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Abstract: The Albertson irregularity measure is defined as Alb(I') = >°, cprld(u) — d(v)]. In this work,
the concept of Albertson energy is extended from simple graphs to graphs with self-loops. Also
the expression for the Albertson eigenvalues of a graph with self-loops are given. Some bounds on
the Albertson energy of graphs with self-loops and the spread of Alb(I's) are obtained. In the last
section, the Albertson energy of complete, complete bipartite, crown and thorn graphs with self-loops
are computed.
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1. Introduction

Let T' = (V, E) be a finite, simple, undirected graph. The order and size of I' are given by |V| =n
and |E| = m, respectively. The number of edges incident on the vertex v is the degree of a vertex v in a
graph T, denoted by deg(u) or dr(u). The concept, energy of a graph, was coined by I. Gutman in 1978
as the sum of the absolute values of all the eigenvalues of a graph [10], denoted by E(T"). This definition
is a general formula to calculate total m-electron energies of conjugated hydrocarbon molecules which was
calculated by Erich Huckel in Huckel molecular orbital theory. In 2022, I. Gutman et al. broadened the
idea of graph energy from simple graphs to graphs with self-loops [11]. To learn more about the extended
adjacency matrix and graph energy with self-loops, readers can refer to [1-5, 7, 13-15, 177 —21].

The spread of the matrix A is given by S(A4) = max{|yx — ;| : i, = 1,...,n}, where 7},s are the
eigenvalues of matrix A. Thorn graph [8] is the graph obtained from I' by attaching p; pendant vertices
to the vertex v; of T', for i = 1,2,...,n. Figure [1], [2], [3], [4] represents thorn cycle, thorn complete,
thorn wheel, and thorn star graphs, respectively.
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A graph is considered regular if every vertex in it has the same degree. Calculations are frequently
made easier by regularity. An irregular graph is one that has at least two distinct vertex degrees, making
it non-regular. This has led to the definition of multiple irregularity measures. One such measure was
proposed by Albertson in 1997 [6], which is given by Alb(I') = >°,, ) |d(u) — d(v)|. In [12] authors

introduced a new measure known as sigma index, given by o(I') = 3_,, ) (d(u) — d(v))?.
The Albertson matrix [6] of a graph I is a square matrix A = [a;;] of order n given by
|d(u1) - d(uj)\, if Uq ~ Uy
Q5 = O, if U; % Uy
0, if U; = Uyj.

Let S C V(T') and |S| = a. Let I's be the graph obtained from the simple graph T', by attaching a
self-loop to each of its vertices belonging to S. Let E(T's) and drg (u) represent edge set of I's and degree
of vertex u in I'g, respectively.

In this paper, the Albertson matrix for a graph with self-loops is defined as Alb(I's) = [a;;], where

CLZ'j = O, lf U > Uj

1, if u; = u; and u; € S.

Let 1(T's) > 72(T's) > -+ > v,(Cs) be the eigenvalues of Alb(I's). Then, the Albertson energy of a
graph with self-loops is given by

Albgp((T's) = Z "Y/c I's)— *‘

Let s, = ‘w(FS) - %‘ , k=1,2,... n denote the auxiliary eigenvalues of Alb(Ts).

Lemma 1.1. [16] Let a, and by, 1 < k < n are non-negative real numbers. Then

ZakZbQ (Zakbk) S %(MlMg 7m1m2)2.
k=1

k=1 k=1
My = max ax, My = max by, m; = min ag, ms = min bg.
1<k< 1<k<n 1<k<n 1<k<n

Lemma 1.2. [16] Suppose ai, and by, 1 < k < n are positive real numbers, then

e (I 57 ()

k=1 k=1
M, = max ap, My = max by, m; = min ap, mg = min by.
1<k<n 1<k<n 1<k<n 1<k<n

Lemma 1.3. [16] Let a, and by, 1 < k < n are positive real numbers, then

<B _a’)( _b)u

DI S 1
k=1 =
where a, b, A and B are real constants i.e., for each k, 1 <k <n,a<ap < A and b < b < B. Further

s =n 3] (- [3])
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n

Lemma 1.4. [16] Lety = (yx) and b = (by), k = 1,2,...,n be real number sequence such that > |yi| =1

k=1
n

and Y yr =0. Then
k=1

1
< 30200~ mip, ()

n
> b
k=1
Lemma 1.5. [9] Let A be an n x n Hermitian matriz (n > 3) with eigenvalues y1 > vo > -+ > Yp.

