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Abstract: The Albertson irregularity measure is defined as Alb(Γ) =
∑

uv∈E(Γ) |d(u) − d(v)|. In this work,
the concept of Albertson energy is extended from simple graphs to graphs with self-loops. Also
the expression for the Albertson eigenvalues of a graph with self-loops are given. Some bounds on
the Albertson energy of graphs with self-loops and the spread of Alb(ΓS) are obtained. In the last
section, the Albertson energy of complete, complete bipartite, crown and thorn graphs with self-loops
are computed.
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1. Introduction

Let Γ = (V,E) be a finite, simple, undirected graph. The order and size of Γ are given by |V | = n
and |E| = m, respectively. The number of edges incident on the vertex v is the degree of a vertex v in a
graph Γ, denoted by deg(u) or dΓ(u). The concept, energy of a graph, was coined by I. Gutman in 1978
as the sum of the absolute values of all the eigenvalues of a graph [10], denoted by E(Γ). This definition
is a general formula to calculate total π-electron energies of conjugated hydrocarbon molecules which was
calculated by Erich Huckel in Huckel molecular orbital theory. In 2022, I. Gutman et al. broadened the
idea of graph energy from simple graphs to graphs with self-loops [11]. To learn more about the extended
adjacency matrix and graph energy with self-loops, readers can refer to [1–5, 7, 13–15, 17? –21].

The spread of the matrix A is given by S(A) = max{|γk − γj | : i, j = 1, . . . , n}, where γ′
ks are the

eigenvalues of matrix A. Thorn graph [8] is the graph obtained from Γ by attaching pi pendant vertices
to the vertex vi of Γ, for i = 1, 2, . . . , n. Figure [1], [2], [3], [4] represents thorn cycle, thorn complete,
thorn wheel, and thorn star graphs, respectively.
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A graph is considered regular if every vertex in it has the same degree. Calculations are frequently
made easier by regularity. An irregular graph is one that has at least two distinct vertex degrees, making
it non-regular. This has led to the definition of multiple irregularity measures. One such measure was
proposed by Albertson in 1997 [6], which is given by Alb(Γ) =

∑
uv(Γ) |d(u) − d(v)|. In [12] authors

introduced a new measure known as sigma index, given by σ(Γ) =
∑

uv(Γ)(d(u)− d(v))2.

The Albertson matrix [6] of a graph Γ is a square matrix A = [aij ] of order n given by

aij =


|d(ui)− d(uj)|, if ui ∼ uj

0, if ui ≁ uj

0, if ui = uj .

Let S ⊆ V (Γ) and |S| = α. Let ΓS be the graph obtained from the simple graph Γ, by attaching a
self-loop to each of its vertices belonging to S. Let E(ΓS) and dΓS

(u) represent edge set of ΓS and degree
of vertex u in ΓS , respectively.

In this paper, the Albertson matrix for a graph with self-loops is defined as Alb(ΓS) = [aij ], where

aij =


|d(ui)− d(uj)|, if ui ∼ uj

0, if ui ≁ uj

1, if ui = uj and ui ∈ S.

Let γ1(ΓS) ≥ γ2(ΓS) ≥ · · · ≥ γn(ΓS) be the eigenvalues of Alb(ΓS). Then, the Albertson energy of a
graph with self-loops is given by

AlbE(ΓS) =

n∑
k=1

∣∣∣γk(ΓS)−
α

n

∣∣∣ .
Let sk =

∣∣∣γk(ΓS)−
α

n

∣∣∣ , k = 1, 2, . . . , n denote the auxiliary eigenvalues of Alb(ΓS).

Lemma 1.1. [16] Let ak and bk, 1 ≤ k ≤ n are non-negative real numbers. Then

n∑
k=1

a2k

n∑
k=1

b2k −

(
n∑

k=1

akbk

)2

≤ n2

4
(M1M2 −m1m2)

2.

M1 = max
1≤k≤n

ak, M2 = max
1≤k≤n

bk, m1 = min
1≤k≤n

ak, m2 = min
1≤k≤n

bk.

