Journal of Algebra Combinatorics Discrete Structures and Applications

Separable additive quadratic residue codes over $\mathbb{Z}_2\mathbb{Z}_4$ and their applications

Research Article

Received: 5 October 2024

Accepted: 8 November 2024

Arezoo Soufi Karbaski, Taher Abualrub, Kenza Guenda, T. Aaron Gulliver

Abstract: This paper examines separable additive quadratic residue codes (QRCs) over $\mathbb{Z}_2\mathbb{Z}_4$ and their applications. The idempotent generators of these codes are obtained. Further, the properties of separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$ are studied including their idempotent generators. As applications, these codes are used to construct self-dual, self-orthogonal, additive complementary pair (ACP) codes, additive complementary dual (ACD) codes, and additive l-intersection pairs of codes over $\mathbb{Z}_2\mathbb{Z}_4$.

2010 MSC: 94B15, 94B60

Keywords: Separable additive quadratic residue codes, Idempotent generators, Self-dual codes, Additive complementary pair codes, Additive l-intersection pairs of codes

1. Introduction

Quadratic residue codes (QRC) over the finite field \mathbb{F}_l are cyclic codes of prime length p where l is another prime which is a quadratic residue mod p. QRCs have been extensively studied because they have a rate close to $\frac{1}{2}$ and in many cases have a large minimum distance [15]. Over $\mathbb{Z}_2 = \mathbb{F}_2 = \{0, 1\}$ and $\mathbb{Z}_3 = \mathbb{F}_3 = \{0, 1, 2\}$, we have the binary [7, 4, 3] Hamming code, and the binary [23, 12, 7] and ternary [11, 6, 5] Golay codes as examples of QRCs [14].

QRCs over the finite ring $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ were introduced in [13]. In [17], important properties of QRCs over \mathbb{Z}_4 such as idempotent generators, duals, and extended codes were studied.

Additive codes of length $n = \alpha + 2\beta$ over the mixed alphabet $\mathbb{Z}_2\mathbb{Z}_4$ were introduced in [6] and have subsequently received significant attention. A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C is defined to be a subgroup of $\mathbb{Z}_2^{\alpha}\mathbb{Z}_4^{\beta}$

Arezoo Soufi Karbaski (Corresponding Author); Department of Mathematics Education, Farhangian University P.O. Box 14665-889, Tehran, Iran (email: arezo.sofi@cfu.ac.ir).

Taher Abualrub; Department of Mathematics & Statistics American University of Sharjah, Sharjah, UAE (email: abualrub@aus.edu).

Kenza Guenda; Faculty of Mathematics, USTHB, Algeria (email: ken.quenda@gmail.com).

T. Aaron Gulliver; Department of Electrical & Computer Engineering University of Victoria, Victoria, BC, $Canada\ (email:\ agullive@ece.uvic.ca).$

where $\alpha + 2\beta = n$ [6]. Note that if $\alpha = 0$, then C is a quaternary linear code over \mathbb{Z}_4 and if $\beta = 0$, then C is a binary linear code. In [16], it was shown that additive codes of length $n = \alpha + 2\beta$ over $\mathbb{Z}_2\mathbb{Z}_4$ have applications in steganography. Moreover, in [1], binary linear codes with good parameters were constructed as images of $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes. Double cyclic codes over the mixed alphabet $\mathbb{Z}_2\mathbb{Z}_2$ were studied in [7]. In [11], double QRCs over $\mathbb{Z}_2\mathbb{Z}_2$ were examined and important properties of these codes such as idempotent generators, and self-dual and extended codes, were investigated. In this paper, we introduce the class of separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$. The generating polynomials of these codes are presented and their idempotent generators are given. It is shown that additive complementary dual (ACD) codes and self-orthogonal codes can be constructed as applications of separable QRCs over $\mathbb{Z}_2\mathbb{Z}_4$. We also give examples of self-orthogonal codes and ACD codes over $\mathbb{Z}_2\mathbb{Z}_4$ generated from separable QRCs over $\mathbb{Z}_2\mathbb{Z}_4$.

2. Preliminaries

To make the paper self-contained, this section presents the necessary definitions and required prior results. The reader is referred to [6] for more details about $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes and [10] and [17] for more details about binary and quaternary QRCs over $\mathbb{Z}_2 = \{0,1\}$ and $\mathbb{Z}_4 = \{0,1,2,3\}$, respectively.

2.1. $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes

Consider the finite rings $\mathbb{Z}_2 = \{0,1\}$ and $\mathbb{Z}_4 = \{0,1,2,3\}$. Let $n = \alpha + 2\beta$ where α is odd and $R_{\alpha,\beta} = \mathbb{Z}_2[X]/\langle X^{\alpha} - 1 \rangle \times \mathbb{Z}_4[X]/\langle X^{\beta} - 1 \rangle$. A subset C of \mathbb{Z}_2^{α} is called a linear code of length α if C is a subspace of \mathbb{Z}_2^{α} . A subset C of \mathbb{Z}_4^{β} is called a linear code of length β if C is a subgroup of \mathbb{Z}_4^{β} . If C is a linear code over \mathbb{Z}_2 or \mathbb{Z}_4 , then the hull of C is the linear code $H = \operatorname{hull}(C) = C \cap C^{\perp}$, where C^{\perp} is the Euclidian dual of C [2]. A subset C of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ is called a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code if C is a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, i.e. C is isomorphic to $\mathbb{Z}_2^{\gamma} \times \mathbb{Z}_4^{\delta}$ [6]. C is called a separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive code if $C = C_X \times C_Y$, where C_X is a binary linear code and C_Y is a quaternary linear code [6]. Note that if C is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, then $|C| = 2^r$ for some nonnegative integer C. The next two definitions introduce the dual of an additive code C over $\mathbb{Z}_2\mathbb{Z}_4$.

Definition 2.1. [6] Let $u = (a_0 a_1 \dots a_{\alpha-1} | b_0 b_1 \dots b_{\beta-1})$ and $v = (d_0 d_1 \dots d_{\alpha-1} | e_0 e_1 \dots e_{\beta-1}) \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. The inner product $u \cdot v$ is defined as

$$u \cdot v = \left[2 \sum_{i=0}^{\alpha - 1} a_i d_i + \sum_{i=0}^{\beta - 1} b_i e_i \right] \mod 4.$$

Definition 2.2. Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code. Then the dual of C is the code

$$\mathcal{C}^\perp = \left\{ v \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta : u \cdot v = 0 \ \forall u \in C \right\}.$$

In [5], it was shown that if C is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, then \mathcal{C}^\perp is also a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, and if $\mathcal{C}=C_X\times C_Y$ is a separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, then $\mathcal{C}^\perp=C_X^\perp\times C_Y^\perp$.

