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Abstract: We construct all nonequivalent (v, k, 1) cyclic difference families for 18 sets of parameters v and k for
which classification results were not known. We also present the multipliers of all previously classified
CDFs with small parameters. Most of the results are double-checked by two different backtrack
search algorithms. The usage of an interesting property of the considered objects makes one of these
algorithms faster than the other.
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1. Introduction

Cyclic difference families (CDFs) are of particular interest because they are closely related to several
other combinatorial structures [3] and have therefore numerous applications, for instance [20, 22, 26]. For
general background on difference families we refer to [3].

We consider the additive group Zv of integers modulo v. Let B = {b0, b1, . . . , bk−1} be a k-element
subset of Zv. Then ∆B = {bi − bj | i, j = 0, 1, . . . , k − 1; i ̸= j} is the multiset of differences of B, and
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B + t denotes a t-translate of B, where B + t = {b0 + t, b1 + t, . . . , bk−1 + t} for t ∈ Zv. The k-element
subset B is called full if the number of its distinct translates is v, and short if it is less than v.

Definition 1.1. A (v, k, 1) cyclic difference family can be defined as a set D = {B1, B2, . . . , Bs}
of k-element subsets of Zv (blocks), such that Bn = {bn0, bn1, . . . , bnk−1} and each nonzero element of
Zv either appears in the short block {0, v/k, 2v/k, . . . , (k− 1)v/k} (possible if k divides v), or is obtained
exactly once as a difference bni − bnj for 1 ≤ n ≤ s and i, j = 0, 1, . . . , k − 1; i ̸= j.

Definition 1.2. Each automorphism α of Zv is defined by an element m ∈ Zv such that gcd(m, v) = 1,
and α maps each a ∈ Zv to ma ∈ Zv. The element m is a multiplier of the cyclic difference family D
if α maps each block of D to a translate of a block of D.

Most closely related to the difference families are the cyclic Steiner systems and the perfect (v, k, 1)
optical orthogonal codes (OOCs). The latter are equivalent to (v, k, 1) cyclically permutable constant
weight (CPCW) codes.

Definition 1.3. A (v, k, 1) OOC (CPCW code) may be viewed as a set C of k-subsets of Zv (code-
words) whose list of differences has no repeated elements.

A (v, k, 1) OOC is optimal when its size reaches the upper bound
⌊
(v − 1)

k(k − 1)

⌋
. If its size is exactly

equal to
(v − 1)

k(k − 1)
, the code is perfect because its list of differences covers all nonzero elements of Zv. A

perfect (v, k, 1) OOC corresponds to a (v, k, 1) CDF without short blocks.

Definition 1.4. Let V be a finite set of v points, and B = {Bj}bj=1 a finite collection of k-element subsets
of V , called blocks. D = (V,B) is a 2-(v,k,1) design (a Steiner system S(2, k, v)) if any 2-subset
of V is contained in exactly one block of B.

Definition 1.5. An automorphism of a 2-(v, k, 1) design D is a permutation of the points which
maps each block of D to a block of D.

A 2-(v,k,1) design is cyclic if it has an automorphism permuting its points in one cycle, and it is
strictly cyclic if each block orbit under this automorphism is of length v (no short orbits). Each cyclic
design corresponds to a (v, k, 1) CDF and vice versa.

Definition 1.6. A multiplier automorphism of a cyclic 2-(v, k, 1) design D is an automorphism of
Zv which maps each block of D to a block of D.

A (v, k, 1) CDF can exist for v ≡ 1, k (mod k(k− 1)). If v ≡ 1 (mod k(k− 1)) the CDF corresponds
to a strictly cyclic 2-(v, k, 1) design, and if v ≡ k (mod k(k − 1)) to a cyclic design with one short orbit.
We illustrate this by the following two examples, but if you are a reader familiar with the subject, please
skip them.