Lemma 1.2. [16] Suppose ak and bk, 1 ≤ k ≤ n are positive real numbers, then

n∑
k=1

a2k

n∑
k=1

b2k ≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
k=1

akbk

)2

.

M1 = max
1≤k≤n

ak, M2 = max
1≤k≤n

bk, m1 = min
1≤k≤n

ak, m2 = min
1≤k≤n

bk.

Lemma 1.3. [16] Let ak and bk, 1 ≤ k ≤ n are positive real numbers, then

∣∣∣∣∣n
n∑

k=1

akbk −
n∑

k=1

ak

n∑
k=1

bk

∣∣∣∣∣ ≤ β(n)(A− a)(B − b),

where a, b, A and B are real constants i.e., for each k, 1 ≤ k ≤ n, a ≤ ak ≤ A and b ≤ bk ≤ B. Further

β(n) = n
⌊n
2

⌋(
1− 1

n

⌊n
2

⌋)
.
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Lemma 1.4. [16] Let y = (yk) and b = (bk), k = 1, 2, . . . , n be real number sequence such that
n∑

k=1

|yk| = 1

and
n∑

k=1

yk = 0. Then

∣∣∣∣∣
n∑

k=1

bkyk

∣∣∣∣∣ ≤ 1

2
( max
1≤i≤n

(bk)− min
1≤i≤n

(bk)).

Lemma 1.5. [9] Let A be an n × n Hermitian matrix (n ≥ 3) with eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γn.

Define M(A) = {2||A|| 2 − 2
n (tr(A))2} 1

2 . Then
√

2

n
M(A) ≤ S(A) ≤ M(A), where ||A|| is the Euclidean

norm and tr(A) denote the trace of A.

Lemma 1.6. [22] Suppose p, q are non-negative integers, and suppose A, B, C, D are respectively p×p,

p× q, q× p, and q× q matrices of complex numbers. Let M =

[
A B
C D

]
be a matrix of order (p+ q). If A

is invertible, then det(M) = det(A)det(D − CA−1B).

Figure 1. Thorn cycle

Figure 2. Thorn complete
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Figure 3. Thorn wheel

Figure 4. Thorn star

2. Properties

Theorem 2.1. Let γk, 1 ≤ k ≤ n be the eigenvalues of Alb(ΓS). Then

1.
n∑

k=1

γk = α.

2.
n∑

k=1

γ2
k = 2σ(ΓS) + α.

Proof. 1. Sum of eigenvalues of Alb(ΓS) is equal to trace of Alb(ΓS),
n∑

k=1

γk =
n∑

k=1

akk = |S| = α.

2. The sum of squares of eigenvalues of Alb(ΓS) is the trace of [Alb(ΓS)]
2.

n∑
k=1

γ2
k =

n∑
k=1

n∑
k=1

akjajk

=

n∑
k=1

a2kk +
∑
k ̸=j

akjajk

= |S|+ 2σ(ΓS)
n∑

k=1

γ2
k = α+ 2σ(ΓS).
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Theorem 2.2. Let sk, 1 ≤ k ≤ n be the auxiliary eigenvalues of Alb(ΓS). Then

1.
n∑

k=1

sk = 0.

2.
n∑

k=1

s2k = α+ 2σ(ΓS)−
α2

n
.

Proof. 1. We have,

n∑
k=1

sk =

n∑
k=1

(
γk(ΓS)−

|S|
n

)

=

n∑
k=1

γk(ΓS)−
n∑

k=1

α

n

= 0.

2. Also,

n∑
k=1

s2k =

n∑
k=1

(
γk(ΓS)−

|S|
n

)2

=

n∑
k=1

γk(ΓS)
2 +

n∑
k=1

(α
n

)2
− 2

n∑
k=1

γi(ΓS)
(α
n

)
= α+ 2σ(ΓS)−

α2

n
.