Linear complementary pair (LCP) of codes and linear complementary dual (LCD) codes over finite fields were introduced in [12]. Subsequently, they have been studied extensively because of their applications in numerous areas such as cryptography and secret sharing [8, 12].

Definition 2.3. [12] Let (C, D) be a pair of binary linear codes of length n. Then the pair (C, D) is called an LCP of codes if $C + D = \mathbb{Z}_2^n$ and $C \cap D = \{0\}$. If $D = C^{\perp}$, then C is called an LCD code.

In [9], the definition of LCD codes was generalized to linear l-intersection codes over finite fields.

Definition 2.4. Let (C, D) be a pair of binary linear codes of length n. Then the pair (C, D) is called a linear l-intersection pair of codes if $dim(C \cap D) = l$.

In [3], the above concepts were generalized from finite fields to finite principal ideal rings. In [4], the concept of LCD codes over finite fields was generalized to ACD codes over $\mathbb{Z}_2\mathbb{Z}_4$.

Definition 2.5. [4] Let (C, D) be a pair of additive codes over $\mathbb{Z}_2\mathbb{Z}_4$.

- 1. The pair (C, D) is called an additive complementary pair (ACP) of codes if $C + D = \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ and $C \cap D = \{0\}$. If $D = C^{\perp}$, then C is called an additive complementary dual (ACD) code.
- 2. The pair (C,D) is called an additive l-intersection pair of codes if $|C \cap D| = 2^l$.

Definition 2.6. Two $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes C_1 and C_2 are (permutation) equivalent if there is a permutation of coordinates which sends C_1 to C_2 .

We now give the definition of additive cyclic codes over $\mathbb{Z}_2\mathbb{Z}_4$.

Definition 2.7. [1] A subset C of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ is called a $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic code if

- 1. C is an additive code, and
- 2. if $(a_0a_1...a_{\alpha-1}|b_0b_1...b_{\beta-1}) \in C$, then

$$(a_{\alpha-1}a_0\dots a_{\alpha-2}|b_{\beta-1}b_0\dots b_{\beta-2})\in\mathcal{C}.$$

For an element $c = (a_0 a_1 \dots a_{\alpha-1} | b_0 b_1 \dots b_{\beta-1}) \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, define the polynomial

$$c(X) = (a_0 + a_1 X + \ldots + a_{\alpha-1} X^{\alpha-1} | b_0 + b_1 X + \ldots + b_{\beta-1} X^{\beta-1}),$$

in $R_{\alpha,\beta}$. This gives a one-to-one correspondence between elements in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ and elements in $R_{\alpha,\beta}$. We know that $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic codes are identified as $\mathbb{Z}_4[X]$ -submodules of $R_{\alpha,\beta}$ [1]. The structure of additive cyclic codes is given in the following theorem.

Theorem 2.8. [5] Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic code of length $n = \alpha + \beta$ and type $(\alpha, \beta, \gamma, \delta, k)$. Then $C = \langle (b|0), (l|fh + 2f) \rangle$ where $fhg = X^{\beta} - 1, \gamma = \alpha - \deg(b) - \deg(h), \delta = \deg(g), k = \alpha - \deg(\gcd(lg, b)),$ and $|C| = 2^{\alpha - \deg(b)} 4^{\deg(g)} 2^{\deg(h)}$. If l = 0, then C is a separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive cyclic code

2.2. Binary and quaternary quadratic residue codes

Let p and q be two prime numbers satisfying $p \equiv \pm 1 \mod 8$ and $q \equiv \pm 1 \mod 8$, and let $\phi : \mathbb{Z}_2[X] \to \mathbb{Z}_4[X]$ be the Hensel mapping. Further, let Q_p be the set of quadratic residue elements mod p and N_p be the set of non-residue elements mod p. It is known that $(X^p - 1) = (X - 1) f(X) h(X) \mod 2$, where $f(X) = \prod_{r \in QR} (X - w^r)$ and $h(X) = \prod_{r \in NQR} (X - w^r)$. Similarly, $(X^q - 1) = (X - 1) g(X) k(X) \mod 2$

and
$$X^{q}-1 = (X-1) g_{4}(X) k_{4}(X) \mod 4$$
, where $g_{4}(X) = \phi(g(X)) = \phi\left(\prod_{r \in QR} (X-w^{r})\right)$ and $k_{4}(X) = \phi(g(X)) =$

$$\phi\left(k\left(X\right)\right) = \phi\left(\prod_{r \in NQR} \left(X - w^{r}\right)\right).$$

The binary QRCs are the following four binary cyclic codes of prime length p over \mathbb{F}_2 where 2 is a quadratic residue modulo p

$$\begin{split} Q &= \left\langle f\left(X\right)\right\rangle, \\ N &= \left\langle h\left(X\right)\right\rangle, \\ Q' &= \left\langle \left(X-1\right)f\left(X\right)\right\rangle, \\ N' &= \left\langle \left(X-1\right)h\left(X\right)\right\rangle. \end{split}$$

From [17], it is known that $Q^{\perp} = Q'$ and $N^{\perp} = N'$ if $p \equiv -1 \mod 8$, and $Q^{\perp} = N'$ and $N^{\perp} = Q'$ if $p \equiv 1 \mod 8$. Q and N are equivalent codes and Q' and N' are also equivalent codes.

The quaternary QRCs are the following four cyclic codes of prime length q over \mathbb{Z}_4

$$Q_{4} = \langle g_{4}(X) \rangle,$$

$$N_{4} = \langle k_{4}(X) \rangle,$$

$$Q'_{4} = \langle (X-1) g_{4}(X) \rangle,$$

$$N'_{4} = \langle (X-1) k_{4}(X) \rangle.$$

In [17], it was proven that $Q_4^{\perp}=Q_4'$ and $N_4^{\perp}=N_4'$ if $p\equiv -1 \bmod 8$ and $Q_4^{\perp}=N_4'$ and $N_4^{\perp}=Q_4'$ if $p\equiv 1 \bmod 8$. Q_4 and N_4 are equivalent codes and Q_4' is equivalent to N_4' .