Example 1.7. Consider D = {B1, B2} where B1 = {0, 1, 4} and B2 = {0, 2, 8} are subsets of Z13. Their
multisets of differences are ∆B1 = {1, 3, 4, 9, 10, 12} and ∆B2 = {2, 5, 6, 7, 8, 11}. Each nonzero element
of Z13 appears exactly once in ∆B1 ∪∆B2. That is why:

• D is a (13, 3, 1) cyclic difference family. It has 3 multipliers: 1, 3, 9. The nontrivial ones transform
the blocks as:
3B1 + 1 = B1, 3B2 + 2 = B2

9B1 + 4 = B1, 9B2 + 8 = B2

• D is the set of base blocks of a strictly cyclic 2-(13, 3, 1) design (Figure 1). The multipliers 1, 3 and
9 correspond to the design automorphisms ϵ (the identity), α and β respectively. They act on the
points as:
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B1 B2

0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
2 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0
4 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
5 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
6 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
7 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1
8 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
9 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0

10 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
11 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0
12 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1

Figure 1. Incidence matrix of a strictly cyclic 2-(13, 3, 1) design

α = (0)(1, 3, 9)(2, 6, 5)(4, 12, 10)(7, 8, 11), ϵ = (0)(1) . . . (12), ϵ = α3.
β = (0)(1, 9, 3)(2, 5, 6)(4, 10, 12)(7, 11, 8), β = α2,
Note that for the multipliers of the CDF it holds 9 = 32, 1 = 33, and for the corresponding multiplier
automorphisms of the design β = α2 and ϵ = α3.

• D is an optimal perfect (13, 3, 1) CPCW code (OOC) with codewords B1 and B2.

Example 1.8. Consider D′ = {B′
1, B

′
2, B

′
3} where B′

1 = {0, 5, 10}, B′
2 = {0, 1, 4} and B′

3 = {0, 2, 8}
are subsets of Z15. Their multisets of differences are ∆B′

1 = {53, 103}, ∆B′
2 = {1, 3, 4, 11, 12, 14} and

∆B′
3 = {2, 6, 7, 8, 9, 13}. Each nonzero element of Z15 is either in the short block B′

1, or appears exactly
once in ∆B′

2 ∪∆B′
3. That is why:

• D′ is a (15, 3, 1) CDF with 4 multipliers: 1, 2, 4, 8. They transform the blocks as:
2B′

1 = B′
1, 2B′

2 = B′
3, 2B′

3 = B′
2

4B′
1 = B′

1, 4B′
2 = B′

2, 4B′
3 = B′

3

8B′
1 = B′

1, 8B′
2 = B′

3, 8B′
3 = B′

2

• D′ is the set of base blocks of a cyclic 2-(15, 3, 1) design (Figure 2).
The multipliers 1, 2, 4 and 8 correspond to design automorphisms ϵ′, α′, β′ and γ′:
α′ = (0)(1, 2, 4, 8)(3, 6, 12, 9)(5, 10)(7, 14, 13, 11), ϵ′ = (0)(1) . . . (14), ϵ′ = α′4,
β′ = (0)(1, 4)(2, 8)(3, 12)(5)(6, 9)(7, 13)(10)(11, 14), β′ = α′2,
γ′ = (0)(1, 8, 4, 2)(3, 9, 12, 6)(5, 10)(7, 11, 13, 14), γ′ = α′3.
The multipliers 4 = 22, 8 = 23, 1 = 24, the automorphisms β′ = α′2, γ′ = α′3, ϵ′ = α′4.

A cyclic design corresponding to a (v, k, 1) CDF with M multipliers, has M multiplier automor-
phisms and at least vM automorphisms. There are many examples of cyclic designs with more than vM
automorphisms. The design from Example 1.8 has 20160 automorphisms.

Definition 1.9. Two (v, k, 1) cyclic difference families are equivalent if there is an automorphism of
Zv which maps each block of the first family to a translate of a block of the second family.

Definition 1.10. Two (v, k, 1) OOCs (CPCW codes) C and C ′ are isomorphic if there exists a permu-
tation φ of Zv, which maps the collection of translates of each codeword of C to the collection of translates
of a codeword of C ′. These two codes are multiplier equivalent if φ is an automorphism of Zv.
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Figure 2. Incidence matrix of a cyclic 2-(15, 3, 1) design

B′
1 B′

2 B′
3

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0
4 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
5 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
6 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
7 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
8 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
9 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
12 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
14 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

Multiplier nonequivalent perfect OOCs correspond to nonequivalent CDFs. That is why our clas-
sification results for (v, k, 1) CDFs with v ≡ 1 (mod k(k − 1)) correspond to classification results for
multiplier nonequivalent perfect (v, k, 1) OOCs.

Definition 1.11. Two cyclic 2-(v, k, 1) designs D and D′ are isomorphic if there exists a permutation
ψ of the points which maps each block of D to a block of D′. The designs D and D′ are multiplier
equivalent if ψ is an automorphism of Zv.