Define M(A) = {2||A|| * - %(tr(A))z}%. Then \/5M(A) < S(A) < M(A), where ||A|| s the Euclidean
n
norm and tr(A) denote the trace of A.

Lemma 1.6. [22] Suppose p, q are non-negative integers, and suppose A, B, C, D are respectively p X p,

4 B] be a matriz of order (p+q). If A

pXq, qxp, and g X q matrices of complex numbers. Let M = [C D

is invertible, then det(M) = det(A)det(D — CA~'B).

Figure 1. Thorn cycle

Figure 2. Thorn complete

~
H
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Figure 3. Thorn wheel

Figure 4. Thorn star

2. Properties

Theorem 2.1. Let v, 1 < k < n be the eigenvalues of Alb(I's). Then

1. Y w=a.
k=1
2. Y v2=20(Ts) +a.
k=1
Proof. 1. Sum of eigenvalues of Alb(T'g) is equal to trace of Alb(T's), > v = > ark
k=1 k=1

2. The sum of squares of eigenvalues of Alb(I's) is the trace of [Alb(T's)]?.

S|+ 20(Ts)

Z*y,% =a+20(lg).

Bl

Q.
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Theorem 2.2. Let s, 1 < k < n be the auziliary eigenvalues of Alb(T's). Then

1. Z S = 0.
k=1
n a2
2. Y si=a+20(ls)— —.
k=1 n
Proof. 1. We have,
n n S
PIUEDD (’Yk(FS) |n|>
k=1 k=1
= Z% I's) Z -
="
= O.
2. Also,

k=1 k=1
= zn:’we(rs)z + z”: (*)2 - QZ”:%‘(FS) (a)
k=1 k=1 k=1
=+ 20(F5) — afz

Theorem 2.3. Let I' = (V, E) be a graph and S C V(I'). Let T's be a graph with self-loops attached to

all vertices of S. Then

1. Ifa =0, Albg(Ts) = Albg(T).

Proof. 1. If « = 0, then I' ~ I'g. Therefore, Albg(I's) = Albg(T).
2. If @ =n, then v,(T's) = %(T) + 1.

Albg(Ts) = Zm Ts)— 1
= k) +1-1
i=1
= Z 1 ()
1=1

= Albg(T).
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3. Bounds

Theorem 3.1. Let s > so > -+ > s, be the auziliary eigenvalues of Alb(T's). Then

a? n?
Albg(Tg) > ¢ /n <a +20(Tg) — > - Z(sl — sn)2.
n
Equality holds if I = (K,,)s with o = n.
Proof. On substituting ar, = 1 and by = |sg| in Lemma [1.1], we have

n n ) n 2 n2 )
212 Ikl = (D lsel | < lor = on)

k=1 k= k=1

A

2

0 <a +20(Ts) — O‘n) ~ (Albp(Ts))? <

(31 - Sn)2

A
ISES

(™)

n

Albp(l's) > \/n (a +20(l's) — O;j) - Z(Sl — sn)”.

Theorem 3.2. Let s > sq > -+ > s, be the auziliary eigenvalues of Alb(T's). Then

o2
24 [nsysy, (a +20(lg) — >
n
Albp(T's) > .

S1+ Sn

Proof. On replacing ay = |sg| and by = 1 in Lemma [1.2], we obtain

(22 (E)
a2> _ }M(Aum(rs))2

n<a+2a(I‘5)n ST s

n

n
D lsel? > 1
k=1 k=1

IN

2

4(s18p)n | a+ 20(T )—a—
( : ”) < (Albg(Ts))?