Let
$$e_1(X) = \sum_{r \in Q_p} X^r, e_2(X) = \sum_{r \in N_p} X^r, e_1'(X) = \sum_{r \in Q_q} X^r,$$
 and $e_2'(X) = \sum_{r \in N_q} X^r.$ Further, let $j_2(X) = 1 + X + X^2 + \ldots + X^{p-1} \in \mathbb{Z}_2[X] / \langle X^p - 1 \rangle$ with corresponding codeword $\mathbf{1} = (1, 1, \ldots, 1)$ in \mathbb{Z}_2^p , and $j_4(X) = 1 + X + X^2 + \ldots + X^{q-1} \in \mathbb{Z}_4[X] / \langle X^q - 1 \rangle$ with corresponding codeword $\mathbf{1} = (1, 1, \ldots, 1)$ in \mathbb{Z}_4^q . Note that $e_1(X) + e_2(X) + j_2(X) = 1$ in $\mathbb{Z}_2[X]$ and $j_4(X) - e_1'(X) - e_2'(X) = 1$ in $\mathbb{Z}_4[X]$. The following two lemmas give the idempotent generators for binary and quaternary QRCs.

Lemma 2.9. [10] Suppose that $p \equiv \pm 1 \mod 8$. Then the idempotent generators for the binary QRCs are as follows

	$p = -1 \mod 8$	$p = 1 \mod 8$
1.	$Q = \langle e_1(X) \rangle$	$Q = \langle 1 + e_2(X) \rangle$
2.	$N = \langle e_2(X) \rangle$	$N = \langle 1 + e_1(X) \rangle$
3.	$Q' = \langle 1 + e_2(X) \rangle$	$Q' = \langle e_1(X) \rangle$
4.	$N' = \langle 1 + e_1(X) \rangle$	$N' = \langle e_2(X) \rangle$

Lemma 2.10. [17] Suppose that $p \equiv \pm 1 \mod 8$. Then the idempotent generators for the quaternary QRCs are as follows

$q = -1 + 8l, l \ odd$	$q = -1 + 8l, l \ even$
1. $Q_4 = \langle e_1'(X) + 2e_2'(X) \rangle$	$Q_4 = \langle 3e_1'(X)) \rangle$
2. $N_4 = \langle 2e_1'(X) + e_2'(X) \rangle$	$N_4 = \langle 3e_2'(X) \rangle$
$3. Q_4' = \langle 1 + 2e_1'(X) + 3e_2'(X) \rangle$	$ X\rangle Q_4' = \langle 1 + e_2'(X) \rangle$
$4. N_4' = \langle 1 + 3e_1'(X) + 2e_2'(X) \rangle$	$ X\rangle N_4 = \langle 1 + e_1'(X) \rangle$

	$q = 1 + 8l, l \ odd$	$q = 1 + 8l, l \ even$
1.	$Q_4 = \langle 1 + 3e_2'(X) + 2e_1'(X) \rangle$	$Q_4 = \langle 1 + e_2'(X) \rangle$
2.	$N_4 = \langle 1 + 3e_1'(X) + 2e_2'(X) \rangle$	$N_4 = \langle 1 + e_1'(X) \rangle$
3.	$Q_4' = \langle 2e_2'(X) + e_1'(X) \rangle$	$Q_4' = \langle 3e_1'(X) \rangle$
4.	$N_4' = \langle e_2'(X) + 2e_1'(X) \rangle$	$N_4' = \langle 3e_2'(X) \rangle$

3. Separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs and their properties

In this section, we define and study the properties of separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs.

Definition 3.1. The separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs are

1.
$$L_1 = \langle (f(X)|0), (0|g_4(X)) \rangle$$
,

2.
$$L_2 = \langle (h(X)|0), (0|k_4(X)) \rangle$$
,

3.
$$L'_1 = \langle ((X-1) f(X) | 0), (0 | (X-1) g_4(X)) \rangle$$
,

4.
$$L'_2 = \langle ((X-1)h(X)|0), (0|(X-1)k_4(X)) \rangle$$
.

We are interested in finding the idempotent generators for these separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs. Let $C = C_X \times C_Y$ be a separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of length n. The next lemma gives the idempotent generators for C based on the idempotent generators for the codes C_X and C_Y .

Lemma 3.2. Let $C = C_X \times C_Y$ be a separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of length n. Suppose that the binary and quaternary cyclic codes C_X and C_Y have idempotent generators s_1 and s_2 , respectively. Then $C = \langle (s_1|0), (0|s_2) \rangle$.

Proof. Let
$$c = (c_1|c_2) \in \mathcal{C} = C_X \times C_Y$$
 so then $c_1 \in C_X = \langle s_1 \rangle$ and $c_2 \in C_Y = \langle s_2 \rangle$. Hence, $c_1 = q_1s_1$ and $c_2 = q_2s_2$ so $c = (c_1|c_2) = q_1(s_1|0) + q_2(0|s_2) \Rightarrow C \subseteq \langle (s_1|0), (0|s_2) \rangle$. Now suppose that $c = (c_1|c_2) \in \langle (s_1|0), (0|s_2) \rangle$. Then $c_1 = q_1s_1$, $c_2 = q_2s_2$ and $c = q_1(s_1|0) + q_2(0|s_2) \in C_X \times C_Y$, and hence $\mathcal{C} = \langle (s_1|0), (0|s_2) \rangle$.

As an application of Lemmas 3.2, 2.9, and 2.10, Propositions 3.3 and 3.4 present the idempotent generators for all separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs.

Proposition 3.3. Suppose that $p \equiv 1 \mod 8$ and $q \equiv 1 \mod 8$. Then we have the following

	$q-1=8l, l \ odd$	$q-1=8l, l \ even$
1	$L_1 = \langle (1 + e_2(X) 0), (0 1 + 3e_2'(X) + 2e_1'(X)) \rangle$	$L_1 = \langle (1 + e_2(X) 0), (0 1 + e'_2(X)) \rangle$
2	$L_2 = \langle (1 + e_1(X) 0), (0 1 + 3e'_1(X) + 2e'_2(X)) \rangle$	$L_2 = \langle (1 + e_1(X) 0), (0 1 + e'_1(X)) \rangle$
3	$L'_1 = \langle (e_1(X) 0), (0 2e'_2(X) + e'_1(X)) \rangle$	$L'_1 = \langle (e_1(X) 0), (0 3e'_1(X)) \rangle$
4	$L'_2 = \langle (e_2(X) 0), (0 e'_2(X) + 2e'_1(X)) \rangle$	$L_2' = \langle (e_2(X) 0), (0 3e_2'(X)) \rangle$

Proof. The proof follows from Lemmas 3.2, 2.9, and 2.10.