Equivalent (v, k, 1) CDFs correspond to multiplier equivalent cyclic 2-(v, k, 1) designs. The CDFs
classification results from Table 1 are also classification results for multiplier nonequivalent cyclic 2-
(v, k, 1) designs. Usually two multiplier nonequivalent cyclic designs are nonisomorphic, but there are
parameters v and k for which the nonequivalent (v, k, 1) CDFs are more than the corresponding noniso-
morphic cyclic 2-(v, k, 1) designs. Infinite series of such design parameters are presented in [27].

The number of automorphisms of Zv is given by the Euler function ϕ(v). It is proved in [25] that
if (v, ϕ(v)) = 1, then all isomorphic cyclic incidence structures on v points are multiplier equivalent. In
addition it is shown in [27] that isomorphic cyclic 2-(pq, k, 1) designs are always multiplier equivalent for
primes p and q, such that k = q and p > q, or an (m, k, 1) CDF does not exist for either m = p or
m = q. In the cases listed above, in the cases with only one (v, k, 1) CDF, and in the cases considered
in [6] or [17], the classification results from Table 1 are classification results for the nonisomorphic cyclic
2-(v, k, 1) designs. In the remaining cases the number of the nonisomorphic cyclic 2-(v, k, 1) designs might
be smaller than that of the nonequivalent (v, k, 1) CDFs.

Numerous existence results on CDFs have been obtained. The first paper on the topic was published
in 1939 [8]. Presently we know that there exists a (v, 3, 1) difference family for every v ≡ 1, 3 (mod 6)
except for v = 9 [19] and there exists a (v, 4, 1) difference family for every v ≡ 1, 4 (mod 12) except for
v = 16, 25, 28 [28]. A (20t+ 1, 5, 1) CDF exists for 1 ≤ t ≤ 50 except possibly for t = 16, 25, 31, 34, 40, 45
[2], and a (pq, 5, 1) CDF exists for primes p and q, such that p ≡ q ≡ 11 (mod 20) [12]. For k = 6
and 7 we know that a (q, 6, 1) CDF exists for any prime power q ≡ 1 (mod 30) with the exception of
q = 61 [15] and a (q, 7, 1) CDF exists for any prime power q ≡ 1 (mod 42) except for q = 43, possibly
for q = 127 (nonexistence proved in [5]), 211, 316, and primes q ∈ [261239791, 1.236597 � 1013] such that
(−3)

(q−1)
14 = 1 in GF(q)[16]. An infinite family of parameters for which a CDF does not exist is presented

in [13], namely: If k is an even integer whose prime decomposition contains a prime p ≡ 3 (mod 4) raised
to an odd power, then there does not exists a (2k(k − 1) + k, k, 1) CDF.

The fact that the blocks B and −B of a difference family have ∆B = ∆(−B) has been used in
previous research in different ways (see [14], for instance). In [9] similar difference families are defined as
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follows.

Definition 1.12. Two difference families are similar if one can be obtained from the other by changing
the sign of some base blocks.

Similar difference families are used in [11] to derive a lower bound on the number of non isomorphic
cyclic 2-(v, k, 1) designs, and they are used in [10] to construct new designs. We do not know papers in
which the similarity property is used in algorithms for classification of cyclic difference families. That
is why one of the aims of the present paper is to promote such an algorithm, namely the algorithm A2

presented in the next section.

In [11] it is proved that if there exists a 2-(v, k, 1) cyclic design, then there are at least ⌈ 2n

ϕ(v)⌉
nonisomorphic (v, k, 1) cyclic designs (n is the number of full base blocks) and more precise lower bounds
are derived for k = 3 and prime v. These bounds are quite far from the known results for small parameters,
but give a good idea of the increase of the number of CDFs with definite k when v grows.

Constructive classification is only possible for relatively small values of v, but is very important
for the possible usage of CDFs in different applications. Classification results have been obtained in
[4, 6, 7, 17–19, 23] and a summary of them was presented in [4]. In the present work we update this
summary by adding 18 new classification results and correcting the number of (73, 4, 1) CDFs which was
wrongly given in [4]. In addition we present here the number of multipliers of all the CDFs with small
parameters which have been classified by now and provide files with the CDFs and their multipliers.
They can be freely downloaded from http://www.moi.math.bas.bg/~tsonka/MainCDF.htm. Section 2
presents the construction algorithms, Section 3 the results and the open problems.

