L1 = 〈(1 + e2(X)|0) , (0|1 + e′2(X))〉 and L⊥1 = L′2 = 〈(e2(X)|0) , (0|3e′2(X))〉.

Note that

(1 + e2(X)) e2(X) = e2(X) + (e2(X))2

= e2(X) + e2(X) = 0,

and since e′1(X)2 = 3e′1(X) and e′2(X)2 = 3e′2(X), we have

(1 + e′2(X)) 3e′2(X) = 3e′2(X) + 3(e′2(X))2

= 3e′2(X) + e′2(X) = 0.

Therefore

L1 + L⊥1 = 〈(1 + e2(X) + e2(X)− 0|0) , (0|1 + e′2(X) + 3e′2(X)− 0)〉
= 〈(1|0) , (0|1)〉 and L1 ∩ L⊥1 = 〈0|0〉 ,

so L1 is ACD.

In [17], supplementary quaternary QRCs were defined to be the Z4-linear codes obtained by supple-
menting the codes Q′4 and N ′4 with the all 2 q-tuple 2(1)q. Define the following Z2Z4-additive codes

SQ(q) = 〈Q′4, 2(1)q〉 , and SN (q) = 〈N ′4, 2(1)q〉.

As an application of the codes SQ and SN , we construct Z2Z4-additive codes in the following lemma.
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Lemma 4.10. Let

D1 = Q× SQ(q),
D2 = N × SQ(q),
D3 = Q′ × SQ(q),
D4 = N ′ × SQ(q),

C1 = Q× SN (q),

C2 = N × SN (q),

C3 = Q′ × SN (q),

C4 = N ′ × SN (q).

1. If p ≡ −1 mod 8 and q ≡ −1 mod 8, then D⊥1 = D3, D⊥2 = D4, C⊥1 = C3, and C⊥2 = C4. In
addition, D3, D4, C3, and C4 are self-orthogonal codes.

2. If p ≡ 1 mod 8 and q ≡ 1 mod 8, then D⊥1 = C4, D⊥2 = C3, C⊥1 = D4, and C⊥2 = D3.

Proof. For p ≡ −1 mod 8, we have Q⊥ = Q′ and N⊥ = N ′, and for p = 1 mod 8, we have Q⊥ = N ′

and N⊥ = Q′. Further, by [17, Proposition 11.19], if q = −1 mod 8, then SQ(q) and SN (q) are self-dual
codes and if q ≡ 1 mod 8, then S⊥Q(q) = SN (q) and S⊥N (q) = SQ(q). This completes the proof of Part 1.

Suppose that p ≡ −1 mod 8 and q ≡ −1 mod 8. Since D1 = Q× SQ(q) is a separable additive code
over Z2Z4, then D⊥1 = Q⊥ × S⊥Q(q) = Q′ × SQ(q) = D3. Similarly, we have D⊥2 = D4, C⊥1 = C3, and
C⊥2 = C4. Hence, D3, D4, C3, and C4 are self-orthogonal codes. Now suppose that p ≡ 1 mod 8 and
q ≡ 1 mod 8. Since D1 = Q × SQ(q) is a separable additive code over Z2Z4, then D⊥1 = Q⊥ × S⊥Q(q) =
N ′ × SN (q) = C4. Similarly, we have D⊥2 = C3, C⊥1 = D4, and C⊥2 = D3. This completes the proof of
Part 2.

It is clear that the codes D1 and D2 are equivalent and the codes D3 and D4 are equivalent.
Furthermore, C1 and C2 are equivalent codes and C3 and C4 are equivalent codes.

5. Examples

In this section, we provide applications of our results and construct separable Z2Z4-additive QRCs
that are self-orthogonal and ACD codes.

Example 5.1. Let p = q = 7. If w is a primitive 7th root of unity over Z2, then X7 − 1 =
(X − 1) f (X)h (X) mod 2 where f (X) =

∏
r∈QR

(X − wr) = X3 +X +1 and h (X) =
∏

r∈NQR
(X − wr) =

X3 + X2 + 1. We also have X7 − 1 = (X − 1) g4 (X) k4 (X) mod 4 where g4 (X) = φ (f (X)) =

φ

( ∏
r∈QR

(X − wr)

)
= X3 + 2X2 + X + 3 and k4 (X) = φ (h (X)) = φ

( ∏
r∈NQR

(X − wr)

)
=

X3 + 3X2 + 2X + 3. Based on this factorization, we get the codes

L′1 =
〈(
(X − 1)

(
X3 +X + 1

)
|0
)
,
(
0| (X − 1)

(
X3 + 2X2 +X + 3

))〉
,

L′2 =
〈(
(X − 1)

(
X3 +X2 + 1

)
|0
)
,
(
0| (X − 1)

(
X3 + 3X2 + 2X + 3

))〉
.