Proposition 3.4. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Then we have the following

	$q+1=8l, l \ odd$	$q+1=8l, l \ even$
1.	$L_1 = \langle (e_1(X) 0), (0 e'_1(X) + 2e'_2(X)) \rangle$	$L_1 = \langle (e_1(X) 0), (0 3e'_1(X)) \rangle$
2.	$L_2 = \langle (e_2(X) 0), (0 2e'_1(X) + e'_2(X)) \rangle$	$L_2 = \langle (e_2(X) 0), (0 3e_2'(X)) \rangle$
3.	$L'_1 = \langle (1 + e_2(X) 0), (0 1 + 2e'_1(X) + 3e'_2(X)) \rangle$	$L'_1 = \langle (1 + e_2(X) 0), (0 1 + e'_2(X)) \rangle$
4.	$L_2' = \langle (1 + e_1(X) 0), (0 1 + 3e_1'(X) + 2e_2'(X)) \rangle$	$L_2' = \langle (1 + e_1(X) 0), (0 1 + e_1'(X)) \rangle$

Proof. The proof follows from Lemmas 3.2, 2.9, and 2.10.

The next theorem presents some properties of separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs.

Theorem 3.5. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Then

1. L_1 and L'_1 are permutation equivalent to L_2 and L'_2 , respectively,

$$2. |L_1| = 2^{\frac{p+1}{2}} 4^{\frac{q+1}{2}} = |L_2|,$$

3.
$$|L_1'| = 2^{\frac{p-1}{2}} 4^{\frac{q-1}{2}} = |L_2'|$$
.

Proof. Part 1 follows from the fact that Q and N are equivalent, Q' and N' are equivalent, Q_4 and N_4 are equivalent, and Q'_4 is equivalent to N'_4 .

For Part 2,
$$|L_1| = |Q| |Q_4| = 2^{\frac{p+1}{2}} 4^{\frac{q+1}{2}}$$
 and $|L_2| = |N| |N_4| = 2^{\frac{p+1}{2}} 4^{\frac{q+1}{2}}$.

The proof of Part 3 is similar to that of Part 2.

We also have the following theorem.

Theorem 3.6. Suppose that $p \equiv 1 \mod 8$ and $q \equiv 1 \mod 8$. Then

1. L_1 and L'_1 are permutation equivalent to L_2 and L'_2 , respectively,

2.
$$|L_1| = 2^{\frac{p+1}{2}} 4^{\frac{q+1}{2}} = |L_2|,$$

3.
$$|L_1'| = 2^{\frac{p-1}{2}} 4^{\frac{q-1}{2}} = |L_2'|$$
.

Proof. The proof is similar to that of Theorem 3.5.

4. Classification of separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$

In this section, we provide a classification of separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$. Some applications are also given. Recall the following theorems from [10] and [13].

Theorem 4.1. [10] Let C_i be a cyclic code of length n over \mathbb{F}_q with idempotent generators $f_i(X)$, i = 1, 2. Then $C_1 \cap C_2$ and $C_1 + C_2$ have idempotent generators $f_1(X)f_2(X)$ and $f_1(X) + f_2(X) - f_1(X)f_2(X)$, respectively.

Theorem 4.2. [13] Let C_i be a cyclic code of length n over \mathbb{Z}_4 with idempotent generators $f_i(X)$, i = 1, 2. Then $C_1 \cap C_2$ and $C_1 + C_2$ have idempotent generators $f_1(X)f_2(X)$ and $f_1(X) + f_2(X) - f_1(X)f_2(X)$, respectively.

Theorem 4.3. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Then $L_1^{\perp} = L_1'$, $L_2^{\perp} = L_2'$, and L_1' and L_2' are self-orthogonal.

Proof. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Since $L_1 = \langle (f(X)|0), (0|g_4(X)) \rangle = Q \times Q_4$ is a separable additive code over $\mathbb{Z}_2\mathbb{Z}_4$, then

$$L_{1}^{\perp}=Q^{\perp}\times Q_{4}^{\perp}=Q^{\prime}\times Q_{4}^{\prime}=\left\langle \left(\left(X-1\right)f\left(X\right)\left|0\right),\left(0\right|\left(X-1\right)g_{4}\left(X\right)\right)\right\rangle =L_{1}^{\prime}.$$

Similarly, we have $L_2=\langle \left(h\left(X\right)|0\right), \left(0|k_4\left(X\right)\right)\rangle=N\times N_4$ and $L_2^{\perp}=N^{\perp}\times N_4^{\perp}=N'\times N_4'=\langle \left(\left(X-1\right)h\left(X\right)|0\right), \left(0|\left(X-1\right)k_4\left(X\right)\right)\rangle=L_2'.$ Note that

$$L'_{1} = \langle ((X-1) f(X) | 0), (0 | (X-1) g_{4}(X)) \rangle \subseteq \langle (f(X) | 0), (0 | g_{4}(X)) \rangle = L_{1},$$

and

$$L_{2}' = \langle ((X-1)h(X)|0), (0|(X-1)k_{4}(X)) \rangle \subseteq \langle (h(X)|0), (0|k_{4}(X)) \rangle = L_{2}.$$

Hence, L'_1 and L'_2 are self-orthogonal.

Theorem 4.4. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Then

1.
$$L_1 + L_2 = \mathbb{Z}_2^p \mathbb{Z}_4^q$$
,

2. $L_1 \cap L_2 = \langle (j_2(X)|0), (0|j_4(X)) \rangle$ and the pair of codes L_1 and L_2 are a 3-intersection pair of codes,

3. the codes L_1' and L_2' are a 0-intersection pair of codes and $L_1' + L_2' = \langle (1+j_2(X)|0), (0|1+j_4(X)) \rangle$.

Proof. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. We will prove Parts 1 and 2. The proof of Part 3 is similar.