(s1+ sn)2

o2
2y /nsisy (a +20('g) — >
n
Albg(T's) > .

81+ Sn

Theorem 3.3. Let 51 > s3 > -+ > 8, be the auziliary eigenvalues of Alb(T's). Then

2

Ale(rs) > \/n (o 200 = %) = Bl = a2

Equality holds if T = (K,)s with a = n.
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Proof. On substituting ay, = |sx| = bg, a = |s,| =b and A = |s1] = B in Lemma [1.3], we have

nZISkF—(ZISkI) < B(n)(Is1] = Isal)®
k=1

2

n(a+%ugyf2)—mwﬂﬂm2SBWX&%%%W

2

Albg((Tg) > \/n (a +20(I's) — O;l) = Bm)(|s1] — |snl)?.

Theorem 3.4. Let S(Alb(T's)) denote the spread of Alb(T's). Then

[<2Zsk> < S(AI(T's)) <2Zsk>l

Left inequality is sharp if I is a r—regular graph on n vertices with consecutive 5 self-loops

Proof. We have ||A||?> = o(T's) + « and [tr(Alb(T's))]? = o>

On substituting this in Lemma [1.5], we have

2 2 ,\? 2 ,)\?
- (Z(U(FS) +a) — na2> < S(Al(Tg)) < (2(U(Fs) +a)— na2)
92 Oé2 % 2 %
- (2 (O’(Fs) +a— )) < S(A((Ts)) (2 (o(Fs) +a— ))
n n
f<228k> < S(AIb(Ig)) <2Zsk>
Theorem 3.5. Let S(AIb(T's)) denote the spread of Alb(T's). Then
2
200+ 40(Tg) — 4%
Alb(T'g) >
Ts) = —stamrs)
@
Ve — —
Proof. On setting by, = v, and y, = —; ,forall k=1,2,...,n in Lemma [1.4], we obtain
2 |- )

Te T | L Lo am(r
=] < 5 (e - in, ) = gStan(rs))
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n

2

n 2« > i
Ve — 2 Vk > k=1

n - "n ~ n =
k=1 3 e =l X lw—nl > w3l
k=1 k=1 k=1

We have

a+20(s) — 22
Albp(Ts)

S S(AIb(Ts)) >

2a + 4o(Tg) — 4=
S(A(Ts))

4. Albertson energy of some graphs with self-loops

Theorem 4.1. For complete graph K, with o > 1 self-loops,

—_n2) —
Albp(Kn)s = 29" =) =1 A T6a(n—a).

n

Proof. For complete graph K,, with a > 1 self-loops, we have

_ I, 2Ja><(n7a)
Alb(Kn)S N |:2J(na)><a O(nfa) n’

where J is all 1’s matrix.

Let W = }Z/} be an eigenvector of order n, such that vector Y be of order a and vector Z be of

order n — . Let v(I'g) be a eigenvalue of Alb(K,)s. Then,

[AIb(K)s — 7] PZ/} = [(1 &}%Yjﬁzj )Z]n' W

Casel. Let Y =Y; =e1—¢;,2 < j < aand Z = 0,_qx1. Using Equation [1], [1 —~I]Y;4+0 = (1 -7)Y;
then, v = 1 is the eigenvalue with multiplicity of at least o — 1 since there are oo — 1 independent vectors
of the form Yj.

Case 2. Let Y =0, and Z = Z;, j = 2,3,--- ,n — . Using Equation [1], 0 —yIZ; = —vZ; then, v =0
is the eigenvalue with multiplicity of at least n — o — 1 since there are n — o — 1 independent vectors of
the form Z;.

2
Case 3. Let Y = I, and Z = I,,_,. Here, v denotes root of the equation, 72 —y —4(n—a)a = 0.

(n—a)
1
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From Equation [1],

2(n — a)
1

(QJ)Y - ’VIZ = 2J(n—oz)xoz ]-oz - ly-l-nfa]-nfa

are the eigenvalues both with multiplicity

and v =

So, 71 =

1+ 4/1+16(n —a)a
2

of at least one.

