# On maximal plane curves of degree $3$ over $\mathbb{F}_4$, and Sziklai's example of degree $q-1$ over $\mathbb{F}_q$

### Abstract

An elementary and self-contained argument for the complete determination of maximal plane curves of degree $3$ over $\mathbb{F}_4$ will be given, which complements Hirschfeld-Storme-Thas-Voloch's theorem on a characterization of Hermitian curves in $\mathbb{P}^2$. This complementary part should be understood as the classification of Sziklai's example of maximal plane curves of degree $q-1$ over $\mathbb{F}_q$. Although two maximal plane curves of degree $3$ over $\mathbb{F}_4$ up to projective equivalence over $\mathbb{F}_4$ appear, they are birationally equivalent over $\mathbb{F}_4$ each other.

### References

%%%%%%%%%%%%%%%%%%%%%%

\bibitem{aub-per1996}

\href{https://www.math.univ-toulouse.fr/~perret/Fichiers/Scan-Weil.Singulier.pdf}{

Y. Aubry and M. Perret,

A Weil theorem for singular curves,

in: R. Pellikaan, M. Perret and S. Vl\u{a}du\c{t} (Eds.),

Arithmetic geometry and coding theory (Luminy, 1993),

de Gruyter, Berlin, 1996, 1--7. }

%%%%%%%%%%%%%%%%%%%%%%%%%%

\bibitem{hir}

J. W. P. Hirschfeld,

Projective geometries over finite fields

(second edition),

Oxford University Press,

Oxford, 1998.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\bibitem{hir-sto-tha-vol1991}

\href{https://link.springer.com/article/10.1007/BF01258509}

{J. W. P. Hirschfeld, L. Storme, J. A. Thas and J. F. A. Voloch,

A characterization of Hermitian curves,

J. Geom. 41 (1991) 72--78.}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\bibitem{hom-kim2009}

\href{https://www.sciencedirect.com/science/article/pii/S1071579709000215}

{M. Homma and S. J. Kim,

Around Sziklai's conjecture on the number of points of

a plane curve over a finite field,

Finite Fields Appl. 15 (2009), 468-474.}

%%%%%%%%%%%%%%%%%%%%%%

\bibitem{hom-kim2010a}

\href{https://arxiv.org/pdf/0907.1325.pdf}

{M. Homma and S. J. Kim,

Sziklai's conjecture on the number of points of

a plane curve over a finite field {\rm II},

in: G. McGuire, G.L. Mullen, D. Panario, I.E. Shparlinski (Eds.),

Finite Fields: Theory and Applications, 225--234,

Contemp. Math., vol. 518, AMS,

Providence, 2010.

(An update is available at arXiv 0907.1325v2.)}

%%%%%%%%%%%%%%%%%%%%%%%%%

\bibitem{hom-kim2010b}

\href{https://www.sciencedirect.com/science/article/pii/S107157971000050X}

{M. Homma and S. J. Kim,

Sziklai's conjecture on the number of points of

a plane curve over a finite field {\rm III},

Finite Fields Appl. 16 (2010) 315--319.}

%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%

\bibitem{ruc-sti1994}

\href{https://doi.org/10.1515/crll.1994.457.185}

{H.-G. R\"{u}ck and H. Stichtenoth,

A characterization of Hermitian function fields over finite fields,

J. Reine Angew. Math. 457 (1994) 185--188. }

%%%%%%%%%%%%%%%%%%%%%%

\bibitem{sch}

\href{https://doi.org/10.1016/0097-3165(87)90003-3}

{R. Schoof,

Nonsingular plane cubic curves over finite fields,

J. Combin. Theory Ser. A 46 (1987) 183--211.}

%%%%%%%%%%%%%%%%%%%%%%%

\bibitem{ste2012}

B. Steinberg,

Representation theory of finite groups.

An introductory approach, Universitext, Springer, New York, 2012.

%%%%%%%%%%%%%%%%%%%%%

\bibitem{szi2008}

\href{https://doi.org/10.1016/j.ffa.2007.09.004}

{P. Sziklai,

A bound on the number of points of a plane curve,

Finite Fields Appl. 14 (2008) 41--43.}

%%%%%%%%%%%%%%%%%%