For Part 1, let q=-1+8l where l is an odd integer. By Proposition 3.4, we have $L_1=\langle (e_1(X)|0)\,,(0|e_1'(X)+2e_2'(X))\rangle$ and $L_2=\langle (e_2(X)|0)\,,(0|2e_1'(X)+e_2'(X))\rangle$. Since $(e_1'(X))^2=e_1'(X)+2e_2'(X),\,(e_2'(X))^2=e_2'(X)+2e_1'(X)$ and $e_1'(X)e_2'(X)=e_1'(X)+e_2'(X)+3$, we get

$$\begin{aligned} \left(e_{1}'\left(X\right)+2e_{2}'\left(X\right)\right)\left(2e_{1}'\left(X\right)+e_{2}'\left(X\right)\right) &=& 2\left(e_{1}'\left(X\right)\right)^{2}+e_{1}'\left(X\right)e_{2}'\left(X\right)+4e_{1}'\left(X\right)e_{2}'\left(X\right)+2\left(e_{2}'\left(X\right)\right)^{2}\\ &=& 2\left(e_{1}'\left(X\right)\right)^{2}+e_{1}'\left(X\right)e_{2}'\left(X\right)+2\left(e_{2}'\left(X\right)\right)^{2}\\ &=& 2e_{1}'(X)+4e_{2}'(X)+e_{1}'(X)+e_{2}'(X)+3+4e_{1}'\left(X\right)\\ &&+2e_{2}'\left(X\right)\\ &=& 3e_{1}'(X)+3e_{2}'(X)+3\\ &=& -j_{4}\left(X\right). \end{aligned}$$

By Theorems 4.1 and 4.2, we get that $L_1 + L_2 = \langle (w_1(X)|0), (0|w_2(X)) \rangle$ where

$$w_1(X) = e_1(X) + e_2(X) - e_1(X) e_2(X)$$

= $e_1(X) + e_2(X) - 1 - e_1(X) - e_2(X) = 1$,

and

$$w_2(X) = e'_1(X) + 2e'_2(X) + 2e'_1(X) + e'_2(X) - (e'_1(X) + 2e'_2(X))(2e'_1(X) + e'_2(X))$$

= $-e'_1(X) - e'_2(X) + j_4(X) = 1$.

Thus, $L_1 + L_2 = \mathbb{Z}_2^p \mathbb{Z}_4^q$. Again by Theorems 4.1 and 4.2, we have

$$L_{1} \cap L_{2} = \langle (e_{1}(X) e_{2}(X) | 0), (0 | (e'_{1}(X) + 2e'_{2}(X)) (2e'_{1}(X) + e'_{2}(X)) \rangle$$

= $\langle (j_{2}(X) | 0), (0 | -j_{4}(X)) \rangle$.

Thus, $L_1 \cap L_2 = \langle (j_2(X)|0), (0|j_4(X)) \rangle$ and $|L_1 \cap L_2| = 2^1 4^1 = 2^3$, so L_1 and L_2 are a 3-intersection pair of codes.

For Part 2, let q = -1 + 8l where l is an even integer. By Proposition 3.4, we have $L_1 = \langle (e_1(X)|0), (0|3e_1'(X)) \rangle$ and $L_2 = \langle (e_2(X)|0), (0|3e_2'(X)) \rangle$. Since $(e_1'(X))^2 = 3e_1'(X), (e_2'(X))^2 = 3e_2'(X)$ and $e_1'(X)e_2'(X) = 3e_1'(X) + 3e_2'(X) + 3$, we get $L_1 + L_2 = \langle (w_3(X)|0), (0|w_4(X)) \rangle$, where

$$w_3(X) = e_1(X) + e_2(X) - e_1(X) e_2(X)$$

= $e_1(X) + e_2(X) - 1 - e_1(X) - e_2(X) = 1$,

and

$$w_4(X) = 3e'_1(X) + 3e'_2(X) - (3e'_1(X)3e'_2(X))$$

= $3e'_1(X) + 3e'_2(X) + j_4(X)$
= 1.

Thus, $L_1 + L_2 = \langle (w_3(X)|0), (0|w_4(X)) \rangle = \langle (1|0), (0|1) \rangle = \mathbb{Z}_2^p \mathbb{Z}_4^q$. Moreover, we have

$$L_{1} \cap L_{2} = \langle (e_{1}(X)e_{2}(X)|0), (0|e'_{1}(X)e'_{2}(X)) \rangle$$

= $\langle (j_{2}(X)|0), (0|j_{4}(X)) \rangle$.

Hence, $L_1 \cap L_2 = \langle (j_2(X)|0), (0|j_4(X)) \rangle$ and $|L_1 \cap L_2| = 2^1 4^1 = 2^3$. Therefore, L_1 and L_2 are a 3-intersection pair of codes.

Similar to Theorems 4.3 and 4.4, we obtain the following theorem.

Theorem 4.5. Suppose that $p \equiv 1 \mod 8$ and $q \equiv 1 \mod 8$. Then

- 1. $L_1^{\perp} = L_2'$ and $L_2^{\perp} = L_1'$,
- 2. $L_1 + L_2 = \mathbb{Z}_2^p \mathbb{Z}_4^q$,
- 3. $L_1 \cap L_2 = \langle (j_2(X)|0), (0|j_4(X)) \rangle$ and L_1 and L_2 are a 3-intersection pair of codes,
- 4. the codes L_1' and L_2' are a 0-intersection pair of codes and $L_1' + L_2' = \langle (1+j_2(X)|0), (0|1+j_4(X)) \rangle$.

П

Proof. The proof is similar to that of Theorems 4.3 and 4.4 and so is omitted.

Theorem 4.6. Suppose that $p \equiv -1 \mod 8$ and q + 1 = 8l, where l is even. Then

- 1. $Hull(L_1) = Hull(L'_1) = \langle (1 + e_2(X)|0), (0|1 + e'_2(X)) \rangle$,
- 2. $Hull(L_2) = Hull(L'_2) = \langle (1 + e_1(X)|0), (0|1 + e'_1(X)) \rangle$.