1+4/1—-16(n —a)x
2

The spectrum of Alb(K,,)s is given by,

1 0 Y1 Y2
a—1ln—a-11 1
14+ +/1+16(n — a)a 1—+/1+16(n—a)a
y V2 = .
2 2
The Albertson characteristic polynomial of Alb(K,,)s is given by,

nfafl(,y _ 1)(1*1{72 —y—4(n - a)oz}.

where, 7, =

v

Ale(Kn)sz(@_1)‘1_%‘+(n_a_1)’0_%’

1+4/1+16(n—a)a « 1—4y/1+16(n—a)a «
2

n

+ +

2 n

—(a—1) (n_a)—i—(n—a—l) (5) +Vi+16a(n—a)

n

_ A=t mn A G —a).

n

Theorem 4.2. For complete bipartite graph K, 4,

Mg — 1 —
Albp(K,4)s = % + /1 +4pg(q—p+2)2.

Proof. For complete bipartite graph K, ; with a = p self-loops, we have

[Alb(Kp,q)S _’}/I] = [1 _’ﬂlp (q _p+2)Jqu

(q_p+2)JqXp _’qu p+q7

where J is matrix of all 1’s.

Since block A = [1 — 4]I,, is invertible, by Lemma [1.6], we have
1
[AW(Kp,q)s — I = |[1 = A]D|| = v1q — (@ =P+ 2)Jgxp 1— ,y—rp(q =P+ 2)Jpxql-

On simplifying, we obtain the characteristic polynomial of Alb(K, ,)s is given by

Iy = )Py —y — pg(q — p + 2)*}.
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The spectrum of Alb(K, 4)s is given by

0 L m 7
g—1p—1 1 1

1—|—\/1—|—4]0q(q—p—|—2)2 1—\/1—|—410q(q—]0—|—2)2
5 and v = 5 .

where, y1 =

(07 (07
Albp(K =(@@-1)0-—|+@p-1)1- —
E(Kpq)s = (g )’ p+q’ (p )’ Py

1+ /1+4pg(qg —p+2)2 .«

JF
2 p+q

N 1+ /1+4pglg—p+2)?  «
2 P+yq

(i) 002

+ /14 4pg(q — p +2)°

2pq—p—q
= ————— >+ /1+4pg(q—p+2)2
e V4 ( )

-1
Corollary 4.3. For star graph, Albg(K1 4-1)s = % + /1 +4q(qg+1)2.
q

Proof. On substituting p = 1 in Theorem [4.2], we obtain the required result. O

Theorem 4.4. For crown graph,

Albp(S%)s = (n —1)(4.0616) 4+ /1 + 16(n — 1)2.
Proof. Let S° be crown graph of order 2n and let S = {1,2,...,n}. Then,

I, 2J — 1)y
(J - I)n 071 ’

2n

Ab(S9)s = |,

is the Albertson matrix of (S9)g. The result is proved by showing

Alb[(S89)s]Z = vZ for certain vector Z and by making use of fact that the geometric multiplicity
and algebraic multiplicity of each eigenvalue v is same, as Alb(S2)s is real and symmetric.

Let Z = ﬁ/—(] be an eigenvector of order 2n partitioned conformally with Alb(S2)s.

Consider,
0 X| |Q=-mIX+2(J-1)Y
[Alb(S,)s — 1] [Y] = |: 2(J —1)X —~yIY 2"- (2)
—2Y; _
Case 1. Let X = 1,andY:Yj:el—ej,]:3,...,2n.
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1+ ;/ﬁ and 1- V17 are the eigenvalues both with multiplicity of at

least 2n — 2 since there are 2n — 2 independent vectors of the form Y;.

