On the spectral characterization of kite graphs

Sezer Sorgun, Hatice Topcu

Abstract: The Kite graph, denoted by $K_{p,q}$, is obtained by appending a complete graph K_p to a pendant vertex of a path P_q. In this paper, firstly we show that no two non-isomorphic kite graphs are cospectral w.r.t the adjacency matrix. Let G be a graph which is cospectral with $K_{p,q}$ and let $w(G)$ be the clique number of G. Then, it is shown that $w(G) \geq p - 2q + 1$. Also, we prove that $Kite_{p,2}$ graphs are determined by their adjacency spectrum.

2010 MSC: 05C50, 05C75

Keywords: Kite graph, Cospectral graphs, Clique number, Determined by adjacency spectrum

1. Introduction

All of the graphs considered here are simple and undirected. Let $G = (V,E)$ be a graph with vertex set $V(G) = \{v_1,v_2,\ldots,v_n\}$ and edge set $E(G)$. For a given graph F, if G does not contain F as an induced subgraph, then G is called F–free. A complete subgraph of G is a clique of G. The clique number of G is the number of the vertices in the largest clique of G and it is denoted by $w(G)$. Let $A(G)$ be the $(0,1)$-adjacency matrix of G and d_k denotes the degree of the vertex v_k. The polynomial $P_{A(G)}(\lambda) = \det(\lambda I - A(G))$ is the adjacency characteristic polynomial of G, where I is the identity matrix. Eigenvalues of the matrix $A(G)$ are adjacency eigenvalues. Since $A(G)$ is real and symmetric matrix, adjacency eigenvalues are all real numbers and could be ordered as $\lambda_1(A(G)) \geq \lambda_2(A(G)) \geq \ldots \geq \lambda_n(A(G))$. Adjacency spectrum of the graph G consists of the adjacency eigenvalues with their multiplicities. The largest absolute value of the adjacency eigenvalues of a graph is known as its adjacency spectral radius. Two graphs G and H are said to be cospectral if they have same spectrum (i.e., same characteristic polynomial). A graph G is determined by its adjacency spectrum, shortly DAS, if every graph cospectral with G w.r.t the adjacency matrix, is isomorphic to G. It is conjectured in [5] that almost all graphs are determined by their spectrum, DS for short. But it is difficult to show that a given
graph is DS. Up to now, some graphs are proved to be DS [1, 2, 4–11, 13, 15]. Recently, some papers have appeared in the literature that researchers focus on some special graphs (oftenly under some conditions) and prove that these special graphs are DS or non-DS [1, 2, 6–11, 13, 15]. For a recent survey, one can see [5].

The Kite graph, denoted by $Kite_{p,q}$, is obtained by appending a complete graph with p vertices K_p to a pendant vertex of a path graph with q vertices P_q. If $q = 1$, it is called short kite graph.

In this paper, firstly we obtain the characteristic polynomial of kite graphs and show that no two non-isomorphic kite graphs are cospectral w.r.t the adjacency matrix. Then for a given graph G which is cospectral with $Kite_{p,q}$, the clique number of G is $w(G) \geq p - 2q + 1$. Also we prove that $Kite_{p,2}$ graphs are DAS for all p.

2. Preliminaries

First, we give some lemmas that will be used in the next sections of this paper.

Lemma 2.1. [8] Let x_1 be a pendant vertex of a graph G and x_2 be the vertex which is adjacent to x_1. Let G_1 be the induced subgraph obtained from G by deleting the vertex x_1. If x_1 and x_2 are deleted, the induced subgraph G_2 is obtained. Then,

$$P_{A(G)}(\lambda) = \lambda P_{A(G_1)}(\lambda) - P_{A(G_2)}(\lambda)$$

Lemma 2.2. [4] For $n \times n$ matrices A and B, followings are equivalent:

(i) A and B are cospectral

(ii) A and B have the same characteristic polynomial

(iii) $\text{tr}(A^i) = \text{tr}(B^i)$ for $i = 1, 2, ..., n$

Lemma 2.3. [4] For the adjacency matrix of a graph G, following parameters can be deduced from the spectrum:

(i) the number of vertices

(ii) the number of edges

(iii) the number of closed walks of any fixed length.

Theorem 2.4. [14] If a given connected graph G has the same order, same clique number and same spectral radius with $Kite_{p,q}$ then G is isomorphic to $Kite_{p,q}$.