Proof. Suppose that $p \equiv -1 \mod 8$ and q = -1 + 8l where l is even. Then by Proposition 3.4 and Theorem 4.3, we have $L_1 = \langle (e_1(X)|0), (0|3e_1'(X)) \rangle$, $L_1^{\perp} = L_1' = \langle (1 + e_2(X)|0), (0|1 + e_2'(X)) \rangle$, $L_2 = \langle (e_2(X)|0), (0|3e_2'(X)) \rangle$, and $L_2^{\perp} = L_2' = \langle (1 + e_1(X)|0), (0|1 + e_1'(X)) \rangle$. Applying Theorem 4.1, we obtain for Part 1

$$\operatorname{Hull}(L_{1}) = \langle (e_{1}(X) (1 + e_{2}(X)) | 0), (0 | 3e'_{1}(X) (1 + e'_{2}(X))) \rangle$$

$$= \langle (e_{1}(X) + e_{1}(X)e_{2}(X) | 0), (0 | 3e'_{1}(X) + 3e'_{1}(X)e'_{2}(X)) \rangle$$

$$= \langle (e_{1}(X) + 1 + e_{1}(X) + e_{2}(X) | 0), (0 | 3e'_{1}(X) + 3 (3 + 3e'_{1}(X) + 3e'_{2}(X))) \rangle$$

$$= \langle (1 + e_{2}(X) | 0), (0 | 1 + e'_{2}(X)) \rangle,$$

and for Part 2

$$\begin{aligned} \operatorname{Hull}(L_2) &= \langle (e_2(X) \, (1 + e_1(X)) \, | \, 0), (0 | \, 3e_2'(X) \, (1 + e_1'(X))) \rangle \\ &= \langle (e_2(X) + e_1(X) e_2(X) | \, 0), (0 | \, 3e_2'(X) + 3e_1'(X) e_2'(X)) \rangle \\ &= \langle (e_2(X) + 1 + e_1(X) + e_2(X) | \, 0), (0 | \, 3e_2'(X) + 3 \, (3 + 3e_1'(X) + 3e_2'(X))) \rangle \\ &= \langle (1 + e_1(X) | \, 0), (0 | \, 1 + e_1'(X)) \rangle. \end{aligned}$$

Theorem 4.7. Suppose that $p \equiv -1 \mod 8$ and q + 1 = 8l where l is odd. Then

- 1. $Hull(L_1) = Hull(L'_1) = \langle (1 + e_2(X)|0), (0|1 + 2e'_1(X) + 3e'_2(X)) \rangle$,
- 2. $Hull(L_2) = Hull(L'_2) = \langle (1 + e_1(X)|0), (0|1 + 3e'_1(X) + 2e'_2(X)) \rangle$.

Proof. The proof is similar to that of Theorem 4.6.

Corollary 4.8. Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Then the QRCs L_1 , L_2 , L'_1 , and L'_2 are not ACD.

Proof. By Theorems 4.6 and 4.7, $C \cap C^{\perp} \neq \{0\}$ for $C = L_1, L_2, L'_1$, and L'_2 . Therefore, these codes are not ACD.

Theorem 4.9. Suppose that $p \equiv 1 \mod 8$ and $q \equiv 1 \mod 8$. Then the QRCs L_1 , L_2 , L'_1 , and L'_2 are ACD.

Proof. We will prove that L_1 is an ACD code. The proof for the other codes is similar. Suppose that $p \equiv 1 \mod 8$ and $q \equiv 1 \mod 8$.

Case 1: Assume that q - 1 = 8l, where l is an odd integer. Then by Proposition 3.3 and Theorem 4.5, we have that

$$L_1 = \langle (1 + e_2(X)|0), (0|1 + 3e_2'(X) + 2e_1'(X)) \rangle$$
 and $L_1^{\perp} = L_2' = \langle (e_2(X)|0), (0|e_2'(X) + 2e_1'(X)) \rangle$.

Note that

$$(1 + e_2(X))(e_2(X)) = e_2(X) + e_2^2(X) = 0,$$

and since $e'_1(X)^2 = e'_1(X) + 2e'_2(X)$ and $e'_2(X)^2 = 2e'_1(X) + e'_2(X)$, we have

$$\begin{split} \left(1+3e_2'(X)+2e_1'(X)\right)\left(e_2'(X)+2e_1'(X)\right) \;&=\; e_2'(X)+2e_1'(X)+\\ & 3(e_2'(X))^2+2e_2'(X)e_1'(X)+2e_1'(X)e_2'(X)\\ &=\; e_2'(X)+4e_1'(X)+3e_2'(X)=0. \end{split}$$

Hence, by Theorems 4.1 and 4.2 we have

$$L_1 + L_1^{\perp} = \langle (1 + e_2(X) + e_2(X) - 0|0), (0|1 + 3e_2'(X) + 2e_1'(X) + e_2'(X) + 2e_1'(X) - 0) \rangle$$

= $\langle (1|0), (0|1) \rangle$ and $L_1 \cap L_1^{\perp} = \langle 0|0 \rangle$.

Case 2: Assume that q - 1 = 8l, where l is an even integer. Then we have

$$L_1 = \langle (1 + e_2(X)|0), (0|1 + e_2'(X)) \rangle$$
 and $L_1^{\perp} = L_2' = \langle (e_2(X)|0), (0|3e_2'(X)) \rangle$.

Note that

$$(1 + e_2(X)) e_2(X) = e_2(X) + (e_2(X))^2$$
$$= e_2(X) + e_2(X) = 0,$$

and since $e'_1(X)^2 = 3e'_1(X)$ and $e'_2(X)^2 = 3e'_2(X)$, we have

$$(1 + e'_2(X)) 3e'_2(X) = 3e'_2(X) + 3(e'_2(X))^2$$
$$= 3e'_2(X) + e'_2(X) = 0.$$

Therefore

$$L_1 + L_1^{\perp} = \langle (1 + e_2(X) + e_2(X) - 0|0), (0|1 + e_2'(X) + 3e_2'(X) - 0) \rangle$$

= $\langle (1|0), (0|1) \rangle$ and $L_1 \cap L_1^{\perp} = \langle 0|0 \rangle$,

so L_1 is ACD.

In [17], supplementary quaternary QRCs were defined to be the \mathbb{Z}_4 -linear codes obtained by supplementing the codes Q_4' and N_4' with the all 2 q-tuple $2(1)^q$. Define the following $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes

$$S_Q(q) = \langle Q_4', 2(1)^q \rangle$$
, and $S_N(q) = \langle N_4', 2(1)^q \rangle$.

As an application of the codes S_Q and S_N , we construct $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes in the following lemma.