Since p = q = −1 mod 8, from Theorem 4.3 we have that L′1 and L′2 are self-orthogonal codes of length
n = 14.
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Example 5.2. Let p = q = 17. If w is a primitive 17th root of unity over Z2, then X17 − 1 =
(X − 1) f (X)h (X) mod 2 where f (X) =

∏
r∈QR

(X − wr) = X8 + X7 + X6 + X4 + X2 + X + 1 and

h (X) =
∏

r∈NQR
(X − wr) = X8+X5+X4+X3+1. We also have X17−1 = (X − 1) g4 (X) k4 (X) mod 4

where g4 (X) = X8+X7+3X6+3X4+3X2+X+1 and k4 (X) = X8+2X6+3X5+X4+3X3+2X2+1.
Based on this factorization, we get that the codes

L1 =
〈(
X8 +X7 +X6 +X4 +X2 +X + 1|0

)
,
(
0|X8 +X7 + 3X6 + 3X4 + 3X2 +X + 1

)〉
,

L2 =
〈(
X8 +X5 +X4 +X3 + 1|0

)
,
(
0|X8 + 2X6 + 3X5 +X4 + 3X3 + 2X2 + 1

)〉
,

L′1 =

〈 (
(X − 1)

(
X8 +X7 +X6 +X4 +X2 +X + 1

)
|0
)
,(

0| (X − 1)
(
X8 +X7 + 3X6 + 3X4 + 3X2 +X + 1

)) 〉 ,
L′2 =

〈 (
(X − 1)

(
X8 +X5 +X4 +X3 + 1

)
|0
)
,(

0| (X − 1)
(
X8 + 2X6 + 3X5 +X4 + 3X3 + 2X2 + 1

)) 〉 .
Since p = q = 1 mod 8, from Theorem 4.9 we have that L1, L2, L

′
1, and L′2 are ACD codes of length

n = 34.

Example 5.3. Let p = 17 and q = 41. If w is a primitive 17th root of unity over Z2, then X17 − 1 =
(X − 1) f (X)h (X) mod 2 where f (X) =

∏
r∈QR

(X − wr) = X8 + X7 + X6 + X4 + X2 + X + 1 and

h (X) =
∏

r∈NQR
(X − wr) = X8+X5+X4+X3+1. We also have X41−1 = (X − 1) g4 (X) k4 (X) mod 4

where g4 (X) = X20 +2X19 +3X18 +3X17 + x16 +3X15 + x14 +3X11 +3X10 +3X9 + x6 +3X5 + x4 +
3X3 + 3X2 + 2X + 1, and k4 (X) = X20 + 3X19 + X17 + X16 + 2X15 + X14 + 2X13 + 3X11 + X10 +
3X9 + 2X7 +X6 + 2X5 +X4 +X3 + 3X + 1. Based on this factorization, we get the codes

L1 = 〈(f (X) |0) , (0|g4 (X))〉 ,
L2 = 〈(h (X) |0) , (0|k4 (X))〉 ,
L′1 = 〈((X − 1) (f (X)) |0) , (0| (X − 1) (g4 (X)))〉 ,
L′2 = 〈((X − 1) (h (X)) |0) , (0| (X − 1) (k4 (X)))〉 .

Since p = q ≡ 1 mod 8, from Theorem 4.9 we have that L1, L2, L
′
1, and L′2 are ACD codes of length

n = 58.

6. Conclusion

In this paper, we introduced the class of separable additive QRCs over Z2Z4. The main properties
of these codes and their duals were presented including the generator polynomials and idempotent gen-
erators. It was shown that ACD codes and self-orthogonal codes can be constructed as applications of
QRCs over Z2Z4. We also presented examples of ACD codes and self-orthogonal QRCs over Z2Z4.

For future work, it will be interesting to generalize the results given to non-separable additive QRCs
over Z2Z4 and study the existence of self-orthogonal and ACD codes of this type. Another interesting
research topic would be to study the applications of the self-orthogonal and ACD constructed from
separable additive QRCs over Z2Z4 in areas such as cryptography and secret-sharing.

Acknowledgment: The authors extend their sincere thanks to the reviewers for their thorough
reading and invaluable feedback which have significantly contributed to an improved paper.
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