In the rest of the paper, we denote the number of subgraphs of a graph G which are isomorphic to complete graph K_3 by $t(G)$.

Theorem 2.5. [14] For any integers $p \geq 3$ and $q \geq 1$, if we denote the spectral radius of $A(Kite_{p,q})$ with $\rho(Kite_{p,q})$ then

$$p - 1 + \frac{1}{p^2} + \frac{1}{p^3} < \rho(Kite_{p,q}) < p - 1 + \frac{1}{4p} + \frac{1}{p^2 - 2p}$$

Theorem 2.6. [12] Let G be a graph with n vertices, m edges and spectral radius μ. If G is K_{r+1}–free, then

$$\mu \leq \sqrt{2m\left(\frac{r-1}{r}\right)}$$

Lemma 2.7. [8](Interlacing Lemma) If G is a graph on n vertices with eigenvalues $\lambda_1(G) \geq \ldots \geq \lambda_n(G)$ and H is an induced subgraph on m vertices with eigenvalues $\lambda_1(H) \geq \ldots \geq \lambda_m(H)$, then for $i = 1, \ldots, m$

$$\lambda_i(G) \geq \lambda_i(H) \geq \lambda_{n-m+i}(G)$$
Lemma 2.8. [3] A connected graph with the largest adjacency eigenvalue less than 2 are precisely induced subgraphs of the Smith graphs shown in Figure 1.

![Figure 1. Smith graphs]

3. Characteristic polynomial of kite graphs

We use the method similar to that given in [8] to obtain the general form of characteristic polynomials of Kite_{p,q} graphs. Obviously, if we delete the vertex with one degree from short kite graph, the induced subgraph will be the complete graph K_p. Then, by deleting the vertex with one degree and its adjacent vertex, we obtain the complete graph K_{p-1} with $p-1$ vertices. From Lemma 2.1, we get

\[P_{A(K_{p,1})}(\lambda) = \lambda P_{A(K_p)}(\lambda) - P_{A(K_{p-1})}(\lambda) \]
\[= \lambda(\lambda - p + 1)(\lambda + 1)^{p-1} - [(\lambda - p + 2)(\lambda + 1)^{p-2}] \]
\[= (\lambda + 1)^{p-2}[\lambda^2 - \lambda p + \lambda(\lambda + 1) - \lambda + p - 2] \]
\[= (\lambda + 1)^{p-2}[\lambda^3 - (p - 2)\lambda^2 - \lambda p + p - 2]. \]

Similarly for Kite_{p,2}, induced subgraphs will be Kite_{p,1} and K_p respectively. By Lemma 2.1, we get

\[P_{A(K_{p,2})}(\lambda) = \lambda P_{A(K_{p,1})}(\lambda) - P_{A(K_p)}(\lambda) \]
\[= \lambda(\lambda P_{A(K_{p,1})}(\lambda) - P_{A(K_{p-1})}(\lambda)) - P_{A(K_p)}(\lambda) \]
\[= (\lambda^2 - 1)P_{A(K_p)}(\lambda) - \lambda P_{A(K_{p-1})}(\lambda). \]

By using these polynomials, we calculate the characteristic polynomial of Kite_{p,q} where $n = p + q$. Again, by Lemma 2.1 we have

\[P_{A(K_{p,q})}(\lambda) = \lambda P_{A(K_p)}(\lambda) - P_{A(K_{p-1})}(\lambda). \]
Coefficients of above equation are $b_1 = -1$, $a_1 = \lambda$. Simultaneously, we get

$$P_A(\text{Kite}_{p,2})(\lambda) = (\lambda^2 - 1)P_A(\text{Kite}_p)(\lambda) - \lambda P_A(\text{Kite}_{p-1})(\lambda).$$

and coefficients of above equation are $b_2 = -a_1 = -\lambda$, $a_2 = \lambda a_1 - 1 = \lambda^2 - 1$. Then for $\text{Kite}_{p,3}$, we have

$$P_A(\text{Kite}_{p,3})(\lambda) = \lambda P_A(\text{Kite}_{p,2})(\lambda) - P_A(\text{Kite}_{p,1})(\lambda)$$

$$= (\lambda(\lambda^2 - 1) - \lambda)P_A(\text{Kite}_p)(\lambda) - ((\lambda^2 - 1)P_A(\text{Kite}_{p-1})(\lambda))$$

and coefficients of above equation are $b_3 = -a_2 = -(\lambda^2 - 1)$, $a_2 = \lambda a_2 - a_1 = \lambda(\lambda^2 - 1) - \lambda$. In the following steps, for $n \geq 3$, $a_n = \lambda a_{n-1} - a_{n-2}$. From this difference equation, we get

$$a_n = \sum_{k=0}^{n} \lambda^n \frac{\sqrt{\lambda^2 - 4}}{2} \left(\frac{\lambda - \sqrt{\lambda^2 - 4}}{2} \right)^{n-k}$$