Theorem 2.3. Let Γ = (V,E) be a graph and S ⊆ V (Γ). Let ΓS be a graph with self-loops attached to
all vertices of S. Then

1. If α = 0, AlbE(ΓS) = AlbE(Γ).

2. If α = n, AlbE(ΓS) = AlbE(Γ).

Proof. 1. If α = 0, then Γ ≃ ΓS . Therefore, AlbE(ΓS) = AlbE(Γ).

2. If α = n, then γi(ΓS) = γi(Γ) + 1.

AlbE(ΓS) =

n∑
i=1

|γi(ΓS)− 1|

=

n∑
i=1

|γi(Γ) + 1− 1|

=

n∑
i=1

|γi(Γ)|

= AlbE(Γ).
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3. Bounds

Theorem 3.1. Let s1 ≥ s2 ≥ · · · ≥ sn be the auxiliary eigenvalues of Alb(ΓS). Then

AlbE(ΓS) ≥

√
n

(
α+ 2σ(ΓS)−

α2

n

)
− n2

4
(s1 − sn)2.

Equality holds if Γ ∼= (Kn)S with α = n.

Proof. On substituting ak = 1 and bk = |sk| in Lemma [1.1], we have

n∑
k=1

1

n∑
k=1

|sk|2 −

(
n∑

k=1

|sk|

)2

≤ n2

4
(s1 − sn)

2

n

(
α+ 2σ(ΓS)−

α2

n

)
− (AlbE(ΓS))

2 ≤ n2

4
(s1 − sn)

2

AlbE(ΓS) ≥

√
n

(
α+ 2σ(ΓS)−

α2

n

)
− n2

4
(s1 − sn)2.

Theorem 3.2. Let s1 ≥ s2 ≥ · · · ≥ sn be the auxiliary eigenvalues of Alb(ΓS). Then

AlbE(ΓS) ≥
2

√
ns1sn

(
α+ 2σ(ΓS)−

α2

n

)
s1 + sn

.

Proof. On replacing ak = |sk| and bk = 1 in Lemma [1.2], we obtain

n∑
k=1

|sk|2
n∑

k=1

1 ≤ 1

4

(√
s1
sn

+

√
sn
s1

)2
(

n∑
k=1

|sk|

)2

n

(
α+ 2σ(ΓS)−

α2

n

)
≤ 1

4

(s1 + sn)
2

s1sn
(AlbE(ΓS))

2

4(s1sn)n

(
α+ 2σ(ΓS)−

α2

n

)
(s1 + sn)2

≤ (AlbE(ΓS))
2

AlbE(ΓS) ≥
2

√
ns1sn

(
α+ 2σ(ΓS)−

α2

n

)
s1 + sn

.

Theorem 3.3. Let s1 ≥ s2 ≥ · · · ≥ sn be the auxiliary eigenvalues of Alb(ΓS). Then

AlbE(ΓS) ≥

√
n

(
α+ 2σ(ΓS)−

α2

n

)
− β(n)(|s1| − |sn|)2.

Equality holds if Γ ∼= (Kn)S with α = n.
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Proof. On substituting ak = |sk| = bk, a = |sn| = b and A = |s1| = B in Lemma [1.3], we have

∣∣∣∣∣∣n
n∑

k=1

|sk|2 −

(
n∑

k=1

|sk|

)2
∣∣∣∣∣∣ ≤ β(n)(|s1| − |sn|)2∣∣∣∣n(α+ 2σ(ΓS)−

α2

n

)
− (AlbE(ΓS))

2

∣∣∣∣ ≤ β(n)(|s1| − |sn|)2

AlbE(ΓS) ≥

√
n

(
α+ 2σ(ΓS)−

α2

n

)
− β(n)(|s1| − |sn|)2.

Theorem 3.4. Let S(Alb(ΓS)) denote the spread of Alb(ΓS). Then

√
2

n

(
2

n∑
k=1

s2k

) 1
2

≤ S(Alb(ΓS)) ≤

(
2

n∑
k=1

s2k

) 1
2

.

