1-generator two-dimensional quasi-cyclic codes over Z_4[u]/(u^2-1)

  • Arazgol Ghajari
  • Kazem Khashyarmanesh
  • Zohreh Rajabi
Keywords: Two-dimensional cyclic codes, Two-dimensional quasi-cyclic codes, Two-dimensional generalized quasi-cyclic codes

Abstract

In this paper, we obtain generating set of polynomials of two-dimensional cyclic codes over the ring R=Z4[u]/(u2-1), where u2=1. Moreover, we find generator polynomials for two-dimensional quasi-cyclic codes and two-dimensional generalized quasi-cyclic codes over R and specify a lower bound on minimum distance of free 1-generator two-dimensional quasi-cyclic codes and two-dimensional generalized quasi-cyclic codes over R.

References

Y. Cao, Structural properties and enumeration of 1-generator generalized quasi-cyclic codes, Des. Codes Cryptogr. 60(1) (2011) 67-79.

Y. Cao, J. Gao, Constructing quasi-cyclic codes from linear algebra theory, Des. Codes Cryptogr. 67(1) (2013) 59-75.

M. Esmaeili, S. Yari, Generalized quasi-cyclic codes: structural properties and code construction, Appl. Algebra Engrg. Comm. Comput 20(2) (2009) 159-173.

Y. Gao, J. Gao, T. Wu, F. W. Fu, 1-generator quasi-cyclic and generalized quasi-cyclic codes over the ring ( Z4[u])/( u2-1), Appl. Algebra Engrg. Comm. Comput. 28(6) (2017) 457-467.

C. Guneri, F. Ozbudak, B. ddottextmdOzkaya, E. Saçıkara, Z. Sepasdar, P. Solacutetextmde, Structure and performance of generalized quasi-cyclic codes, Finite Fields Appl. 47 (2017) 183-202.

T. Ikai, H. Kosako, Y. Kojima, Two-dimensional cyclic codes, Electron. Comm. Japan 57(4) (1974/75) 27-35.

R. M. Lalasoa, R. Andriamifidisoa, T. J. Rabeherimanana, Basis of a multicyclic code as an ideal in Bbb Fq[X1,dots,Xs]/á X1r1 J. Algebra Relat. Topics 6(2) (2018) 63-78.

S. Ling, Ch. Xing, Coding theory: A first course, Cambridge University Press, New York (2004).

S. Ling, P. Sole, On the algebraic structure of quasi-cyclic codes. I. finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751-2760.

M. Ozen, F. Z. Uzekmek, N. Aydin, N.T. ddottextmdOzzaim, Cyclic and some constacyclic codes over the ring (Z4[u])/(á u2-1ñ), Finite Fields Appl. 38 (2016) 27-39.

Z. Sepasdar, Generator matrix for two-dimensional cyclic codes of arbitrary length, arXiv:1704.08070v1 [math.AC] 26 Apr (2017).

Z. Sepasdar, Some notes on the characterization of two dimensional skew cyclic codes, J. Algebra Relat. Topics 4(2) (2016) 1-8.

Z. Sepasdar, K. Khashyarmanesh, Characterizations of some two-dimensional cyclic codes correspond to the ideals of F[x,y]/< xs-1,y2k > Finite Fields Appl. 41 (2016) 97-112.

I. Siap, T. Abualrub, B. Yildiz, One generator quasi-cyclic codes over F2+uF2 , J. Frankl. Inst. 349(1) (2012) 284-292.

Published
2022-01-13
Section
Articles