Now, let $\lambda = 2 \cos \theta$ and $u = e^{i\theta}$. Then, we have

$$a_n = \sum_{k=0}^{n} u^{2k-n} = \frac{u^{-n}(1 - u^{2n+2})}{1 - u^2}$$

and by calculation the characteristic polynomial of any kite graph $\text{Kite}_{p,q}$ where $n = p + q$ is

$$P_A(\text{Kite}_{p+q})(u + u^{-1}) = a_{n-p}P_A(\text{Kite}_p)(u + u^{-1}) - a_{n-p-1}P_A(\text{Kite}_{p-1})(u + u^{-1})$$

$$= \frac{u^{-n+p}(1 - u^{2n-2p+2})}{1 - u^2}. \left((u + u^{-1} - p + 1). (u + u^{-1} + 1)^{p-1} \right)$$

$$- \frac{u^{-n+p+1}(1 - u^{2n-2p+4})}{1 - u^2}. \left((u + u^{-1} - p + 2). (u + u^{-1} + 1)^{p-2} \right)$$

$$= \frac{u^{-n+p}(1 + u - u^{-1})^{p-2}}{1 - u^2} \left[(2 - p). (1 + u - u^{2p+2} - u^{2p+3})
ight.$$ \n
$$+ (u^{-2} - u^{2p+1}) \right]$$

$$= \frac{u^{-q}(1 + u - u^{-1})^{q-2}}{1 - u^2} \left[(2 - p). (1 + u - u^{2q+2} - u^{2q+3})
ight.$$ \n
$$+ (u^{-2} - u^{2q+1}) \right].$$

Theorem 3.1. No two non-isomorphic kite graphs have the same adjacency spectrum.

Proof. Assume that there are two cospectral kite graphs with number of vertices respectively, $p_1 + q_1$ and $p_2 + q_2$. Since they are cospectral, they must have same number of vertices and same characteristic polynomials. Hence, $n = p_1 + q_1 = p_2 + q_2$ and we get

$$P_A(\text{Kite}_{p_1+q_1})(u + u^{-1}) = P_A(\text{Kite}_{p_2+q_2})(u + u^{-1})$$

i.e.,

$$\frac{u^{-n+p_1}(1 + u - u^{-1})^{p_1-2}}{1 - u^2} \left[(2 - p_1). (1 + u - u^{2p_1+2} - u^{2p_1+3})
ight.$$ \n
$$+ (u^{-2} - u^{2p_1+1}) \right]$$

$$= \frac{u^{-n+p_2}(1 + u - u^{-1})^{p_2-2}}{1 - u^2} \left[(2 - p_2). (1 + u - u^{2p_2+2} - u^{2p_2+3})
ight.$$ \n
$$+ (u^{-2} - u^{2p_2+1}) \right].$$
Let \(p_1 > p_2 \). It follows that \(n - p_2 > n - p_1 \). Then, we have
\[
\begin{align*}
&\left(1 + u - u^{-1}\right) \left(1 + u - u^{-1}\right) - \left(1 + u^{-1} - u^{-2n-2p_1+2} - u^{2n-2p_1+3}\right) \\
&\left(1 + u - u^{-1}\right) \left(1 + u - u^{-1}\right) - \left(1 + u^{-1} - u^{-2n-2p_2+2} - u^{2n-2p_2+3}\right)
\end{align*}
\]
By using the fact that \(u \neq 0 \) and \(1 + u + u^{-1} \neq 0 \), we get
\[
\begin{align*}
f(u) &= [(2 - p_1). (1 + u^{-1} - u^{2n-2p_1+2} - u^{2n-2p_1+3} + (u^{-2} - u^{2n-2p_1+4})] \\
&\quad - [(2 - p_2). (1 + u^{-1} - u^{2n-2p_2+2} - u^{2n-2p_2+3} + (u^{-2} - u^{2n-2p_2+4})]
\]
\[
= 0
\]
Since \(f(u) = 0 \), the derivation of \((2n - 2p_2 + 5)\)th of \(f \) equals to zero again. Thus, we have
\[
[(p_1 - 2)(2n - 2p_2 + 4)!u^{-2n+2p_2-6}] - [(p_2 - 2)(2n - 2p_2 + 4)!u^{-2n+2p_2-6}] = 0
\]
i.e.,
\[
\begin{align*}
(p_1 - 2) - (p_2 - 2)
\end{align*}
\]
i.e.,
\[
p_1 = p_2
\]
since \(u \neq 0 \). This is a contradiction with our assumption that \(p_1 > p_2 \). For \(p_2 > p_1 \), we get the similar contradiction. So \(p_1 \) must be equal to \(p_2 \). Hence \(q_1 = q_2 \) and these graphs are isomorphic.