Left inequality is sharp if Γ is a r−regular graph on n vertices with consecutive
n

2
self-loops.

Proof. We have ||A||2 = σ(ΓS) + α and [tr(Alb(ΓS))]
2 = α2.

On substituting this in Lemma [1.5], we have√
2

n

(
2(σ(ΓS) + α)− 2

n
α2

) 1
2

≤ S(Alb(ΓS)) ≤
(
2(σ(ΓS) + α)− 2

n
α2

) 1
2

√
2

n

(
2

(
σ(ΓS) + α− α2

n

)) 1
2

≤ S(Alb(ΓS)) ≤
(
2

(
σ(ΓS) + α− α2

n

)) 1
2

√
2

n

(
2

n∑
k=1

s2k

) 1
2

≤ S(Alb(ΓS)) ≤

(
2

n∑
k=1

s2k

) 1
2

.

Theorem 3.5. Let S(Alb(ΓS)) denote the spread of Alb(ΓS). Then

Alb(ΓS) ≥
2α+ 4σ(ΓS)−

4α2

n
S(Alb(ΓS))

.

Proof. On setting bk = γk and yk =
γk − α

n
n∑

k=1

∣∣∣γk − α

n

∣∣∣ , for all k = 1, 2, . . . , n in Lemma [1.4], we obtain

∣∣∣∣∣
n∑

k=1

bkyk

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

n∑
k=1

γ2
k − α

n
γk

n∑
k=1

|γk − α

n
|

∣∣∣∣∣∣∣∣ ≤
1

2

(
max

1≤k≤n
γk − min

1≤k≤n
γk

)
=

1

2
S(Alb(ΓS)).
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∣∣∣∣∣∣∣∣
n∑

k=1

γ2
k − α

nγk
n∑

k=1

|γk − α
n |

∣∣∣∣∣∣∣∣ ≥
n∑

k=1

γ2
k

n∑
k=1

|γk − α
n |

−

∣∣∣∣αn n∑
k=1

γk

∣∣∣∣
n∑

k=1

|γk − α
n |

=
α+ 2σ(ΓS)− α2

n − α2

n

AlbE(ΓS)
.

We have

1

2
S(Alb(ΓS)) ≥

α+ 2σ(ΓS)− 2α2

n

AlbE(ΓS)
.

=⇒ AlbE(ΓS) ≥
2α+ 4σ(ΓS)− 4α2

n

S(Alb(ΓS))
.

4. Albertson energy of some graphs with self-loops

Theorem 4.1. For complete graph Kn with α ≥ 1 self-loops,

AlbE(Kn)S =
2(αn− α2)− n

n
+
√
1 + 16α(n− α).

Proof. For complete graph Kn with α ≥ 1 self-loops, we have

Alb(Kn)S =

[
Iα 2Jα×(n−α)

2J(n−α)×α 0(n−α)

]
n

,

where J is all 1’s matrix.

Let W =

[
Y
Z

]
be an eigenvector of order n, such that vector Y be of order α and vector Z be of

order n− α. Let γ(ΓS) be a eigenvalue of Alb(Kn)S . Then,

[Alb(Kn)S − γI]

[
Y
Z

]
=

[
(1− γI)Y + (2J)Z

(2J)Y − γIZ

]
n

. (1)

Case 1. Let Y = Yj = e1− ej , 2 ≤ j ≤ α and Z = 0n−α×1. Using Equation [1], [1−γI]Yj +0 = (1−γ)Yj

then, γ = 1 is the eigenvalue with multiplicity of at least α− 1 since there are α− 1 independent vectors
of the form Yj .

Case 2. Let Y = 0k and Z = Zj , j = 2, 3, · · · , n− α. Using Equation [1], 0− γIZj = −γZj then, γ = 0
is the eigenvalue with multiplicity of at least n− α− 1 since there are n− α− 1 independent vectors of
the form Zj .