Lemma 4.10. *Let*

$$\begin{array}{rcl} D_1 &=& Q \times S_Q(q), \\ D_2 &=& N \times S_Q(q), \\ D_3 &=& Q' \times S_Q(q), \\ D_4 &=& N' \times S_Q(q), \\ \\ C_1 &=& Q \times S_N(q), \\ C_2 &=& N \times S_N(q), \\ C_3 &=& Q' \times S_N(q), \\ C_4 &=& N' \times S_N(q). \end{array}$$

- 1. If $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$, then $D_1^{\perp} = D_3$, $D_2^{\perp} = D_4$, $C_1^{\perp} = C_3$, and $C_2^{\perp} = C_4$. In addition, D_3 , D_4 , C_3 , and C_4 are self-orthogonal codes.
- $\textit{2. If } p \equiv 1 \bmod 8 \textit{ and } q \equiv 1 \bmod 8, \textit{ then } D_1^{\perp} = C_4, \ D_2^{\perp} = C_3, \ C_1^{\perp} = D_4, \textit{ and } C_2^{\perp} = D_3.$

Proof. For $p \equiv -1 \mod 8$, we have $Q^{\perp} = Q'$ and $N^{\perp} = N'$, and for $p = 1 \mod 8$, we have $Q^{\perp} = N'$ and $N^{\perp} = Q'$. Further, by [17, Proposition 11.19], if $q = -1 \mod 8$, then $S_Q(q)$ and $S_N(q)$ are self-dual codes and if $q \equiv 1 \mod 8$, then $S_Q^{\perp}(q) = S_N(q)$ and $S_N^{\perp}(q) = S_Q(q)$. This completes the proof of Part 1.

Suppose that $p \equiv -1 \mod 8$ and $q \equiv -1 \mod 8$. Since $D_1 = Q \times S_Q(q)$ is a separable additive code over $\mathbb{Z}_2\mathbb{Z}_4$, then $D_1^\perp = Q^\perp \times S_Q^\perp(q) = Q' \times S_Q(q) = D_3$. Similarly, we have $D_2^\perp = D_4$, $C_1^\perp = C_3$, and $C_2^\perp = C_4$. Hence, D_3 , D_4 , C_3 , and C_4 are self-orthogonal codes. Now suppose that $p \equiv 1 \mod 8$ and $q \equiv 1 \mod 8$. Since $D_1 = Q \times S_Q(q)$ is a separable additive code over $\mathbb{Z}_2\mathbb{Z}_4$, then $D_1^\perp = Q^\perp \times S_Q^\perp(q) = N' \times S_N(q) = C_4$. Similarly, we have $D_2^\perp = C_3$, $C_1^\perp = D_4$, and $C_2^\perp = D_3$. This completes the proof of Part 2.

It is clear that the codes D_1 and D_2 are equivalent and the codes D_3 and D_4 are equivalent. Furthermore, C_1 and C_2 are equivalent codes and C_3 and C_4 are equivalent codes.

5. Examples

In this section, we provide applications of our results and construct separable $\mathbb{Z}_2\mathbb{Z}_4$ -additive QRCs that are self-orthogonal and ACD codes.

Example 5.1. Let p = q = 7. If w is a primitive 7th root of unity over \mathbb{Z}_2 , then $X^7 - 1 = (X - 1) f(X) h(X) \mod 2$ where $f(X) = \prod_{r \in QR} (X - w^r) = X^3 + X + 1$ and $h(X) = \prod_{r \in NQR} (X - w^r) = X^3 + X^2 + 1$. We also have $X^7 - 1 = (X - 1) g_4(X) k_4(X) \mod 4$ where $g_4(X) = \phi(f(X)) = \phi\left(\prod_{r \in QR} (X - w^r)\right) = X^3 + 2X^2 + X + 3$ and $k_4(X) = \phi(h(X)) = \phi\left(\prod_{r \in NQR} (X - w^r)\right) = X^3 + 3X^2 + 2X + 3$. Based on this factorization, we get the codes

$$\begin{array}{ll} L_{1}' \; = \; \left\langle \left(\left(X-1 \right) \left(X^{3}+X+1 \right) | 0 \right), \left(0 | \left(X-1 \right) \left(X^{3}+2X^{2}+X+3 \right) \right) \right\rangle, \\ L_{2}' \; = \; \left\langle \left(\left(X-1 \right) \left(X^{3}+X^{2}+1 \right) | 0 \right), \left(0 | \left(X-1 \right) \left(X^{3}+3X^{2}+2X+3 \right) \right) \right\rangle. \end{array}$$

Since $p = q = -1 \mod 8$, from Theorem 4.3 we have that L'_1 and L'_2 are self-orthogonal codes of length n = 14.

Example 5.2. Let p = q = 17. If w is a primitive 17th root of unity over \mathbb{Z}_2 , then $X^{17} - 1 = (X - 1) f(X) h(X) \mod 2$ where $f(X) = \prod_{r \in QR} (X - w^r) = X^8 + X^7 + X^6 + X^4 + X^2 + X + 1$ and $h(X) = \prod_{r \in NQR} (X - w^r) = X^8 + X^5 + X^4 + X^3 + 1$. We also have $X^{17} - 1 = (X - 1) g_4(X) k_4(X) \mod 4$ where $g_4(X) = X^8 + X^7 + 3X^6 + 3X^4 + 3X^2 + X + 1$ and $k_4(X) = X^8 + 2X^6 + 3X^5 + X^4 + 3X^3 + 2X^2 + 1$. Based on this factorization, we get that the codes

$$L_{1} = \left\langle \left(X^{8} + X^{7} + X^{6} + X^{4} + X^{2} + X + 1|0\right), \left(0|X^{8} + X^{7} + 3X^{6} + 3X^{4} + 3X^{2} + X + 1\right)\right\rangle,$$

$$L_{2} = \left\langle \left(X^{8} + X^{5} + X^{4} + X^{3} + 1|0\right), \left(0|X^{8} + 2X^{6} + 3X^{5} + X^{4} + 3X^{3} + 2X^{2} + 1\right)\right\rangle,$$

$$L'_{1} = \left\langle \left((X - 1)\left(X^{8} + X^{7} + X^{6} + X^{4} + X^{2} + X + 1\right)|0\right),$$

$$\left(0|\left(X - 1\right)\left(X^{8} + X^{7} + 3X^{6} + 3X^{4} + 3X^{2} + X + 1\right)\right)\right\rangle,$$

$$L'_{2} = \left\langle \left((X - 1)\left(X^{8} + X^{5} + X^{4} + X^{3} + 1\right)|0\right),$$

$$\left(0|\left(X - 1\right)\left(X^{8} + 2X^{6} + 3X^{5} + X^{4} + 3X^{3} + 2X^{2} + 1\right)\right)\right\rangle.$$

Since $p = q = 1 \mod 8$, from Theorem 4.9 we have that L_1, L_2, L_1' , and L_2' are ACD codes of length n = 34.