4. Spectral characterization of Kite\(_{p, 2}\) graphs

Lemma 4.1. Let \(G \) be a graph which is cospectral with \(\text{Kite}_{p,q} \). Then we get
\[
w(G) \geq p - 2q + 1.
\]

Proof. Since \(G \) is cospectral with \(\text{Kite}_{p,q} \), from Lemma 2.3, \(G \) has the same number of vertices, same number of edges and same spectrum with \(\text{Kite}_{p,q} \). So, if \(G \) has \(n \) vertices and \(m \) edges, \(n = p + q \) and \(m = \left(\frac{p}{2}\right) + q = \frac{p^2 - p + 2q}{2} \). Also, \(\rho(G) = \rho(\text{Kite}_{p,q}) \). From Theorem 2.6, we say that if \(\mu > \sqrt{2m(r-1)} \) then \(G \) isn’t \(K_{r+1} \)-free. It means that, \(G \) contains \(K_{r+1} \) as an induced subgraph. Now, we claim that for \(r < p - 2q \), \(\sqrt{2m(r-1)} < \rho(G) \). By Theorem 2.5, we’ve already known that \(p + 1 + \frac{1}{p^2} + \frac{1}{p^3} < \rho(G) \). Hence, we need to show that \(\sqrt{2m(r-1)} < p + 1 + \frac{1}{p^2} + \frac{1}{p^3} \), when \(r < p - 2q \). Indeed,
\[
(\sqrt{2m\left(\frac{r-1}{r}\right)})^2 - (p - 1 + \frac{1}{p^2} + \frac{1}{p^3})^2 = (p^2 - p + 2q)(r - 1) - r(p - 1 + \frac{1}{p^2} + \frac{1}{p^3})^2
\]
\[
= (p^2 - p + 2q)(r - 1) - \left(\frac{r(p^2 + p^3)}{p^3}\right)(2(p - 1) + \frac{(p^2 + p^3)}{p^3})
\]
\[
= (pr - p^2 + p + (2q - 1)r - 2q) - \left(\frac{r(p^2 + p^3)}{p^3}\right)(2(p - 1) + \frac{(p^2 + p^3)}{p^3})
\]

By the help of Mathematica, for \(r < p - 2q \) we can see
\[
(pr - p^2 + p + (2q - 1)r - 2q) - \left(\frac{r(p^2 + p^3)}{p^3}\right)(2(p - 1) + \frac{(p^2 + p^3)}{p^3}) < 0
\]
i.e.,
\[
(\sqrt{2m\left(\frac{r-1}{r}\right)})^2 - (p - 1 + \frac{1}{p^2} + \frac{1}{p^3})^2 < 0
\]
i.e.,
\[
(\sqrt{2m\left(\frac{r-1}{r}\right)})^2 < (p - 1 + \frac{1}{p^2} + \frac{1}{p^3})^2
\]
Since \(\sqrt{2m\left(\frac{r-1}{r}\right)} > 0\) and \(p - 1 + \frac{1}{p^2} + \frac{1}{p^3} > 0\), we get
\[
\sqrt{2m\left(\frac{r-1}{r}\right)} < p - 1 + \frac{1}{p^2} + \frac{1}{p^3} < \rho(G).
\]
Thus, we proved our claim and so \(G \) contains \(K_{r+1} \) as an induced subgraph such that \(r < p - 2q \). Consequently, \(\omega(G) \geq p - 2q + 1 \).