Case 3. Let Y =
2(n− α)

γ − 1
Iα and Z = In−α. Here, γ denotes root of the equation, γ2−γ−4(n−α)α = 0.
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From Equation [1],

(2J)Y − γIZ = 2J(n−α)×α
2(n− α)

γ − 1
1α − γIn−α1n−α

=

{
4(n− α)α

γ − 1
− γ

}
1n−α

=

{
γ2 − γ − 4(n− α)α

γ − 1

}
1n−α.

So, γ1 =
1 +

√
1 + 16(n− α)α

2
and γ2 =

1 +
√
1− 16(n− α)α

2
are the eigenvalues both with multiplicity

of at least one.

The spectrum of Alb(Kn)S is given by,(
1 0 γ1 γ2

α− 1 n− α− 1 1 1

)

where, γ1 =
1 +

√
1 + 16(n− α)α

2
, γ2 =

1−
√
1 + 16(n− α)α

2
.

The Albertson characteristic polynomial of Alb(Kn)S is given by,

γn−α−1(γ − 1)α−1{γ2 − γ − 4(n− α)α}.

AlbE(Kn)S = (α− 1)
∣∣∣1− α

n

∣∣∣+ (n− α− 1)
∣∣∣0− α

n

∣∣∣
+

∣∣∣∣∣1 +
√
1 + 16(n− α)α

2
− α

n

∣∣∣∣∣+
∣∣∣∣∣1−

√
1 + 16(n− α)α

2
− α

n

∣∣∣∣∣
= (α− 1)

(
n− α

n

)
+ (n− α− 1)

(α
n

)
+
√
1 + 16α(n− α)

=
2(αn− α2)− n

n
+
√
1 + 16α(n− α).

Theorem 4.2. For complete bipartite graph Kp,q,

AlbE(Kp,q)S =
2pq − p− q

p+ q
+
√
1 + 4pq(q − p+ 2)2.

Proof. For complete bipartite graph Kp,q with α = p self-loops, we have

[Alb(Kp,q)S − γI] =

[
[1− γ]Ip (q − p+ 2)Jp×q

(q − p+ 2)Jq×p −γIq

]
p+q

,

where J is matrix of all 1’s.

Since block A = [1− γ]Ip is invertible, by Lemma [1.6], we have

|Alb(Kp,q)S − γI| = |[1− γ]Ip|| − γIq − (q − p+ 2)Jq×p
1

1− γ
Ip(q − p+ 2)Jp×q|.

On simplifying, we obtain the characteristic polynomial of Alb(Kp,q)S is given by

γq−1(γ − 1)p−1{γ2 − γ − pq(q − p+ 2)2}.
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The spectrum of Alb(Kp,q)S is given by (
0 1 γ1 γ2

q − 1 p− 1 1 1

)

where, γ1 =
1 +

√
1 + 4pq(q − p+ 2)2

2
and γ2 =

1−
√

1 + 4pq(q − p+ 2)2

2
.

AlbE(Kp,q)S = (q − 1)

∣∣∣∣0− α

p+ q

∣∣∣∣+ (p− 1)

∣∣∣∣1− α

p+ q

∣∣∣∣
+

∣∣∣∣∣1 +
√
1 + 4pq(q − p+ 2)2

2
− α

p+ q

∣∣∣∣∣
+

∣∣∣∣∣1 +
√

1 + 4pq(q − p+ 2)2

2
− α

p+ q

∣∣∣∣∣
= (q − 1)

(
p

p+ q

)
+ (p− 1)

(
p

p+ q

)
+
√
1 + 4pq(q − p+ 2)2

=
2pq − p− q

p+ q
+
√
1 + 4pq(q − p+ 2)2.

Corollary 4.3. For star graph, AlbE(K1,q−1)S =
q − 1

q + 1
+
√
1 + 4q(q + 1)2.

Proof. On substituting p = 1 in Theorem [4.2], we obtain the required result.

Theorem 4.4. For crown graph,

AlbE(S
0
n)S = (n− 1)(4.0616) +

√
1 + 16(n− 1)2.

