Minimum distance and idempotent generators of minimal cyclic codes of length ${p_1}^{\alpha_1}{p_2}^{\alpha_2}{p_3}^{\alpha_3}$
Abstract
Let $ p_1, p_2, p_3, q $ be distinct primes and $ m={p_1}^{\alpha_1}{p_2}^{\alpha_2}{p_3}^{\alpha_3}$. In this paper, it is shown that the explicit expressions of primitive idempotents in the semi-simple ring $R_m = { F_q[x]}/{(x^m-1)}$ are the trace function of explicit expressions of primitive idempotents from $R_{p_i^{\alpha_i}}$. The minimal polynomials, generating polynomials and minimum distances of minimal cyclic codes of length $m$ over $F_q$ are also discussed. All the results obtained in \cite{ref[1]}, \cite{ref[4]}, \cite{ref[5]}, \cite{ref[6]}, \cite{ref[11]} and \cite{ref[14]} are simple corollaries to the results obtained in the paper.
References
S. K. Arora, M. Pruthi, Minimal cyclic codes of length 2pn, Finite Fields and Their Applications 5(2) (1999) 177–187.
G. K. Bakshi, S. Gupta, I. B. S. Passi, The algebraic structure of finite Metabelian group algebras, Communications in Algebra 43(6) (2015) 2240–2257.
G. K. Bakshi, M. Raka, Minimal cyclic codes of length $p^nq$, Finite Fields and Their Applications 9(4) (2003) 432–448.
G. K. Bakshi, M. Raka, A. Sharma, Idempotent generators of irreducible cyclic codes, In Number Theory & Discrete Geometry 6 (2008) 13–18.
S. Batra, S. K. Arora, Some cyclic codes of length 2pn, Designs Codes Cryptography 61 (2011) 41–69.
O. Broche, A. Del Río, Wedderburn decomposition of finite group algebras, Finite Fields and Their Applications 13(1) (2007) 71–79.
B. Chen, H. Liu, G. Zhang, A class of minimal cyclic codes over finite fields, Designs Codes Cryptography 74 (2013) 285–300.
R. A. Ferraz, P. M. César, Idempotents in group algebras and minimal abelian codes, Finite Fields and Their Applications 13(2) (2007) 382–393.
S. Gupta, Finite Metabelian group algebras, International Journal of Pure Mathematical Sciences 17 (2016) 30–38.
P. Kumar, S. K. Arora, $lambda$-Mapping and primitive idempotents in semisimple ring ${Re _{;m}},$ Communications in Algebra 41(10) (2013) 3679-3694.
P. Kumar, S. K. Arora, S. Batra, Primitive idempotents and generator polynomials of some minimal cyclic codes of length $p^n q^m$, International Journal of Information and Coding Theory 4 (2014) 191–217.
F. J. MacWilliam, N. J. A. Sloane, The theory of error-correcting codes, edition = 1st, Elsevier, Amsterdam (2013).
M. Pruthi, S. K. Arora, Minimal codes of prime-power length, Finite Fields and Their Applications 3(2) (1977) 99–113.
A. Sahni, P. T. Sehgal, Minimal cyclic codes of length $p^nq$, Finite Fields and Their Applications 18(5) (2012) 1017–1036.
A. Sharma, G. K. Bakshi, V. C. Dumir, M. Raka, Cyclotomic numbers and primitive idempotents in the ring $GF(q)[x]/(x^{p^n}-1)$, Finite Fields and Their Applications 10(4) (2004) 653-673.