Subsocles and direct sum of uniserial modules
Subsocles and direct sum of uniserial modules
Abstract
Suppose M is a QTAG-module with a subsocle S such that M/S is a direct sum of uniserial modules. Our global aim here is to investigate an interesting connection between the structure of M/S and the QTAG-module M. Specifically, the condition S=Soc(N) for some h-pure submodules N of M allows M to inherit the structure of M/S.
References
M. Ahmad, A. H. Ansari, M. Z. Khan, On subsocles of S2-modules, Tamkang J. Math. 11(2) (1980) 221-229.
A. Facchini, L. Salce, Uniserial modules: sums and isomorphisms of subquotients, Comm. Algebra 18(2) (1990) 499-517.
L. Fuchs, Infinite Abelian groups, Volume I, Pure Appl. Math. 36, Academic Press, New York (1970).
L. Fuchs, Infinite Abelian groups, Volume II, Pure Appl. Math. 36, Academic Press, New York (1973).
A. Hasan, On essentially finitely indecomposable QTAG-modules, Afr. Mat. 27(1) (2016) 79-85.
A. Hasan, Rafiquddin, On completeness in QTAG-modules, (Communicated).
J. Irwin, J. Swanek, On purifiable subsocles of a primary Abelian group, Can. J. Math. 23(1) (1971) 48-57.
M. Z. Khan, Torsion modules behaving like torsion Abelian groups, Tamkang J. Math. 9(1) (1978) 15-20.
M. Z. Khan, Modules behaving like torsion Abelian groups, Math. Japonica, 22(5) (1978) 513-518.
A. Mehdi, On some QTAG-modules, Sci. Ser. A. Math Sci. 21 (2011) 55-62.
A. Mehdi, M.Y. Abbasi, F. Mehdi, Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci. 4(1) (2005) 1-6.
A. Mehdi, S. A. R. K. Naji, A. Hasan, Small homomorphisms and large submodules of QTAGmodules, Sci. Ser. A. Math Sci. 23 (2012) 19–24.
A. Mehdi, F. Sikander, S. A. R. K. Naji, Generalizations of basic and large submodules of QTAGmodules, Afr. Mat. 25(4) (2014) 975-986.
H. A. Mehran, S. Singh, On -pure submodules of QTAG-modules, Arch. Math. 46(6) (1986) 501–510.
F. Sikander, A. Hasan, A. Mehdi, On n-layered QTAG-modules, Bull. Math. Sci. 4(2) (2014) 199-208.
S. Singh, Some decomposition theorems in Abelian groups and their generalizations, Ring Theory: Proceedings of Ohio University Conference, Marcel Dekker, New York 25 (1976) 183-189.
S. Singh, Abelian groups like modules, Act. Math. Hung, 50 (1987) 85-95.