2. Construction methods

To obtain the new classification results we use two different backtrack search algorithms. Exhaustive
backtrack search is exponential [24], so the computation time grows very fast with the parameters.
Nevertheless it is often successfully used for the construction of combinatorial structures with relatively
small parameters if rejection of some equivalent partial solutions is applied (big branches of the search
tree are cut off) and parameter-specific restrictions are implemented. The first algorithm we use (A1) is a
parallelized version of the algorithm described in [4] and [6]. The second one (A2) was recently suggested
by the first author in [21] and improved by him later. Without going into details we shall outline here
the main ideas of the two approaches and the differences between them.

Both algorithms use the following facts about a block B = {b0, b1, . . . bk−1}:

• a full block B can be part of a CDF if its multiset of differences ∆B = {bi−bj |i, j = 0, . . . , k−1; i ̸=
j} consists of k(k−1) distinct integers. Only full blocks which meet this requirement are constructed.

• If k|v the CDF has a short block {0, v/k, 2v/k, . . . , (k − 1)v/k} which is added first.

• For computing purposes we assume that b0 < b1 < . . . < bk−1, and define a lexicographic order
on the blocks, such that if B′ = {b′0, b′1, . . . b′k−1}, then B < B′ if b0 < b′0, or if bi = b′i for
0 ≤ i < c ≤ k − 1 and bc < b′c.

• An equivalent CDF is obtained if the block B is replaced by its translate B′. Using this, both
algorithms assume that b0 = 0, but their assumptions on the other elements of the blocks are
different. The full block B has k − 1 distinct translates with b0 = 0. Denote them B′, B′′, etc.
Algorithm A1 assumes that B is lexicographically smaller than each of its translates. For instance,
v = 13, B = {0, 1, 4}, B′ = {0, 3, 12}, B′′ = {0, 9, 10}.
A2 assumes that b1 is the biggest difference between two successive elements of the block B, namely
b1 > bi − bi−1 for all i ∈ {2, . . . , k − 1} and b1 > v − bk−1. For instance, v = 13, B = {0, 9, 10},
B′ = {0, 3, 12}, B′′ = {0, 1, 4}.
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All assumptions above are without loss of generality.

A1 first constructs all blocks which meet the assumptions and orders them in a way which is conve-
nient for the equivalence checks (details can be found in [6]). It then performs an exhaustive backtrack
search on these possible blocks.

A2 implies a different strategy using the fact that ∆B = ∆(−B), but defined for objects in the
chosen lexicographic order, namely A2 is based on the usage of mirrors.

Definition 2.1. Consider a full block B = {0, b1, . . . , bk−1}, such that b1 > bi−bi−1 for all i ∈ {2, . . . , k−
1} and b1 > v − bk−1. Its mirror block is defined as B′ = {0, b1, b1 + (v − bk−1), . . . , b1 + (v − b2)}.

For instance, v = 13, B = {0, 9, 10}, B′ = {0, 9, 12}. Two mirror blocks B and B′ have ∆B = ∆B′.
That is why A2 uses in the construction of CDFs only one of the blocks of each pair of mirrors, namely the
lexicographically smaller one, which will further be referred to as canonical. For it b2 < b′2 and therefore
b2 − b1 < v − bk−1. More precisely:

Definition 2.2. A full block B = {b0, . . . , bk−1} is in canonical form when b0 = 0, bi > bi−1 and
b1 > bi − bi−1 for i ∈ {2, . . . , k − 1}, and b2 − b1 < v − bk−1 < b1.

Definition 2.3. A CDF is canonical when all its full blocks are in canonical form.

A2 constructs first all canonical CDFs . The replacement of all canonical blocks by their mirrors
results in an equivalent CDF. The replacement of some blocks of a canonical CDF by their mirrors in all
other possible ways leads to 2⌊

v−1
k(k−1)

⌋ − 2 different CDFs which the algorithm obtains and further tests
for equivalence.

Example 2.4. There are 2 nonequivalent 2-(15, 3, 1) CDFs. One of them is presented in Example 1.8.

A1 obtains D′ = {{0, 5, 10}, {0, 1, 4}, {0, 2, 8}} and D′′ = {{0, 5, 10}, {0, 1, 4}, {0, 2, 9}}.