Proof. Let S0
n be crown graph of order 2n and let S = {1, 2, . . . , n}. Then,

Alb(S0
n)S =

[
In 2(J − I)n

2(J − I)n 0n

]
2n

,

is the Albertson matrix of (S0
n)S . The result is proved by showing

Alb[(S0
n)S ]Z = γZ for certain vector Z and by making use of fact that the geometric multiplicity

and algebraic multiplicity of each eigenvalue γ is same, as Alb(S0
n)S is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned conformally with Alb(S0

n)S .

Consider,

[Alb(S0
n)S − γI]

[
X
Y

]
=

[
(1− γ)IX + 2(J − I)Y

2(J − I)X − γIY

]
2n

. (2)

Case 1. Let X =
−2Yj

γ − 1
, and Y = Yj = e1 − ej , j = 3, . . . , 2n.
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Using Equation [2], we have
1 +

√
17

2
and

1−
√
17

2
are the eigenvalues both with multiplicity of at

least 2n− 2 since there are 2n− 2 independent vectors of the form Yj .

Case 2. Let X =
2(n− 1)

1− γ
1n and Y = 1n, where γ is any root of the Equation,

γ2 − γ − 4(n− 1)2 = 0.

Using Equation [2],

2(J − I)X − γIY = 2(J − I)
2(n− 1)

1− γ
1n − γI1n

=

{
4(n− 1)(1− n)

γ − 1
− γ

}
1n

=

{
4(n− 1)2

1− γ
− γ

}
1n

=

{
γ2 − γ − 4(n− 1)2

γ − 1

}
1n.

So, γ =
1 +

√
1 + 16(n− 1)2

2
and γ =

1−
√
1 + 16(n− 1)2

2
are the eigenvalues both with multi-

plicity of at least 1.

Thus, the spectrum of Alb(S0
n)S is given by,(

1+
√
17

2
1−

√
17

2 γ1 γ2
n− 1 n− 1 1 1

)
,

where γ1 =
1 +

√
1 + 16(n− 1)2

2
, γ2 =

1−
√
1 + 16(n− 1)2

2
.

AlbE(S
0
n)S = (n− 1)

∣∣∣∣∣1 +
√
17

2
− 1

2

∣∣∣∣∣+ (n− 1)

∣∣∣∣∣1−
√
17

2
− 1

2

∣∣∣∣∣
+

∣∣∣∣∣1 +
√
1 + 16(n− 1)2

2
− 1

2

∣∣∣∣∣+
∣∣∣∣∣1−

√
1 + 16(n− 1)2

2
− 1

2

∣∣∣∣∣
= (n− 1)(4.0616) +

√
1 + 16(n− 1)2.

Theorem 4.5. Let Γ be thorn graph of order n(α+1). Let ΓS be the graph obtained by attaching α self-

loops to all the pendant vertices of Γ. Then, whenever Γ is regular, AlbE(ΓS) =
(α− 1)(nα+ n− α)

α+ 1
+

√
1 + 4αN, where N = dΓ(v) + α− 3.

Proof. We have,

[Alb(ΓS)− γI] =

[
[(Alb(Γ)− γI)n]1 [(NI)n]1×α

[(NI)n]α×1 [(1− γI)n]α

]
α+1

, (3)

where N = dΓ(v) + α− 3.
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On applying row operation Ri −→ Ri −Ri+1, 2 ≤ i ≤ α and column operations Ci −→ Ci +Ci−1 +
· · ·+ C2, 2 ≤ i ≤ k, in Equation [3], we get

|Alb(ΓS)− γI| = (γ − 1)n(α−1)

∣∣∣∣[Alb(Γ)− γI]n [αNI]n
[NI]n [1− γI]n

∣∣∣∣ (4)

Whenever Γ is regular, the Albertson characteristic polynomial of thorn graph with self-loops is given by
(γ − 1)n(α−1){γ2 − γ − αN2}n.

