Some upper and lower bounds for $D_{\alpha}$-energy of graphs

  • Abdollah Alhevaz Shahrood University of Technology
  • Maryam Baghipur Shahrood University of Technology
  • Ebrahim Hashemi Shahrood University of Technology
  • Yilun Shang
Keywords: Generalized distance matrix, Generalized distance energy, Distance (signless Laplacian) matrix, Transmission regular graph, Generalized distance spectral spread

Abstract

The generalized distance matrix of a connected graph $G$, denoted by $D_{\alpha}(G)$, is defined as $D_{\alpha}(G)=\alpha Tr(G)+(1-\alpha)D(G), ~~~~ 0\leq \alpha\leq 1$. Here, $D(G)$ is the distance matrix and $Tr(G)$ represents the vertex transmissions. Let $\partial_{1}\geq \partial_{2}\geq \cdots \geq \partial_{n}$ be the eigenvalues of $D_{\alpha}(G)$ and let $W(G)$ be the Wiener index. The generalized
distance energy of $G$ can be defined as $E^{D_{\alpha}}(G)=\displaystyle\sum_{i=1}^{n}\left|\partial_i-\frac{2\alpha W(G)}{n}\right|$. In this paper, we develop some new theory regarding the generalized distance energy $E^{D_{\alpha}}(G)$ for a connected graph $G$. We obtain some sharp upper and lower bounds for
$E^{D_{\alpha}}(G)$ connecting a wide range of parameters in graph theory including the maximum degree $\Delta$, the Wiener index $W(G)$, the diameter $d$, the transmission degrees, and the generalized distance spectral spread $D_{\alpha}S(G)$. We characterized the special graph classes that attain the bounds.

References

\bibitem{ACGM} {N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins and M. Robbiano,
Bounds for the signless Laplacian energy, \em Linear Algebra Appl.}, {\bf 435} (2011), 2365--2374.

\bibitem{GZ} {A. Alhevaz, M. Baghipur, K. C. Das, Y. Shang, Sharp bounds on (generalized) distance energy
of graphs \em Mathematics}, {\bf 8} (2020), Article ID: 426.

\bibitem{ABGP} {A. Alhevaz, M. Baghipur, H. A. Ganie and S. Pirzada,
Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph, \em Linear Multilinear Algebra}, (2019), https://doi.org/10.1080/03081087.2019.1679074.

\bibitem{ABG2} {A. Alhevaz, M. Baghipur, H. A. Ganie and Y. Shang,
Bounds for the generalized distance eigenvalues of a graph, \em
Symmetry.} {\bf 11} (2019) Article ID: 1529.

\bibitem{abgh} {A. Alhevaz, M. Baghipur, H. Ganie, Y. Shang, On the generalized distance energy of graphs,
\em Mathematics}, {\bf 8} (2020), Article ID: 17.

\bibitem{ABHR} {A. Alhevaz, M. Baghipur, E. Hashemi and H. S. Ramane,
On the distance signless Laplacian spectrum of graphs, \em Bull. Malay. Math. Sci. Soc.}, {\bf 42}(5) (2019), 2603--2621.

\bibitem{ABP} {A. Alhevaz, M. Baghipur and S. Paul, On the distance signless Laplacian
spectral radius and the distance signless Laplacian energy of
graphs, \em Discrete Math. Algorithm. Appl.}, {\bf 10}(3) (2018),
Article ID: 1850035.

\bibitem{AH1} {M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey, \em Linear Algebra Appl.}, 458 (2014), 301--386.

\bibitem{AH2} {M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, \em Linear Algebra Appl.}, 439 (2013), 21--33.

\bibitem{AH3} {M. Aouchiche and P. Hansen, On the distance signless
Laplacian of a graph, \em Linear and Multilinear Algebra}, 64 (2016), 1113--1123.

\bibitem{AH4} {M. Aouchiche and P. Hansen, Some properties of distance
Laplacian spectra of a graph, \em Czechoslovak Math. J.}, 64 (2014), 751--761.

\bibitem{a} {F. Ashraf, G. R. Omidi and B. Tayfeh-Rezaie, On the sum of signless Laplacian eigenvalues of a graph, \em Linear Algebra Appl.}, 438 (2013) 4539--4546.

\bibitem{CHT} {S. Y. Cui, J. X. He and G. X. Tian, The generalized distance matrix, \em Linear Algebra Appl.}, {\bf 563} (2019), 1--23.

\bibitem{DMO} {K. C. Das and S. A. Mojallal, On energy and Laplacian energy of graphs, \em Electron. J. Linear Algebra}, {\bf 31} (2016), 167--186.

\bibitem{DM} {J. B. Diaz and F. T. Metcalf, Stronger forms of a class of inequalities of G. Polya--G. Szeg\"{o} and L. V. Kantorovich, \em Bull. Amer. Math. Soc.}, {\bf 69} (1963), 415--418.

\bibitem{dr} {R. C. Diaz and O. Rojo, Sharp upper bounds on the distance energies of a graph, \em Linear Algebra Appl.}, {\bf 545} (2018), 55--75.

\bibitem{hp} {H. A. Ganie and S. Pirzada, On the bounds for signless Laplacian energy of a graph, \em Discrete Appl. Math.}, {\bf 228} (2017) 3--13.

\bibitem{GP} {H. A. Ganie, S. Pirzada, A. Alhevaz and M. Baghipur, Generalized distance spectral spread of a graph}, {\em submitted}.

\bibitem{IG1} {I. Gutman, The energy of a graph, \em Ber. Math. Statist. Sekt. Forschungsz. Graz}, {\bf 103} (1978), 1--22.

\bibitem{IG2} {I. Gutman, The energy of a graph: Old and new results, \em in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications,} Springer-Verlag, Berlin, 2001, 196--211.

\bibitem{I} {G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, \em Linear Algebra Appl.}, {\bf 430} (2009), 106--113.

\bibitem{IGV} {G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, \em MATCH Commun. Math. Comput. Chem.}, {\bf 60} (2008), 461--472.

\bibitem{lsg} {X. Li, Y. Shi and I. Gutman, \em Graph Energy}, Springer, New York, 2012.

\bibitem{HM} {H. Min\'{c}, \em Nonnegative Matrices,} John Wiley and
Sons Inc., New York, 1988.

\bibitem{MPF} {D. S. Mitrinovi\'{c}, J. E. Pe\v{c}ari\'{c} and A. M. Fink, \em Classical and New Inequalities in Analysis}, Kluwer Academic Publisher, 1993.

\bibitem{MV} {D. S. Mitrinovi\'{c} and P. M. Vasi\'{c}, \em Analytic Inequalities,} Springer Verlag, Berlin-Heidelberg-New York, 1970.

\bibitem{ph} {S. Pirzada and H. A. Ganie, On the Laplacian eigenvalues of a graph and Laplacian energy, \em Linear Algebra Appl.}, {\bf 486} (2015), 454--468.

\bibitem{shang1} {Y. Shang, Distance Estrada index of random graphs, \em Linear Multilinear Algebra}, {\bf 63} (2015), 466--471.

\bibitem{yy} {J. Yang and L. You, On a conjecture for the signless Laplacian eigenvalues, \em Linear Algebra Appl.}, {\bf 446} (2014) 115--132.

\bibitem{YYG} {J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, \em Kragujevac J. Math.}, {\bf 37} (2013), 245--255.

\bibitem{BGA} {B. Zhou, I. Gutman and T. Aleksi\'{c}, A note on the Laplacian energy of graphs, \em MATCH Commun. Math. Comput. Chem.}, {\bf 60} (2008), 441--446.
Published
2023-04-10
Section
Articles