A2 obtains D̂′ = {{0, 5, 10}, {0, 7, 9}, {0, 11, 12}} and D̂′′ = {{0, 5, 10}, {0, 7, 13}, {0, 11, 12}}.

D′ and D′′ are equivalent respectively to D̂′ and D̂′′. This can be seen if three of the blocks are replaced
by their translates, namely {0, 1, 4}+11 = {0, 11, 12}, {0, 2, 8}+7 = {0, 7, 9} and {0, 2, 9}+13 = {0, 7, 13}.

A1 constructs the two designs by the backtrack search.

A2 constructs by backtrack search only the canonical CDF D̂′. Then D̂′′ is obtained when {0, 7, 9}
is replaced by its mirror {0, 7, 13}.

The equivalence test in both algorithms is in fact a minimality test. It rejects a partial solution if
there exists an automorphism of Zv which maps it to a lexicographically smaller partial solution (because
the latter should have already been considered).

A2 is in general much faster than A1, because during the construction of canonical CDFs, it uses
only half of the possible blocks (the canonical ones), and handles the whole number of solutions only
at the very end. That is why at each backtrack step A2 has to deal with a smaller number of partial
solutions than A1. The latter constructs much more partial solutions that do not lead to a CDF, and
tests twice more possibilities for the extension of each partial solution.

A1 obtained most of the new results by a parallel implementation (in C++ and using MPI) on
96 processes (on six 16-core servers at 2.6 GHz) on the high performance computer Avitohol (see the
acknowledgment at the end) and it needed one day for (63, 3, 1), (67, 3, 1) and (133, 7, 1), two days for
(69, 3, 1), and five days for (101, 5, 1) and (105, 5, 1), while for (121, 6, 1) and (126, 6, 1) it would need
more than 10 days. In the considered cases with k = 5 and 6 there is a tremendous number of solutions
with one block less than the needed, which are not extendable to CDFs, but A1 needs to handle them. A1

works best when k is small and the number of all possible codewords is not very big, or when the number
of the blocks is small (the uniqueness of (133, 12, 1) was established in several minutes and (113, 8, 1)
and (120, 8, 1) finished within 1 day by A1 on a personal computer). In that case A1 can gain of its fast
minimality test.
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Table 1. Number of multipliers of (v, k, 1) CDFs

