Ternary maximal self-orthogonal codes of lengths $21,22$ and $23$

  • Makoto Araya
  • Masaaki Harada
  • Yuichi Suzuki
Keywords: Ternary code, Self-dual code, Self-orthogonal code

Abstract

We give a classification of ternary maximal self-orthogonal codes of lengths $21,22$ and $23$. This completes a classification of ternary maximal self-orthogonal codes of lengths up to $24$.

References

W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb. Comput. 24(3–4) (1997) 235–265.

J. Conway, V. Pless, N. J. A. Sloane, Self–dual codes over GF(3) and GF(4) of length not exceeding 16, IEEE Trans. Inform. Theory 25(3) (1979) 312–322.

M. Harada, A. Munemasa, A complete classification of ternary self–dual codes of length 24, J. Combin. Theory Ser. A 116(5) (2009) 1063–1072.

M. Harada, A. Munemasa, On the classification of weighing matrices and self–orthogonal codes, J. Combin. Des. 20(1) (2012) 40–57.

M. Harada, A. Munemasa, Database of Ternary Maximal Self–Orthogonal Codes, http://www.math.is.tohoku.ac.jp/~munemasa/research/codes/mso3.htm.

C. W. H. Lam, L. Thiel, A. Pautasso, On ternary codes generated by Hadamard matrices of order 24, Congr. Numer. 89 (1992) 7–14.

J. Leon, V. Pless, N. J. A. Sloane, On ternary self–dual codes of length 24, IEEE Trans. Inform. Theory 27(2) (1981) 176–180.

C. L. Mallows, V. Pless, N. J. A. Sloane, Self–dual codes over GF(3), SIAM J. Appl. Math. 31(4) (1976) 649–666.

V. Pless, N. J. A. Sloane, H. N. Ward, Ternary codes of minimum weight 6 and the classification of the self–dual codes of length 20, IEEE Trans. Inform. Theory 26(3) (1980) 305–316.
Published
2018-01-15
Section
Articles