2(n—1)
L=~

Using Equation [2], we have

Case 2. Let X = 1, and Y = 1,,, where + is any root of the Equation,

¥ =y —4(n—-1)2=0.
Using Equation [2],

2(J — )X —yIY = 2(J71)M1n — 11,
-7

SECETIEO RN

- { 2’77_4(1”1)2}%

1—/T+16(n—1)2

So, v =

and v =

are the eigenvalues both with multi-

1+ /1+16(n— 1)
2

2
plicity of at least 1.
Thus, the spectrum of Alb(S?)s is given by,
Lé/ﬁ 71_§/ﬁ M2
n—1 n—-1 1 1)’

14+ +/1+16(n —1)2 1—-+4/1+16(n—1)2
B) » V2 = .

where y; = 3

1+V17 1 1—V17 1

Albp(S))s = (n—1) —5 "3 (n—1) 5 "3
N 1+y/1+16(n—1)2 1 N 1-/1+16(n -1 1
2 2 2 2

= (n — 1)(4.0616) + /1 + 16(n — 1)2.
O

Theorem 4.5. Let T' be thorn graph of order n(a+1). Let I's be the graph obtained by attaching « self-
(a—1D(na+n—a)

loops to all the pendant vertices of T'. Then, whenever T' is regular, Albg(T's) =

a+1
V1+4aN, where N = dp(v) + a — 3. i
Proof. We have,
_ A(T) = yDnli [(NDn]ixa
ABES) == | (N D asr 10 =30l Q

a+1

where N = dp(v) + o — 3.

0]
ot
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On applying row operation R; — R; — R; 11, 2 < i < a and column operations C; — C; +C;_1 +
-+ (4, 2 <i <k, in Equation [3], we get

[AIB(T) =AT]n [N ],

[ABTs) = = (=" D o W

Whenever T is regular, the Albertson characteristic polynomial of thorn graph with self-loops is given by
(v =MD {y? —y —aNZ}r.
Thus, the spectrum of Alb(T's) is given by,

(o 2 7).

1+ v1+4aN 1—+v1+4aN
where y; = — Yo = —

« 1++vV1+4aN «
A I'g) = —1)|1— —
bp(l's) = n(a )‘ n(a+1) +‘ 2 n(a+1)
1- VIt 4aN a
_|_ —
2 n(a+1)

1 _

_ (a Y(na+n a)+ Trian.

a—+1

Corollary 4.6. For thorn complete graph,
(a—1)(na+n—a)
a+1

Ale(Kn(a—i-l))S = +n\/1+4a(n+a74)2.

Proof. On substituting Alb(K,)s = 0 and N = n 4+ a — 4 in Equation [4], we have the Albertson
characteristic polynomial of (K,,(441))s as (v — DrMe=DIy2 — 5y —a(n+a —4)2}".

o
n 1+1+4an+a-4)?  «
2 n(a+1)
N 1—\/1+4a(n+a—4)2_ o)
2 n(a+1)
(a—1)(na+n—a)

= e +ny/1+da(n + a — 4)2.

Corollary 4.7. For thorn cycle,

~1 _
Albg(Chat1))s = o )Zlii n-a +ny/1+da(a —1)2

Proof. On substituting Alb(Cy,)s = 0 and N = o — 1 in Equation [4], we have the Albertson charac-
teristic polynomial of (Cy(a+1))s is given by (v — 1)@=V {y? — v — a(a — 1)}
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(0%
Albg(Cr(at1y)s = n(a — 1) ‘1 ICEE)
1+ y/1+4a(a—1)2 a
+n N
2 n(a+l)
1—/T+4a(a—1)? a
. _
2 n(a+1)

_lezDatn=9) A It 1)

a+1
O

Theorem 4.8. The Albertson characteristic polynomial of thorn wheel graph Wy, o1y with « self-loops
is given by (y = 1)" @ V(y =22 +a(n+a = 5)%)"2{y* = 29° +7*[1 — a(a® + 1*) —n + 1] + yla(a® +
b?) —2(n+1)] + o?a?b? —n + 1}, wherea=n+a—5 and b =n + o — 4.