Thus, the spectrum of Alb(ΓS) is given by,(
1 γ1 γ2

n(α− 1) n n

)
,

where γ1 =
1 +

√
1 + 4αN

2
, γ2 =

1−
√
1 + 4αN

2
.

AlbE(ΓS) = n(α− 1)

∣∣∣∣1− α

n(α+ 1)

∣∣∣∣+ ∣∣∣∣1 +√
1 + 4αN

2
− α

n(α+ 1)

∣∣∣∣
+

∣∣∣∣1−√
1 + 4αN

2
− α

n(α+ 1)

∣∣∣∣
=

(α− 1)(nα+ n− α)

α+ 1
+
√
1 + 4αN.

Corollary 4.6. For thorn complete graph,

AlbE(Kn(α+1))S =
(α− 1)(nα+ n− α)

α+ 1
+ n

√
1 + 4α(n+ α− 4)2.

Proof. On substituting Alb(Kn)S = 0 and N = n + α − 4 in Equation [4], we have the Albertson
characteristic polynomial of (Kn(α+1))S as (γ − 1)n(α−1){γ2 − γ − α(n+ α− 4)2}n.

AlbE(Kn(α+1))S = n(α− 1)

∣∣∣∣1− α

n(α+ 1)

∣∣∣∣
+ n

∣∣∣∣∣1 +
√
1 + 4α(n+ α− 4)2

2
− α

n(α+ 1)

∣∣∣∣∣
+

∣∣∣∣∣1−
√
1 + 4α(n+ α− 4)2

2
− α

n(α+ 1)

∣∣∣∣∣
=

(α− 1)(nα+ n− α)

α+ 1
+ n

√
1 + 4α(n+ α− 4)2.

Corollary 4.7. For thorn cycle,

AlbE(Cn(α+1))S =
(α− 1)(nα+ n− α)

α+ 1
+ n

√
1 + 4α(α− 1)2.

Proof. On substituting Alb(Cn)S = 0 and N = α − 1 in Equation [4], we have the Albertson charac-
teristic polynomial of (Cn(α+1))S is given by (γ − 1)n(α−1){γ2 − γ − α(α− 1)2}n.
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AlbE(Cn(α+1))S = n(α− 1)

∣∣∣∣1− α

n(α+ 1)

∣∣∣∣
+ n

∣∣∣∣∣1 +
√
1 + 4α(α− 1)2

2
− α

n(α+ 1)

∣∣∣∣∣
+

∣∣∣∣∣1−
√
1 + 4α(α− 1)2

2
− α

n(α+ 1)

∣∣∣∣∣
=

(α− 1)(nα+ n− α)

α+ 1
+ n

√
1 + 4α(α− 1)2.

Theorem 4.8. The Albertson characteristic polynomial of thorn wheel graph Wn(α+1) with α self-loops
is given by (γ − 1)n(α−1)(γ − γ2 + α(n + α − 5)2)n−2{γ4 − 2γ3 + γ2[1 − α(a2 + b2) − n + 1] + γ[α(a2 +
b2)− 2(n+ 1)] + α2a2b2 − n+ 1}, where a = n+ α− 5 and b = n+ α− 4.

Proof. From Theorem [4.5], we have

|Alb(Wn(α+1))S − γI| = (γ − 1)n(α−1)

∣∣∣∣[Alb(Γ)− γI]n [mNI]n
[NI]n [1− γI]n

∣∣∣∣ .
On expanding the above equation,

|Alb(Wn(α+1))S − γI| = (γ − 1)n(α−1){Alb(Wn)S(1− γ)I − (γ(1− γ))I − αN2I}

= (γ − 1)n(α−1)

[
0n−1 (1− γ)n−1×1

(1− γ)1×n−1 01

]
n

−
[
γ(1− γ)I

]
n

−
[
(α(n+ α− 5)2)In−1 0n−1×1

01×n−1 (α(n+ α− 4)2)I1

]
n

[Alb(Wn(α+1))S − γI] =

[
[γ2 − γ − αa2]In−1 0n−1×1

01×n−1 [γ2 − γ − αb2]1

]
n

(5)