v k CDFs AutZv Number of multipliers : Number of CDFs pub A1 A2

7 3 1 6 3: 1 [19] ✓ ✓

13 3 1 12 3: 1 [19] ✓ ✓

15 3 2 8 4: 2 [19] ✓ ✓

19 3 4 18 1: 1 3: 2 9: 1 [19] ✓ ✓

21 3 7 12 1: 1 2: 1 3: 2 6: 3 [19] ✓ ✓

25 3 12 20 1: 12 [19] ✓ ✓

27 3 8 18 1: 8 [19] ✓ ✓

31 3 80 30 1: 63 3: 15 5: 1 15: 1 [19] ✓ ✓

33 3 84 20 1: 78 2: 3 5: 2 10: 1 [19] ✓ ✓

37 3 820 36 1: 777 3: 42 9: 1 [19] ✓ ✓

39 3 798 24 1: 730 2: 4 3: 56 4: 2 6: 4 12: 2 [19] ✓ ✓

43 3 9508 42 1: 9377 3: 129 7: 1 21: 1 [19] ✓ ✓

45 3 11616 24 1: 11616 [19] ✓ ✓

49 3 157340 42 1: 156852 3: 482 7: 4 21: 2 [19] ✓ ✓

51 3 139828 32 1: 139808 2: 14 4: 3 8: 1 16: 2 [19] ✓ ✓

55 3 3027456 40 1: 3027456 [19] ✓ ✓

57 3 2353310 36 1: 2351359 2: 74 3: 1836 6: 33 9: 5 18: 3 [19] ✓ ✓

61 3 42373196 60 1: 42368502 3: 4683 5: 10 15: 1 [4] ✓ ✓

63 3 49526744 36 1: 49524476 2: 1656 3: 588 6: 24 here ✓ ✓

67 3 893780730 66 1: 893764042 3: 16685 11: 2 33: 1 here ✓

69 3 948359220 44 1: 948359121 2: 93 11: 5 22: 1 here ✓

13 4 1 12 3: 1 [17] ✓ ✓

37 4 2 36 1: 1 3: 1 [17] ✓ ✓

40 4 10 16 1: 4 2: 2 4: 4 [17] ✓ ✓

49 4 224 42 1: 216 3: 8 [17] ✓ ✓

52 4 206 24 1: 195 3: 11 [17] ✓ ✓

61 4 18132 60 1: 18123 3: 8 5: 1 [17] ✓ ✓

64 4 12048 32 1: 12048 [17] ✓ ✓

73 4 1428546 72 1: 1428410 3: 135 9: 1 [6] ✓ ✓

76 4 1113024 36 1: 1112992 3: 32 [6] ✓ ✓

85 4 228406824 64 1: 228399384 2: 7440 [6] ✓ ✓

88 4 149494720 40 1: 149494720 [6] ✓ ✓

21 5 1 12 6: 1 [17] ✓ ✓

41 5 1 40 5: 1 [17] ✓ ✓

61 5 10 60 1: 6 3: 2 5: 1 15: 1 [17] ✓ ✓

65 5 2 48 4: 1 12: 1 [17] ✓ ✓

81 5 528 54 1: 528 [4] ✓ ✓

85 5 170 64 1: 160 2: 2 4: 4 8: 4 [4] ✓ ✓

101 5 134632 100 1: 134630 5: 2 here ✓ ✓

105 5 84924 48 1: 84909 2: 13 4: 2 here ✓ ✓

31 6 1 30 3: 1 [3] ✓ ✓

91 6 4 72 1: 1 3: 1 4: 1 12: 1 [18, 23] ✓ ✓

121 6 48 110 1: 48 here ✓

126 6 64 36 1: 64 here ✓

91 7 2 72 12: 2 [7] ✓ ✓

169 7 4 156 1: 2 3: 2 here ✓

57 8 1 36 3: 1 [4] ✓ ✓

73 9 1 72 9: 1 [4] ✓ ✓

91 10 1 72 6: 1 [4] ✓ ✓
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Table 2. Parameters for which no CDF exists

v k pub A1 A2

9 3 [19] ✓ ✓

16 4 [17] ✓ ✓

25 4 [1, 2] ✓ ✓

28 4 [17] ✓ ✓

25 5 [17] ✓ ✓

45 5 [17] ✓ ✓

36 6 [4] ✓ ✓

61 6 [15] ✓ ✓

66 6 [4][13] ✓ ✓

96 6 [4] ✓ ✓

v k pub A1 A2

43 7 [16] ✓ ✓

49 7 [4] ✓ ✓

85 7 [4] ✓ ✓

127 7 [5] ✓ ✓

133 7 here ✓ ✓

175 7 here ✓

64 8 [4] ✓ ✓

113 8 here ✓ ✓

120 8 here ✓ ✓

169 8 here ✓

v k pub A1 A2

176 8 here ✓

81 9 [4] ✓ ✓

145 9 here ✓

153 9 here ✓

100 10 [4] ✓ ✓

181 10 here ✓

190 10 here ✓

111 11 [4] ✓ ✓

121 11 [4] ✓ ✓

A2 obtained the new results by a parallel implementation in Java on the cores of a personal computer
(with the AMD Ryzen 9 5900X 12-Core processor) within one day for all covered parameter sets except
(169, 7, 1) and (175, 7, 1) each of which needed 2 weeks. A2 works best when k ≥ 5 and the number of the
constructed CDFs is relatively small. In general it requires almost constant RAM being well parallelizable.

3. Results and open problems

The number of multipliers of the CDFs which have been classified by now is presented in Table 1,
where AutZv is the number of automorphisms of Zv and the papers which published the classification
are presented in column pub, where here marks our new results. A mark in the column Ai means that
we have repeated or obtained this result by the algorithm Ai. The whole number of CDFs with these
parameters is given in column CDFs and the number of multipliers is presented as M : N , where N is
the number of CDFs which have M multipliers (M is also the number of the multiplier automorphisms
of the corresponding design). The small parameters for which no CDFs exist are presented in Table 2.

Since small errors in the software implementation of the algorithms are always possible, as a check
for the correctness of the results, we repeat all previously known results from Tables 1 and 2, and obtain
most of the new ones by each of the two different algorithms.

We think that the availability online of files with all nonequivalent CDFs with definite small param-
eters and their multipliers might be of particular interest for some possible applications, as well as for
future theoretical research on the topic. The classification of CDFs with parameters not listed in Tables
1 and 2 is an open problem.
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frastructure purchased under the National Roadmap for RI, financially coordinated by the Ministry of
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