Note on the permutation group associated to E-polynomials

  • Hirotaka Imamura
  • Masashi Kosuda
  • Manabu Oura Kanazawa University
Keywords: Centralizer algebra, Permutation group


This is a continuation of our project which focuses on E-polynomials and the related combinatorics. A pair of groups appearing in the definition of E-polynomials yields the permutation group. In this paper, we determine the multi-matrix structures of the centralizer algebras of the tensor representations of this permutation group.


E. Bannai, T. Ito, Algebraic combinatorics I: association schemes, The Benjamin/Cummings Publishing Co, California (1984).

W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: the user language, J. Symbolic Comput. 24(3-4) (1997) 235–265.

M. Broué, M. Enguehard, Polynômes des poids de certains codes et fonctions thêta de certains réseaux, Ann. Sci. École Norm. Sup. 5(1) (1972) 157–181.

W. Duke, On codes and Siegel modular forms, Internat. Math. Res. Notices 5 (1993) 125–136.

A. Hanaki, hanaki/as/.

M. Kosuda, M. Oura, On the centralizer algebras of the primitive unitary reflection group of order 96, Tokyo J. Math. 39(2) (2016) 469–482.

M. Kosuda, M. Oura, Centralizer algebras of the group associated to Z4-codes, Discrete Math. 340(10) (2017) 2437–2446.

T. Motomura, M. Oura, E-polynomials associated to Z_4-codes, Hokkaido Math. J. 47(2) (2018) 339–350.

M. Oura, The dimension formula for the ring of code polynomials in genus 4, Osaka J. Math. 34(1) (1997) 53–72.

M. Oura, Eisenstein polynomials associated to binary codes, Int. J. Number Theory 5(4) (2009) 635–640.

M. Oura, Eisenstein polynomials associated to binary codes (II), Kochi J. Math. 11 (2016) 35–41.

M. Oura,

B. Runge, On Siegel modular forms I, J. Reine Angew. Math. 436 (1993) 57–86.

B. Runge, On Siegel modular forms II, Nagoya Math. J. 138 (1995) 179–197.

B. Runge, Codes and Siegel modular forms, Discrete Math. 148(1-3) (1996) 175–204.

C. C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967) 76–86.

H. Wielandt, Finite permutation groups, Academic Press, New York-London (1964).