Self-orthogonal and quantum codes over chain rings
Abstract
In this paper, we investigate the Gray images of codes over chain rings, leading to the derivation of infinite families of self-orthogonal linear codes over the residue field $\mathbb{F}_q$. We determine the parameters of optimal self-orthogonal and divisible linear codes. Additionally, we study the Gray images of quasi-twisted codes, resulting in some self-orthogonal Griesmer quasi-cyclic codes. Finally, we employ the CSS construction to derive some quantum codes based on self-orthogonal linear codes.