Theorem 4.2. Kite\(_{p,2}\) graphs are determined by their adjacency spectrum for all \(p \).

Proof. If \(p = 1 \) or \(p = 2 \), Kite\(_{p,2}\) graphs are actually the path graphs \(P_3 \) or \(P_4 \). Also if \(p = 3 \), then we obtain the lollipop graph \(H_{5,3} \). As is known, these graphs are already DAS [8]. Hence we will continue our proof for \(p \geq 4 \). Adjacency characteristic polynomial of Kite\(_{p,2}\) is as below,
\[
P_{\lambda(Kite_{p,2})}(\lambda) = (\lambda + 1)^{p-2}[(\lambda)^4 + (2 - p)(\lambda)^3 - (p + 1)(\lambda)^2 + (2p - 4)(\lambda) + p - 1]
\]
By calculation, for the adjacency eigenvalues of Kite\(_{p,2}\), we obtain the following facts;
\(p - 1 < \lambda_1(A(Kite_{p,2})) < p, 0 < \lambda_2(A(Kite_{p,2})) < 2, \lambda_3(A(Kite_{p,2})) < 0, \lambda_4(A(Kite_{p,2})) = \ldots = \lambda_{p+1}(A(Kite_{p,2})) = -1 \) and \(\lambda_{p+2}(A(Kite_{p,2})) < -1 \).

For a given graph \(G \) with \(n \) vertices and \(m \) edges, assume that \(G \) is cospectral with Kite\(_{p,2}\). Then by Lemma 2.3, \(n = p + 2, m = \left(\frac{p}{2}\right) + 2 = \frac{p^2 - p + 4}{2} \) and \(t(G) = t(Kite_{p,2}) = \left(\frac{p}{3}\right) = \frac{p^2 - 3p^2 + 2p}{6} \). From
Lemma 4.1, \(w(G) \geq p - 2q + 1 \). When \(q = 2 \), \(w(G) \geq p - 3 = n - 5 \). It’s well-known that complete graph \(K_n \) is DS. So \(w(G) \neq n \). If \(w(G) = n - 1 = p + 1 \), then \(G \) contains at least one clique with size \(p - 1 \). It means that the edge number of \(G \) is greater than or equal to \(\left(\frac{p + 1}{2} \right) \). But it is a contradiction since \(\left(\frac{p + 1}{2} \right) > \left(\frac{p}{2} \right) + 2 = n \). Hence, \(w(G) \neq n - 1 \). Because of these facts, we get \(p - 3 \leq w(G) \leq p \).

From interlacing lemma, \(G \) can not contain the graphs in the following figure as an induced subgraph because \(\lambda_3(G_1) = \lambda_3(G_2) = 0 \).

Figure 2. Graphs \(G_1 \) and \(G_2 \)

If \(G \) is disconnected, from Lemma 2.8, components of \(G \) except one of them must be induced subgraphs of Smith graphs. Clearly, this is impossible because \(G_1 \) is forbidden and any path graph (since they have symmetric eigenvalues) can not be a component of \(G \). Hence \(G \) must be a connected graph. If \(w(G) = p \), then by Theorem 2.4., \(G \cong \text{Kite}_{p, 2} \). So we continue for \(w(G) < p \). Since \(w(G) \geq p - 3 \), \(G \) contains at least one clique with size at least \(p - 3 \). This clique is denoted by \(K_{w(G)} \). There may be at most five vertices out of the clique \(K_{w(G)} \). Let us label these five vertices respectively with \(1, 2, 3, 4, 5 \) and call the set of these five vertices with \(A \). So, we get \(|A| \leq 5 \). Moreover, \(\forall i,j \in A \) we get \(i \sim j \) since \(G_1, G_2 \) are not induced subgraphs of \(G \) and there is no isolated vertex in \(G \). Then, we can say that \(p \geq 6 \) since \(w(G) \geq p - 3 \).