Proof. From Theorem [4.5], we have

[AIb(T) — 1], [mNI],

AW (arn)s =11 = (v =)D 50y 0 o

On expanding the above equation,

A (Was1y)s — 71| = (3 = 1" {ABW,)s(1 — )] — (11 = )] — aN>T}

=(y— l)n(a—l) |:(1 _On,1 (1- ’}(’))lnlxlil _ [’y(l - ,y)]]n

’Y)lxn—l
_ (a(n+a*5)2)]’n—l 0n—1><1
O15n—1 (a(n+a—4)*)0|
2=y —ad®]l,- O
Alb(W, —[:[’y v aa’]nl n—1x1 5
M Fnarnls =7l [ O1:n1 h? =~ —ab?], )

On applying row operation R; — R; — R;11, 2 < i <n — 1 and column operations C; — C; + C;_1 +
-+ + (4, 1 <i<n,in Equation [5], we get

[A(Wa(at1)s — ] = (v =7 +an+a=5)"{(* =y —an+a-4?*)* =y —an+a-
5)%) — (1 =7)*(n — 1)}
The Albertson characteristic polynomial of thorn wheel graph with self-loops is given by (v — 1)"(0‘_1) (vy—
Y +an+a—>5)2)""2{y* 293+ 421 —a(a® +b?) —n+1] +v[a(a® + %) —2(n+1)] + a?a?b®> —n+1}. O

Theorem 4.9. The Albertson characteristic polynomial of thorn star graph Ki 41 with o self-loops is
given by (y — 1)1 D (y — 4% + (g + a = 5)?) 73 {y* — 29° + 12[1 — a(a® + %) — ¢* + 5¢° — 8¢ + 4] +
yla(a +b) + 2¢° — 10¢? + 16q — 8] + aa?b? — ¢ + 5¢* — 8¢ + 4}, wherea=q+a —5 and b= q+ a — 4.

Proof. From Theorem [4.5], we have

_ — (~ _ 1Va(a—1) (AlIb(K1,q-1) =) aNI
|Alb(Ka,a(q—1))S 'YI‘ = (7 l)q qu (1 _ 'YI)q .

o)
~
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On expanding the above equation,
(AW (K aaq—1))s — 1) = (7 = DIODLAB(K: 4 1) (1 = )] — (1 = 3)] — aN?I}
_ [ 0 [(q—2)(1 - 7)]1xq—1]
q

[(g—2)(1 —9)]g—1x1 0g—1
alg+a—4)21,4 Og—1x1
— - W)I]q - [[ ! O1xq-1 | la(qg+a— 5)2]1} q
[Alb(Ka,a(q—l))S — I = |:[’72 _(K;Z?IbQ]q—l [,YZ _quy—l_xééa2]1:| . (6)

On applying row operation R;, — R; — R;y1, 2 < i < ¢ — 1 and column operations C; —
Ci+Ci_1+4 -+ Cy, 2 <i<gq,in Equation [6] we get

[Ab(Kaaq-1))s =71 = (v =7* +ala+a=5)*)T*{(* =7 —alg+a—4)*)(v* -y —alg +a -
5)%) = (1 =7)*(a— 1)}
The Albertson characteristic polynomial of thorn star with self-loops is given by

(y = 1) D(y =42 L a(g+a —5)2)T2{y* =293 + 42[1 — a(a® +b?) — ¢ + 5¢% — 8¢ + 4] + v[a(a +
b) +2¢® — 10¢* + 16q — 8] + aa?b? — ¢® + 5¢° — 8q + 4} O

5. Conclusion

The concept of Albertson energy of a graph with self-loops has been defined. The set S C V that
we choose affects the Albertson energy. Some bounds on Albg(Gg) and S(Alb(Gg)) have been obtained.
Additionally, the Albertson energy of a few standard graphs with self-loops is calculated. Also, considered
the thorn graph with self-loops attached to the pendant vertices and compute the Albertson energy of the
thorn complete, thorn cycle with self-loops. Furthermore, an expression for the Albertson characteristic
polynomial for the thorn wheel and thorn star with self-loops has been provided.

Acknowledgment: Authors would like to thank the anonymous reviewers for their constructive
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