The Additive constacyclic codes and the MacWilliams identities over mixed alphabets

MacWilliams identities of additive constacyclic codes

  • Indibar Debnath Indian Institute of Technology Patna
  • Ashutosh Singh Indian Institute of Technology Patna
  • Om Prakash
  • Abdollah Alhevaz Indian Institute of Technology Patna
Keywords: Constacyclic code, Chain ring, Frobenius ring, Gray image, MacWilliams identity

Abstract

Let $\mathbb{Z}_p$ be the ring of integers modulo a prime integer $p$, where $p-1$ is a quadratic residue modulo $p$. This paper presents the study of constacyclic codes over chain rings $\mathcal{R}=\frac{\mathbb{Z}_p[u]}{\langle u^2\rangle}$ and $\mathcal{S}=\frac{\mathbb{Z}_p[u]}{\langle u^3\rangle}$. We also study additive constacyclic codes over $\mathcal{R}\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S}$ using the generator polynomials over the rings $\mathcal{R}$ and $\mathcal{S},$ respectively. Further, by defining Gray maps on $\mathcal{R}$, $\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S},$ we obtain some results on the Gray images of additive codes. Then we provide the weight enumeration and MacWilliams identities corresponding to the additive codes over $\mathbb{Z}_p\mathcal{R}\mathcal{S}$.

Author Biographies

Indibar Debnath, Indian Institute of Technology Patna

Research Scholar

Department of Mathematics

Indian Institute of Technology Patna, Bihta

Ashutosh Singh, Indian Institute of Technology Patna

Research Scholar

Department of Mathematics

Indian Institute of Technology Patna, Bihta (India)

Abdollah Alhevaz, Indian Institute of Technology Patna

Associate Professor

Faculty of Mathematical Sciences,

Shahrood University of Technology,

P.O. Box: 316-3619995161, Shahrood, Iran

Published
2025-05-21
Section
Articles