For \(i \in A \), \(x_i \) denotes the number of adjacent vertices of \(i \) in \(K_{w(G)} \). By the fact that \(p - 1 \geq w(G) \geq p - 3 \), for all \(i \in A \) we say

\[
x_i \leq w(G) - |A| + 1 \tag{1}
\]

Also, \(x_{i \wedge j} \) denotes the number of common adjacent vertices in \(K_{w(G)} \) of \(i \) and \(j \) such that \(i,j \in A \) and \(i < j \). Similarly, if \(i \sim j \) then

\[
x_{i \wedge j} \leq w(G) - |A| \tag{2}
\]

Let \(d \) denotes the number of edges between the vertices of \(A \) and \(K_{w(G)} \), also \(\alpha \) denotes the number of cliques with size 3 which are not contained by \(A \) or \(K_{w(G)} \). Then, we get

\[
m = \left(\frac{p}{2} \right) + 2 = \left(\frac{w(G)}{2} \right) + \left(\frac{|A|}{2} \right) + d \tag{3}
\]

Similarly, we get

\[
t(G) = \left(\frac{p}{3} \right) = \left(\frac{w(G)}{3} \right) + \left(\frac{|A|}{3} \right) + \alpha \tag{4}
\]

On the other hand for \(\alpha \) and \(d \), we have

\[
d = \sum_{i=1}^{A} x_i \tag{5}
\]
and

\[\alpha = \sum_{i=1}^{\lvert A \rvert} \left(\frac{x_i}{2} \right) + \sum_{i \sim j} x_{i\wedge j}. \]

If \(w(G) = p - 3 \) then \(\lvert A \rvert = 5 \) and so \(p \geq 8 \). Thus we have

\[d = 3p - 14 \]

and

\[\alpha = \left(\frac{p}{3} \right) - \left(\frac{p - 3}{3} \right) - 10 = \frac{3p^2}{2} - \frac{15p}{2}. \]

From (1),(2),(5),(6) and (7) we have

\[\alpha = \sum_{i=1}^{5} \left(\frac{x_i}{2} \right) + \sum_{i \sim j} x_{i\wedge j} \leq 3 \left(\frac{p - 7}{2} \right) + \left(\frac{7}{2} \right) + 2 \sum_{i=1}^{5} x_i \]
\[= 3 \left(\frac{p - 7}{2} \right) + \left(\frac{7}{2} \right) + 6p - 28 \]
\[= \frac{3p^2 - 33p}{2} + 77. \]

But obviously for \(p = 8 \) this result gives contradiction. Also for \(p > 8 \),

\[\frac{3p^2 - 33p}{2} + 77 < \frac{3p^2 - 15p}{2} = \alpha. \]

So this is again a contradiction.

If \(w(G) = p - 2 \) then \(\lvert A \rvert = 4 \) and so \(p \geq 7 \). Thus we have

\[d = 2p - 7 \]

and

\[\alpha = \left(\frac{p}{3} \right) - \left(\frac{p - 2}{3} \right) - 4 = p^2 - 4p. \]

On the other hand we have

\[\alpha = \sum_{i=1}^{4} \left(\frac{x_i}{2} \right) + \sum_{i \sim j} x_{i\wedge j} \leq 2 \left(\frac{p - 5}{2} \right) + \left(\frac{3}{2} \right) + 2 \sum_{i=1}^{4} x_i \]
\[= p^2 - 7p + 19. \]

Clearly for \(p \geq 7 \),

\[p^2 - 7p + 19 < p^2 - 4p = \alpha. \]

So this is a contradiction.

Similarly, if \(w(G) = p - 1 \) then \(\lvert A \rvert = 3 \) and so \(p \geq 6 \). Hence we have

\[d = p - 2 \]

and

\[\alpha = \frac{p^2 - 3p}{2}. \]
Also we have
\[
\alpha = \sum_{i=1}^{3} \left(\frac{x_i}{2} \right) + \sum_{i \sim j} x_i \land j \leq \left(\frac{p - 3}{2} \right) + p - 2
\]
\[
= \frac{p^2 - 5p}{2} + 4.
\]
Clearly for \(p \geq 6 \),
\[
\frac{p^2 - 5p}{2} + 4 < \frac{p^2 - 3p}{2} = \alpha.
\]
Again we obtain a contradiction.

By all of these facts, we can conclude that our assumption is actually false, then \(w(G) \not< p \). Hence \(w(G) = p \) and so that by Theorem 2.4., \(G \cong \text{Kite}_{p,2} \).

In the final of the paper, we give a conjecture below.

Conjecture 4.3. For \(q > 2 \), \(\text{Kite}_{p,q} \) graphs are DAS.

Acknowledgment: The authors are grateful to the referees for many suggestions which led to an improved version of this paper.

References
