The Additive constacyclic codes and the MacWilliams identities over mixed alphabets
MacWilliams identities of additive constacyclic codes
Abstract
Let $\mathbb{Z}_p$ be the ring of integers modulo a prime integer $p$, where $p-1$ is a quadratic residue modulo $p$. This paper presents the study of constacyclic codes over chain rings $\mathcal{R}=\frac{\mathbb{Z}_p[u]}{\langle u^2\rangle}$ and $\mathcal{S}=\frac{\mathbb{Z}_p[u]}{\langle u^3\rangle}$. We also study additive constacyclic codes over $\mathcal{R}\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S}$ using the generator polynomials over the rings $\mathcal{R}$ and $\mathcal{S},$ respectively. Further, by defining Gray maps on $\mathcal{R}$, $\mathcal{S}$ and $\mathbb{Z}_p\mathcal{R}\mathcal{S},$ we obtain some results on the Gray images of additive codes. Then we provide the weight enumeration and MacWilliams identities corresponding to the additive codes over $\mathbb{Z}_p\mathcal{R}\mathcal{S}$.