On DNA codes from a family of chain rings
Abstract
In this work, we focus on reversible cyclic codes which correspond to reversible DNA codes or reversible-complement DNA codes over a family of finite chain rings, in an effort to extend what was done by Yildiz and Siap in [20]. The ring family that we have considered are of size $2^{2^k}$, $k=1,2, \cdots$ and we match each ring element with a DNA $2^{k-1}$-mer. We use the so-called $u^2$-adic digit system to solve the reversibility problem and we characterize cyclic codes that correspond to reversible-complement DNA-codes. We then conclude our study with some examples.