On applying row operation Ri −→ Ri −Ri+1, 2 ≤ i ≤ n− 1 and column operations Ci −→ Ci + Ci−1 +
· · ·+ C1, 1 ≤ i ≤ n, in Equation [5], we get

[Alb(Wn(α+1))S − γI] = (γ − γ2 + α(n+ α− 5)2)n−2{(γ2 − γ − α(n+ α− 4)2)(γ2 − γ − α(n+ α−
5)2)− (1− γ)2(n− 1)}.
The Albertson characteristic polynomial of thorn wheel graph with self-loops is given by (γ−1)n(α−1)(γ−
γ2+α(n+α−5)2)n−2{γ4−2γ3+γ2[1−α(a2+b2)−n+1]+γ[α(a2+b2)−2(n+1)]+α2a2b2−n+1}.

Theorem 4.9. The Albertson characteristic polynomial of thorn star graph K1,q−1 with α self-loops is
given by (γ − 1)q(α−1)(γ − γ2 + α(q + α − 5)2)q−2{γ4 − 2γ3 + γ2[1 − α(a2 + b2) − q3 + 5q2 − 8q + 4] +
γ[α(a+ b) + 2q3 − 10q2 + 16q − 8] + αa2b2 − q3 + 5q2 − 8q + 4}, where a = q + α− 5 and b = q + α− 4.

Proof. From Theorem [4.5], we have

|Alb(Kα,α(q−1))S − γI| = (γ − 1)q(α−1)

∣∣∣∣(Alb(K1,q−1)− γI)q αNIq
NIq (1− γI)q

∣∣∣∣ .
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On expanding the above equation,

[Alb(Kα,α(q−1))S − γI] = (γ − 1)q(α−1){Alb(K1,q−1)(1− γ)I − (γ(1− γ))I − αN2I}

=

[
01 [(q − 2)(1− γ)]1×q−1

[(q − 2)(1− γ)]q−1×1 0q−1

]
q

−
[
γ(1− γ)I

]
q
−
[
[α(q + α− 4)2]Iq−1 0q−1×1

01×q−1 [α(q + α− 5)2]1

]
q

[Alb(Kα,α(q−1))S − γI] =

[
[γ2 − γ − αb2]q−1 0q−1×1

01×q−1 [γ2 − γ − αa2]1

]
q

. (6)

On applying row operation Ri −→ Ri − Ri+1, 2 ≤ i ≤ q − 1 and column operations Ci −→
Ci + Ci−1 + · · ·+ C2, 2 ≤ i ≤ q, in Equation [6] we get

[Alb(Kα,α(q−1))S − γI] = (γ − γ2 + α(q + α− 5)2)q−2{(γ2 − γ − α(q + α− 4)2)(γ2 − γ − α(q + α−
5)2)− (1− γ)2(q − 1)}.
The Albertson characteristic polynomial of thorn star with self-loops is given by

(γ − 1)q(α−1)(γ − γ2 +α(q+α− 5)2)q−2{γ4 − 2γ3 + γ2[1−α(a2 + b2)− q3 +5q2 − 8q+4] + γ[α(a+
b) + 2q3 − 10q2 + 16q − 8] + αa2b2 − q3 + 5q2 − 8q + 4}.

5. Conclusion

The concept of Albertson energy of a graph with self-loops has been defined. The set S ⊆ V that
we choose affects the Albertson energy. Some bounds on AlbE(GS) and S(Alb(GS)) have been obtained.
Additionally, the Albertson energy of a few standard graphs with self-loops is calculated. Also, considered
the thorn graph with self-loops attached to the pendant vertices and compute the Albertson energy of the
thorn complete, thorn cycle with self-loops. Furthermore, an expression for the Albertson characteristic
polynomial for the thorn wheel and thorn star with self-loops has been provided.

Acknowledgment: Authors would like to thank the anonymous reviewers for their constructive
feedback, which significantly improved the quality of this paper.
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