Example 5.3. Let p=17 and q=41. If w is a primitive 17th root of unity over \mathbb{Z}_2 , then $X^{17}-1=(X-1)\,f(X)\,h(X)\,\operatorname{mod} 2$ where $f(X)=\prod_{r\in QR}(X-w^r)=X^8+X^7+X^6+X^4+X^2+X+1$ and $h(X)=\prod_{r\in NQR}(X-w^r)=X^8+X^5+X^4+X^3+1$. We also have $X^{41}-1=(X-1)\,g_4(X)\,k_4(X)\,\operatorname{mod} 4$ where $g_4(X)=X^{20}+2X^{19}+3X^{18}+3X^{17}+x^{16}+3X^{15}+x^{14}+3X^{11}+3X^{10}+3X^9+x^6+3X^5+x^4+3X^3+3X^2+2X+1$, and $k_4(X)=X^{20}+3X^{19}+X^{17}+X^{16}+2X^{15}+X^{14}+2X^{13}+3X^{11}+X^{10}+3X^9+2X^7+X^6+2X^5+X^4+X^3+3X+1$. Based on this factorization, we get the codes

$$\begin{split} L_{1} &= \left\langle \left(f\left(X\right) | 0 \right), \left(0 | g_{4}\left(X\right) \right) \right\rangle, \\ L_{2} &= \left\langle \left(h\left(X\right) | 0 \right), \left(0 | k_{4}\left(X\right) \right) \right\rangle, \\ L'_{1} &= \left\langle \left(\left(X-1 \right) \left(f\left(X\right) \right) | 0 \right), \left(0 | \left(X-1 \right) \left(g_{4}\left(X\right) \right) \right) \right\rangle, \\ L'_{2} &= \left\langle \left(\left(X-1 \right) \left(h\left(X\right) \right) | 0 \right), \left(0 | \left(X-1 \right) \left(k_{4}\left(X\right) \right) \right) \right\rangle. \end{split}$$

Since $p = q \equiv 1 \mod 8$, from Theorem 4.9 we have that L_1, L_2, L_1' , and L_2' are ACD codes of length n = 58.

6. Conclusion

In this paper, we introduced the class of separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$. The main properties of these codes and their duals were presented including the generator polynomials and idempotent generators. It was shown that ACD codes and self-orthogonal codes can be constructed as applications of QRCs over $\mathbb{Z}_2\mathbb{Z}_4$. We also presented examples of ACD codes and self-orthogonal QRCs over $\mathbb{Z}_2\mathbb{Z}_4$.

For future work, it will be interesting to generalize the results given to non-separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$ and study the existence of self-orthogonal and ACD codes of this type. Another interesting research topic would be to study the applications of the self-orthogonal and ACD constructed from separable additive QRCs over $\mathbb{Z}_2\mathbb{Z}_4$ in areas such as cryptography and secret-sharing.

Acknowledgment: The authors extend their sincere thanks to the reviewers for their thorough reading and invaluable feedback which have significantly contributed to an improved paper.

References

- [1] T. Abualrub, I. Siap, N. Aydin, Z₂Z₄-additive cyclic codes, IEEE Transactions on Information Theory 60(3) (2014) 1508−1514.
- [2] E. F. Assmus, Jr. J. D. Key, Affine and projective planes, Discrete Mathematics 83(2-3) (1990) 161–187.
- [3] S. Bhowmick, A. Fotue-Tabue, J. Pal, On the linear *l*-intersection pair of codes over a finite principal ideal ring, arXiv:2204.00905v2 (2023).
- [4] N. Benbelkacem, J. Borges, S. T. Dougherty, C. Fernández-Córdoba, On $\mathbb{Z}_2\mathbb{Z}_4$ -additive complementary dual codes and related LCD codes, Finite Fields and Their Applications 62 (2020) 101622.
- [5] J. Borges, C. Fernández-Córdoba, S. T. Dougherty, R. Ten-Valls, Binary images of Z₂Z₄-additive cyclic codes, IEEE Transactions on Information Theory 64(12) (2018) 7551−7556.
- [6] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, M. Villanueva, Z₂Z₄-linear codes: generator matrices and duality, Designs, Codes and Cryptography 54(2) (2010) 167–179.
- [7] J. Borges, C. Fernández-Córdoba1, R. Ten-Valls, Z₂-double cyclic codes, Designs, Codes and Cryptography 86 (2018) 463–479.
- [8] H. Ghosh, P.K. Maurya, S. Bagchi, Secret sharing scheme: based on LCD codes, Interdisciplinary Conference on Mathematics, Engineering and Science, Durgapur, India (2022).
- [9] K. Guenda, T. A. Gulliver, S. Jitman, S. Thipworawimon, Linear *l*-intersection pairs of codes and their applications, Designs, Codes and Cryptography 88(1) (2020) 133–152.
- [10] W. C. Huffman, V. Pless, Fundamentals of error correcting codes, Cambridge, UK: Cambridge University Press (2003).
- [11] A. S. Karbaski, T. Abualrub, S. T. Dougherty, Double quadratic residue codes and self-dual double cyclic codes, Applicable Algebra in Engineering, Communication and Computing 33(2) (2022) 91– 115.
- [12] X. T. Ngo, S. Bhasin, J.-L. Danger, S. Guilley, Z. Najm, Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses, IEEE International Symposium on Hardware Oriented Security and Trust, Washington, DC, USA (2015) 82–87.
- [13] V. S. Pless, Z. Qian, Cyclic codes and quadratic residue codes over Z_4 , IEEE Transactions on Information Theory 42(5) (1996) 1594–1600.
- [14] F. J. MacWilliams, N. J. A. Sloane, The theory of error correcting codes, Amsterdam, Netherlands: North-Holland (1977).
- [15] E. Prange, Some cyclic error-correcting codes with simple decoding algorithms, Air Force Cambridge Research Center, Bedford, MA, USA TN-58-156 (1958).
- [16] J. Rifà, L. Ronquillo, Product perfect $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes in steganography, International Symposium On Information Theory & Its Applications, Taichung, Taiwan (2010) 696–701.
- [17] Z. X. Wan, Quaternary codes, Singapore: World Scientific (1997).